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Abstract: This paper presents a methodology for static security assessment of transmission network
planning using machine learning (ML). The objective is to accelerate the probabilistic risk assessment
of the Hydro-Quebec (HQ) TransÉnergie transmission grid. The model takes the expected power
supply and the status of the elements in a N − k contingency scenario as inputs. The output is the
reliability metric Expecting Load Shedding Cost (ELSC). To train and test the regression model,
stochastic data are performed, resulting in a set of N − k and k = {1, 2, 3} contingency scenarios used
as inputs. Subsequently, the output is computed for each scenario by performing load shedding using
an optimal power flow algorithm, with the objective function of minimizing ELSC. Experimental
results on the well-known IEEE-39 bus test system and PEGASE-1354 system demonstrate the
potential of the proposed methodology in generalizing ELSC during an N − k contingency. For
up to k = 3 the coefficient of determination

(
R2) obtained was close to 98% for both case studies,

achieving a speed-up of over four orders of magnitude with the use of a Multilayer Perceptron (MLP).
This approach and its results have not been addressed in the literature, making this methodology a
contribution to the state of the art.

Keywords: load shedding optimal power flow; machine learning; static security assessment;
transmission system planning

1. Introduction

Modern Power Systems (PSs) seek to supply energy with certain economic, sustainable,
reliable and secure levels. According to Singh et al. [1], security studies usually focus
on generation, transmission, protection, distribution, interconnection and, industrial and
commercial systems. Power transmission systems are widely regarded as the backbone of
PS and their security assessment determines the system’s capacity to supply uninterrupted
power from generation to the demand in a secure manner [2]. Nevertheless, performing
power transmission planning of large networks to guarantee reliability is a challenging task
if multiple scenarios and a high penetration of renewable power sources are considered,
primarily due to the size and complexity of modern grids.

Lumbreras et al. [3] proposed a methodology to simplify large networks for expansion
planning considering a set of scenarios for minimizing investments, operation costs and
penalties for non-served power. The cost and penalties are computed using DC power flow.
The control actions such as load shedding or generator response, as well as reactive power
and voltages issues, are not considered. The definition of critical branches is labeled in a
deterministic way.

Ideally, security assessment analysis should be performed under N − k criterion, where
N is a set of equipment and k the number of disconnected elements simultaneously during
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a contingency. If corrective actions are required the well-known Security Constrain Optimal
Power Flow (SCOPF) algorithm is usually employed [4] as extension of the Optimal Power
Flow algorithm (OPF). SCOPF takes into account operational constraints for a set of N − k
contingencies while minimizing impact of the contingency. However, this problem is a
nonlinear, non-convex, mixed variable and large scale, being their solution a changeling task
and time consuming. Therefore, different approximations, methods and assumptions such
as k = 1, DC power flows, contingency screening [5] and high-performance computing [6],
among others, are used to solve SCOPF in a reasonable time. More advanced methods
suggest quantum computation to deal with the computational complexity of the N − k
contingency analysis problem [7]. However, with the existing quantum computation
technology, their application is not possible.

Nowadays, PSs are operating in more stressed conditions, because both the demand
and the generation are increasing while the capacity of the transmission system is reaching
their limits. This condition, along with the penetration of renewable generation, increases
the uncertainty in the planning being necessary to refine the security assessment. Probabilis-
tic risk assessment for N − k [8,9] has emerged as an option to face this challenge; however,
this method is time demand. Recently, the use of Machine Learning (ML) to generalize
security assessment seeking increased computational speed [10] has gained popularity.

Table 1 presents a literature review of recent proposed methods for reliability assess-
ment, where ENS, AC, AI, PF, and Plan. are energy not supplied, alternating current power
flow, artificial intelligence, power flow, and planning application, respectively. In the table,
the following characteristics of each method are identified: numerical analysis model,
objective function, consideration of N − k contingencies and if was developed for system
planning. The main differences between models used for operation or operation planning
and system planning involves the consideration of unit comment, generation costs, and
generator ramp for the first one, while for system planning, the impact on the demand as
last remedial action is commonly the main issue to evaluate.

Table 1. Methodologies for security constraint assessment proposed in the literature.

Author Model Objective AC N − k Plan. Year

Sundar et al. [8] SCOPF Inve, Ope and VoLL ✓ ✓ 2018
Karangelos et al. [11] SCOPF Socio-econ ✓ 2020
Majidi-Qadikolai and
Baldick [12] SCOPF Socio-econ ✓ 2016

Karangelos and
Whenkel [13] SCOPF Socio-econ ✓ 2016

Heylen et al. [14] SCOPF Socio-econ ✓ 2016
Moreira et al. [15] SCOPF Socio-econ ✓ ✓ 2015
Karangelos and
Wehenkel [16] SCOPF Socio-econ ✓ 2019

Perkin et al. [17] SCOPF ENS ✓ 2019
Delavari et al. [18] SCOPF ENS ✓ ✓ 2021
Duchesne et al. [19] AI-SCOPF Socio-econ 2017
Duchesne et al. [20] AI-SCOPF Socio-econ 2017
Donnot et al. [21] AI-PF Ranking ✓ ✓ ✓ 2018

In recent years, Hydro-Quebec (HQ) has been developing a global methodology for
Risk-Informed decision making [22]. That methodology integrates a power grid reliability
simulator to estimate the Value of Lost Load (VoLL) when a N − k contingency occurs.
However, conducting this assessment for the HQ’s entire transmission network is a time-
demanding task, because the AC-SCOPF algorithm is required to minimize VoLL for a
set of N − k contingency scenarios. Implementing the simulator with the entire set of
equipment poses a bottleneck. According to Table 1, a comparable model to address this
challenge is currently unavailable in the existing literature. Moreover, there is a need for
accelerating the method for large power networks. To meet this challenge, we present in this
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paper a reliability security N − k assessment using ML, focusing on the static operation [2]
of PS. Our objective is to accelerate the evaluation of contingencies to support decision
making processes within an asset management framework. Our approach incorporates
constraints such as the voltage limits of buses, generator capabilities and the thermal limits
of branches. The objective function is the minimization of VoLL when disturbances occur
under different operating scenarios.

The main contributions addressed in this paper are as follows:

• We propose a ML methodology for generalizing AC− SCOPF for different time scopes
and scenarios, allowing to reduce the computational cost;

• We describe the procedure to fit the ML model executing LS −OPF for multiple N − k
contingency scenarios;

• We present a real-size case study base on European Union transmission system
PEGASE-1354 case to evaluate the performance in the generalization of ELSC for
large networks. Our approach achieves high accuracy compared to traditional AC-
OPF formulations.

This paper is structured as follows: a comprehensive review of ML for PF, OPF, SCOPF
is presented in Section 2. Our proposed methodology for generalization of LS-OPF under
N − k scenarios using ML is addressed in Section 3. Section 4 presents the case studies
where the application of the methodology is performed. Lastly, this paper is concluded in
Section 5.

2. Related Work

ML for security assessment of power systems is a well-known application given its
versatility to generalize complex phenomena [23]. For static security assessment, ML
applications are related to reduce computational burden during contingency analysis,
allowing to perform probabilistic risk assessment. Duchesne et al. [24] presents a complete
review for ML for PS reliability management, addressing applications in the field of PF,
OPF and SC-OPF.

2.1. Power Flow—PF

Donnot et al. [25] present a method to rank N-1 and N-2 contingencies using ANN.
The ranking is performed using a probabilistic risk assessment that considers thermal
limits of OHLs. Oliveira et al. [26] propose to assess power system operation security
under multiple contingencies using decision tree (DT). The security criterion involves the
computation of bus voltage through load flow simulation.

2.2. Optimal Power Flow—OPF

Zhang et al. [27] propose solving DCOPF using a convex neuronal network to guaran-
tee its generalization. Recent efforts have focused on extending the use of ML to ACOPF
problems considering the majority of constraints. Pan et al. [28] used ANN for solving
ACOPF, considering the feasibility and optimality during generation of solutions. The
objective function is to minimize the total cost of generation. The inputs are the active and
reactive power of each load. The outputs are the voltage magnitude of the slack bus, the
active power by generator, and the voltage magnitude of the PV-V buses. The feasibility
in the solutions obtained was greater than 99%, with a speed-up of 123×. Jia et al. [29]
propose a ML approach using Convolutional Neural Networks (CNN), where the load and
network topology are labeled as inputs, and the state variables bus voltage magnitude and
angle are labeled as outputs for training the ML model. A 350× speed-up with a prediction
accuracy R2 close to 100% was reached compared with Matpower for a 2000 bus system. At
a distribution level, Liu and Wu [30] proposed a Reinforced Learning algorithm to minimize
active power loss through voltage control, considering both voltage and reactive power
constraints. A similar optimization problem is addressed by Liao et al. [31] using capsule
networks. While these proposed methods exhibit high performance, their formulation is
limited to distribution networks.
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2.3. Security Constrained Optimal Power Flow—SCOPF

The use of ML for OPF has extended their variant SCOPF. Pan et al. [32] develop
an approach for solving SC-DCOPF problems using DNN. The objective function is to
minimize the generation cost. The inputs and outputs of the DNN are the power load and
power generation, respectively. A 328× speed-up with a prediction error less than 0.1%
was reached compared with the Gurobi solver for a 300 bus system. Zhou et al. [33] extend
the OPF problem formulation to Load Shedding SCOPF (LS-SCOPF) using an AC model
for emergency operations. The objective function consists only of cost of load reduction.
The inputs and outputs were the PF data and load shedding, respectively. For the IEEE
14-bus systems, the errors obtained were between 8% and 98% for a single line outage.

Table 2 compares recent studies of application of ML for security assessment with the
method addressed in this work. The column Bus is the system with maximum number of
bus where the model was tested, limits describe the security criteria, where full denotes
thermal, voltage and generators limits. The columns Method, Inputs, Outputs are the ML
algorithm employed, the ML inputs and the ML outputs, respectively.

In this work, we generalize by ML the estimation of ELSC using as inputs the N − k
topology and the expected load to supply. As the scope of this approach is grid planning,
the estimation the state variables are not required avoid post-processing or reconstruction
of system, as required in [29,32]. Hence, according to Huang et al. [34], who present a
review of recent progress in grid dispatch using deep learning, alongside the findings from
the review [24] and Tables 1 and 2, this paper introduces a novel method to accelerate static
security assessment. The method achieves this by generalizing the AC − LSOPF to obtain
the ESLC for multiple contingencies in large power networks with high accuracy.

Table 2. Summary of recent studies on machine learning to accelerate the solution of PF problems.

Paper Prob. Model N − k Bus Limits Method Inputs Architecture Ouputs Year Accuracy Speed-Up

Donnot et al. [25] LF AC k = 1,
2 118 Therm. ANN PF in

lines
layers 2, Neurons:

200
Therm.

violation 2018 ≈100% >2000×

Oliveira et al. [26] LF DC k = 1 136 Vol. DT
Topology,

PF
results

73 nodes Volt.
violation 2017 ≈99%

Zhang et al. [27] OPF DC k = 0 118 Therm. ANN Gen and
Load 5 layers OPF

variables 2022 ≈89%

Jia et al. [29] OPF AC k = 0 30 Full CNN
Topology

and
Load

layers: 1 Conv., 1
max-pool, 1

flatten, 2 dense

Bus
Voltage 2023 ≈ 100% >350×

Pan et al. [28] OPF AC k = 0 2000 Full ANN Load 2 layers, Neurons:
2048/1024

Power
and Volt.

of PV
buses

2023 ≈99% >100×

Pan et al. [32] OPF DC k = 1 300 Therm.,
Gen ANN Load 3 Layers, Neurons:

256/128/64 Volt. 2021 ≈99.8% >300×

Zhou et al. [33] OPF AC k = 1,
2, 3 14 Full ANN PF data 2 Layers, Neurons:

12/15
Load Re-
duction 2022

This Work OPF AC k = 1,
2, 3 1354 Full ANN

Topology,
Total
Load

3 Layers, Neurons:
400/200/100 ELSC ≈98% >10, 000×

3. Machine Learning Approach For LS-OPF

This section addressees the formulation of the Load Shedding Optimal Power Flow
(LS-OPF) problem for load shedding under contingency. This formulation enables the
generation of the raw data set used for training the ML model. Lastly, the background of
the employed ML algorithm is provided.

3.1. Load Shedding Security Constrained Optimal Power Flow

In order to perform a static security assessment for power systems planning, a grid
power flow model is necessary. The DC power flow model focuses on active power flow
calculations, while the AC load flow (ACLF) model considers both active and reactive
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power flows. The evaluation of reactive capability of generation, the security voltage limits
of buses and reactive compensation necessities the inclusion of reactive power flow.

The mathematical formulation of ACLF requires the specification of one or a set of
reference buses (R). Typically, the phase angle (θ) of these reference buses is constraint to
0, as shown below:

θr = 0, ∀r ∈ R (1)

To model the power flow in the set of branches (E), the Ohm’s Law is described by
the following equations that must be satisfied:

Pij = ℜ
((

Yij + Yc
ij

)∗
V2

i − Y∗
ijViV∗

j

)
∀(i, j) ∈ E (2)

Qij = ℑ
((

Yij + Yc
ij

)∗
V2

i − Y∗
ijViV∗

j

)
∀(i, j) ∈ E (3)

Pji = ℜ
((

Yij + Yc
ji

)∗
V2

j − Y∗
ijV

∗
i Vj

)
∀(i, j) ∈ E (4)

Qji = ℑ
((

Yij + Yc
ji

)∗
V2

j − Y∗
ijV

∗
i Vj

)
∀(i, j) ∈ E (5)

where P and Q represent the active and reactive branch power flow, V the bus voltage
and Y and Yc refers to he π-section parameters. Branches consist of transmission lines and
power transformers. To ensure the active and reactive power equilibrium between load,
losses and generation, the following equalities must be satisfied for each bus:

∑
k∈Gi

Pg
k − ∑

k∈Li

Pl
k − V2

i ∑
k∈Si

Gsk − ∑
(i,j)∈Ei

Pij = 0 ∀i ∈ N (6)

∑
k∈Gi

Qg
k − ∑

k∈Li

Ql
k + V2

i ∑
k∈Si

Bsk − ∑
(i,j)∈Ei

Qij = 0 ∀i ∈ N (7)

where G,L,Si and N are the set of generators, loads, shunt and buses, respectively.
Pg, Pl , Qg, Ql denote active and reactive power generation, and active and reactive power
demand. Finally, Gs and Bs are the conductance and susceptance of branch.

The PF model allows the assessment of the impact of a contingency on the secure
operation of the system. Security violation encompass the limits the buses, branches and
generators. Regarding buses, the voltage magnitude is bound by vl and vu as follows:

vl
i ≤ Vi ≤ vu

i , ∀i ∈ N (8)

To prevent branch overloading, the following inequality constraints for the maximum
allowable power flow must be satisfied for all power transformers and lines:

P2
ij + Q2

ij ≤
(

Su
ij

)2
∀(i, j) ∈ E (9)

Lastly, the active and reactive power for generators are bounded by the following
limits:

Pgl
k ≤ Pg

k ≤ Pgu
k ∀k ∈ G (10)

Qgl
k ≤ Qg

k ≤ Qgu
k ∀k ∈ G (11)

Since the objective in this approach is static security assessment during system plan-
ning, factors such as generator power ramps, unit comment and line switching are not
considered in the aforementioned formulation.

In the event of security violations, remedial actions such as redispatch and/or load
shedding become necessary. Therefore, to ensure secure system operation and minimize
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the impact of these remedial actions, an optimization problem must be formulated. The
optimization problem takes the following general form:

min
x

f (x),

s.t. cE(x) = 0,

cI(x) ≥ 0.

(12)

where f and x are the objective function and optimization variables
(

Pg, Pl , Qg
)

, respec-

tively. The optimization problem is subjected to equality cE (Equations (1)–(7)) and in-
equality cI (Equations (8)–(11)) constraints in order to guarantee power balance and secure
operation. The objective function can take various forms, such as minimizing generation
cost, maximizing market surplus, or minimizing expected load shedding cost (ELSC),
among others. In long term planning for PS, ELSC is commonly considered as a reliability
index to minimize. The minimization of ELSC can be formulated as the maximization
(negative minimization) of the value of the supply load. Hence, ELSC is calculated as the
expected supply load cost (ESLC) in pre-contingency minus the supply load cost (SLC) in
post-contingency, as shown below:

ELSC = ESLC − SLC (13)

Therefore, to consider load curtailment as remedial action, the objective function is
formulated by minimizing the negative SLC, as follows:

min − ∑
k∈L

ck1 Pl
k (14)

where P and c represent the supplied load and the unitary cost of the energy not sup-
plied, respectively. If load shedding is not required, the LSC will be zero, as indicated by
Equations (13) and (14). Finally, if LS is assumed with a constant power factor, the load can
be modeled as generator with negative power injection as shown below:

Qi − Pir = 0 ∀i ∈ L (15)

0 ≤ Pi ≤ Pp
i ∀i ∈ L (16)

where r is the ratio Qp/Pp where the index p denotes the pre-contingency value. In sum-
mary, each contingency is assessed by minimizing load shedding (LS-OPF) through the
adjustment of generator and load capabilities to achieve an optimal and secure operat-
ing point.

3.2. ML Algorithm—ANN

The idea we proposed involves generalizing the relation between an N − k contingency
with ELSC. Hence, given a set of features x = [x1, x2, · · · , xm], the target is to predict ŷ by
a function f as follows:

ŷ(x) = f (x, ω) (17)

where ω represents a set of parameters that fit the function f . The goal is to find the values of
ω that minimize the loss function L for a set of known samples {X, Y} as illustrated below:

min
ω

p

∑
i=1

L( f (xi, ω), yi) (18)

where X =
[
x1, x2, · · · , xp

]
and Y =

[
y1, y2, · · · , yp

]
. The optimization problem in the

form of Equation (18) can be solved using regression ML algorithms, with ANN widely
adopted for its high performance [24]. For the prediction of ELSC with ML in this paper,
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the selected set of features are x = [k, EPS, E1, E2, · · · Em] and y = ELSC/h, where EPS and
Ei represent the expected power to supply and a binary value indicating if element i is
connected, respectively. The training data set is obtained using the methodology addressed
in Section 3.1 for multiple contingency scenarios. Figure 1 illustrates the generic architecture
of an MLP for the generalization of ELSC, where the number of inputs must be adjusted to
each network.

Normalizer
layer

Input
Layer

Output
Layer

Hidden
Layers

Figure 1. Proposed ANN architecture for generalization of ELSC given an N − k contingency.

4. Numerical Analysis

To assess the performance of the proposed approach, two case studies are evaluated by
comparing the results obtained with the proposed method against the well-known interior
point algorithm (IP) for an AC − LSOPF formulation. The results of the IP algorithm are
considered as true values and are used for both fitting and evaluating the ML model.

4.1. Case Studies Description

The IEEE-39 bus and the PEGASE-1354 cases are used to demonstrate the practical
applicability of the proposed ML model. The IEEE-39 case serves didactic purposes,
providing a detailed illustration of the model’s performance, while the PEGASE-1354
model is employed to evaluate the ML performance in large power grids. The raw data for
both networks was taken from matpower cases [35] and is summarized in Table 3.

Table 3. Network data of the two case studies.

No. IEEE-39 PEGASE-1354

Buses 39 1354
Gen 10 260

Branches 35 1991
Transformers 11 234

Figure 2 summarized the procedure employed to generate the raw data, train the ML
and test the fit. A detailed explanation is presented in the following subsections.

PowerModels.jl tf.Keras.py

Figure 2. Procedure used in case studies for estimation of VoLL using ML.

4.2. Raw Data

The set of contingencies was generated stochastically, assuming a failure rate
λ = 5 × 10−4 failures/h (approx. 99.8% availability per year) for each element (Ei) over
a one-year period, P(Ei = 1|t)). Thus, the set of contingencies is selected from scenarios
where a least one element fails (Ei ̸= 0). Table 4 shows the number of scenarios for each
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N − k contingency used for training and testing in each case study. A total of p = 268.5× 103

and p = 502.5× 103 scenarios were used for IEEE-39 and PEGASE-1354, respectively. In the
IEEE-39 bus system, m = 115 elements, including circuit breakers (CB) associated with loads,
buses, generators, power transformers and lines were considered as equipment to fail. For
the PEGASE-1354 network, equipment considered for failure included CBs of loads greater
than 1 MW, generators, power transformers, and lines, totaling m = 2528 equipment. The
selection of power limits in the chosen loads was made to enhance the robustness of the
LS-OPF algorithm. Only synchronous machines are considered, as they currently consti-
tute the majority in HQ’s transmission grid. However, Inverted-Based Resources will be
addressed in future research.

Table 4. Number of N − k contingencies used to train the ANN.

N − k Scenarios IEEE-39 , m = 115 PEGASE-1354, m = 2528

N-1 65.4 × 103 73.2 × 103

N-2 188.5 × 103 285.5 × 103

N-3 14.6 × 103 143.8 × 103

Before executing the LS-OPF algorithm, a load update is performed for each scenario,
assuming the HQ’s demand pattern shown in Figure 3. This is performed to simulate the
load changes over the course of 1 year. Lastly, LS-OPF was executed for each contingency
scenario.

Jan 2024 Mar 2024 May 2024 Jul 2024 Sep 2024 Nov 2024

0.4

0.6

0.8

1

Date

Lo
ad

 -
 [

pu
]

Figure 3. HQ’s demand pattern used in the different contingency scenarios.

4.3. LS-OPF Using PowerModels.jl

The LS-OPF algorithm was implemented using the open-source platform PowerMod-
els.jl [36]. The abstract model shows in Listing 1 was written in the Julia Programming
Language to evaluate ELSC for each contingency scenario, based on the formulation ad-
dressed in Section 3.1. The load shedding model was implemented in the Julia function as
shown Listing 2. The loads are treated as generators and are labeled as “Load”.

The LS-OPF problem was solved using the non-linear solver IPOPT [37], which was
restricted to a maximum of 200 iterations and 150 s for each scenario. As linear solver, the
MA57 library was used with a tolerance of 1 × 10−6. The evaluation of the entire set of
contingencies was performed using a 2.2 GHz Intel Core i5-9500T CPU with 16 GB of RAM.
On average, each LS-OPF simulation took approx. in 0.5 s for the IEEE-39 case study and
around 5 s for the PEGASE-1354 case study.

To verify the LS-OPF results and procedure, a visual assessment is performed. Figure 4
shows the distribution of N − 1 contingencies with the highest ELSC. These results are
further explained using Figure 5, where the top N − 1 contingencies are highlighted. The
disconnection of bus 15 leads to the isolation of a part of the network, including five loads
and four generators. Since the simulation did not permit operation in islanding mode, bus
15 emerges as the most critical failure in the system.
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Listing 1. Implemented PowerModels Abstract LS-OPF Model.

function build_ls_opf(pm::_PM.AbstractPowerModel)
_PM.variable_bus_voltage(pm)
_PM.variable_gen_power(pm) #Equations (10), (11) and (16)
_PM.variable_branch_power(pm)
_PM.objective_min_fuel_cost(pm) #Equation (14)
_PM.constraint_model_voltage(pm) #Equation (8)
for i in ids(pm, :ref_buses)
_PM.constraint_theta_ref(pm, i) #Equation (1)
end
for i in ids(pm, :bus)
_PM.constraint_power_balance(pm, i) #Equation (6) and (7)
end
for i in ids(pm, :branch)
_PM.constraint_ohms_yt_from(pm, i) #Equation (2) and (3)
_PM.constraint_ohms_yt_to(pm, i) #Equation (4) and (5)
_PM.constraint_thermal_limit_from(pm, i) #Equation (9)
_PM.constraint_thermal_limit_to(pm, i) #Equation (9)
end
variable_load_shedding(pm) # Listing 2
end

Listing 2. Function implemented in PowerModels.jl for modeling load shedding.

function variable_load_shedding(pm) # Equation (15)
l_dic =pm.data["gen"]
for (key,value) in l_dic
if value["type"]=="Load"
r = value["qg"]/value["pg"]
indx = parse(Int64, key)
pg = PowerModels.var(pm,0,:pg)[indx]
qg = PowerModels.var(pm,0,:qg)[indx]
JuMP.@constraint(pm.model,qg-pg*r==0)
end
end
end

Figure 6 shows the top N − k with k = 2 contingencies, reaffirming that scenarios
involving bus 15 have the highest ELSC, except for the situation when bus 16 and line 18
fail. As shown in Figure 5, a simultaneous failure of these two elements would have a
similar impact as the disconnection of bus 15 with the disconnection of load 7.

Lastly, Figure 7 shows the top N-3 contingencies, with those related to bus to bus
15 presenting the highest impacts. Based on the previous visual assessment, the results
obtained during the raw data generation align with the expected outcomes.

bus_15 bus_25 bus_18 bus_3 line_21 load_2 load_10 trafo_5 bus_19 bus_38

10k

20k

30k

40k

50k

60k

Contingency N-1

EL
S
C
 -

 $
/h

Figure 4. Violin plot ranking of N − kk=1 contingencies with the highest ELSC for the IEEE-39 bus
system.
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Figure 5. Location of N − kk=1 contingencies in the network with the highest ELSC for the IEEE-39
bus system.
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Figure 6. N − kk=2 contingencies with the highest ELSC for the IEEE-39 bus system.
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Figure 7. N − kk=3 contingencies with the highest ELSC for the IEEE-39 bus system.

4.4. ELSC Regression

The proposed ML algorithm, as illustrated in Figure 1, was implemented using the
TensorFlow-Keras API in Python. The number of inputs is 117 for IEEE-39 and 2530 for
PEGASE-1354, respectively. These quantities result from the number of equipment to
fail, the consideration of contingency level (k), and the EPS as inputs. The output was
the ELSC. The optimization solver used was the ADAM algorithm, set with a learning
rate of 1 × 10−4. For the loss function, the Mean Square Error was selected. Among the
various architectures evaluated, an ANN with three hidden layers consisting of 400, 200
and 100 neurons, each using the Relu activation functions was chosen for both the IEEE-39
System and the PEGASE-1354 network. Additionally, a normalization layer was included
to improve the model’s fit. To prevent negative values of ELSC, a Relu activation function
was added to the output layer. Listing 3 provides the Python script with the implemented
ANN architecture.

Listing 3. TensorFlow-Keras ANN Model for STLF.

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

def build_and_compile_ANN(norm):
model = keras.Sequential([
norm,
layers.Dense(400, activation=relu),
layers.Dense(200, activation=relu),
layers.Dense(100, activation=relu),
layers.Dense(1,activation=relu)
])
model.compile(loss=MeanSquaredError,optimizer=tf.keras.optimizers.Adam (1e-4))
return model

With the established architecture, the model for each network was fitted and tested.
Listing 4 provides the Python code developed to fit the proposed ANN model. To assess
the learning capacity of the ML model, unknown load conditions and contingencies were
used for testing. Hence, the training and test datasets were split as shown in Figure 8, with
85% of the samples used for training and 15% for testing, using the raw data generated
in Section 4.2. Figure 9 shows the testing and training loss obtained during the fitting
processes for PEGASE-1354.
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Listing 4. Python Code to fit the ANN-model.

normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(x_train)
RC_Model = build_and_compile_ANN(normalizer)

RC_Model.fit(
x_train,
y_train,
validation_data=(xtest,ytest),
epochs=100)
y_pred = RC_Model.predict(xtest)
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0

50k

100k
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200k

250k  Train Test

EPS- P.U

Figure 8. Split of the dataset to assess the ANN model’s learning capability under unknown Expected
Power to Supply (EPS).
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Figure 9. Convergence analysis for ELSC on the PEGASE-1354 network.

4.5. Regression Assessment

Figures 10 and 11 show the predicted and the true values of ELSC using the testing
dataset for each studied network. These figures illustrate the model’s capability to general-
ize ELSC accurately when the status of the elements is known. It should be noted that two
outliers were obtained for the PEGASE-1354 case and were subsequently excluded from
the assessment.

To evaluate the overall performance of the fit, four regression metrics were used: R-
Squared coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square
Error (rMSE) and Relative Root Mean Square Error (rrMSE). These metrics were computed
comparing the LS-OPF results with the ML fit. Table 5 presents the results of these metrics
for both case studies. Notice that, based on the dimensionless metric R2 and rrMSE, the fit
demonstrates high performance in generalizing ELSC when a contingency occurs.
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Figure 10. Predicted values obtained by assessing the fit of the proposed ELSC regression ML model
for the IEEE-39 bus system with different N − k contingencies. The dashed line represents an assumed
perfect fit.
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Figure 11. Predicted values obtained by assessing the fit of the proposed ELSC regression ML model
for the PEGASE-1354 network with different N − k contingencies. The dashed line represents an
assumed perfect fit.

The average time for predicting ELSC was 0.04 ms and 0.11 ms for the IEEE-39 and
PEGASE-1354 networks, respectively. This significant reduction in execution time demon-
strates the substantial speed-up achieved when using ANN compared to LS-OPF, resulting
in speed-up factors of 12,500× and 45,000× for each case, respectively.

Table 5. Regression performance metrics obtained to generalize the ELSC for IEEE-39 bus and
PEGASE-1354 network.

Indicator IEEE-39 PEGASE-1354

R2 96.7% 99.8%
MAE 233.0 $/h 61.7 $/h
rMSE 1000.7 $/h 334.8 $/h
rrMSE 14.9% 4.1%
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Table 6 shows the rrMSE for each N − k set of contingencies. As expected, the er-
ror increases as k increases. This consequence is attributed to the exponential growth
in the number of combinations when k increases, given that N − k criterion involves
(N

k ) =
N!

k!(N−k)! contingency scenarios. In other words, as k increases, more training scenar-
ios are required. This can be observed by comparing the size of N − 3 scenarios used to
train the ANN in Table 4 with the performance results provided in Table 5. For instance,
the IEEE-39 case, which has fewer scenarios, also has the lower performance.

Table 6. rrMSE between test and predicted values of ELSC for different k (N − k) contingencies.

R2 rrMSE
N − k IEEE-39 PEGASE-1354 IEEE-39 PEGASE-1354

N − 1 99.6% 99.9% 5.5% 1.7%
N − 2 99.4% 99.8% 6.4% 4.4%
N − 3 70.1% 99.8% 37.2% 4.1%

4.6. Discussion

Based on the assessment of LS-OPF simulations, it is observed that in the majority
of cases with a contingency k > 1, the expected load shedding is the summation of ELSC
under N − 1 contingencies; in other words, ELSCN−kC = ∑c∈C ELSCN−1c , |C| = k, where C
is the set of elements that fails. To illustrate, considering the case k = 2, the aforementioned
expression is valid for 75% of 188,452 scenarios for the IEEE-39 bus system, and for 99%
of 982 scenarios for PEGASE-1354. The reduced number of N-2 scenarios, compared to
those shown in Table 4, is attributed to the limited number of N − 2 contingencies, which
corresponds N − 1 for specific EPS (Figure 3). This implies that only a small subset of the
entire dataset can be used to compute ELSCN−k as the sum of N − 1 contingencies. This
could explain the fast convergence of the ANN shown in Figure 9. Despite the presence
of a strong linear dependence of N − 1 for higher-order contingencies (k > 1), the ANNs
shows the ability to generalize the ELSCN−k for unknown training values of ELSCN−1.

The proposed approach is limited to static topologies with synchronous generation
at transmission level, and outlier detection techniques should be implemented to identify
abnormal contingencies. Additionally, uncertainties in generation, dynamic stability limits,
and demand response, among others, are beyond the scope of this work. Future research
should aim to address these limitations by exploring new approaches, such as graph
neural networks.

5. Conclusions

In this paper, we propose an approach for fast N − k security assessment in power
transmission planning using ANN to accelerate contingency evaluation. The training is
performed by executing Load Shedding Optimal Power Flow (LS-OPF), which minimizes
the ELSC for a set of N − k contingencies generated stochastically. The ANN predicts ELSC
using the connection status of elements such as lines, generators, and power transformers,
among others, as features. As a result, an accuracy close to 98% and acceleration gains of
12,500× and 45,000× were obtained for the IEEE-39 bus system and PEGASE-1354 system,
respectively, demonstrating great effectiveness. These results highlight the high accuracy
and efficiency of our proposal, making it an attractive option for probabilistic grid planning
using N − k criterion within a reasonable execution time. A similar approach and its results
have not addressed in the literature. As potential areas for future research, we suggest ex-
tending this method to distribution networks with distributed generation, the classification
of problematic contingencies, and applying the approach to resilience assessment.
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ANN Artificial neural network
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CNN Convolutional Neural Networks
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