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Abstract: Under high-frequency operating conditions, the high-speed solenoid valve (HSV) experi-
ences energy loss and heat generation, which significantly impacts its operational lifetime. Reducing
the energy loss of an HSV without compromising its opening response characteristics poses a signifi-
cant challenge. To address this issue, a finite element simulation model of an HSV coupled with a
current feedback model is constructed to investigate the synergistic effects of dynamic response and
energy loss. Prediction models for the opening response time, HSV driving energy, and Joule energy
using a back propagation neural network (BPNN) are established. Furthermore, a multi-objective
optimization study on the current driving strategy using a non-dominated sorting genetic algorithm
II (NSGA-II) is conducted. After optimization, although there was a 6.24% increase in the opening
response time, both HSV drive energy and Joule energy were significantly reduced by 15.67% and
22.49%, respectively. The proposed multi-objective optimization method for an HSV driving strategy
holds great significance for improving its working durability.

Keywords: high speed solenoid valve; dynamic response; energy loss; BPNN; NSGA-II; multi-objective
optimization

1. Introduction

Faced with increasingly stringent emission regulations and a variety of combustion
modes, the fuel injection system of diesel engines and other power machinery is required
to flexibly control fuel injection strategies, such as fuel injection volume, fuel injection
pressure, and fuel injection interval [1–3]. As the core component of the injector, the
dynamic response characteristics of high-speed solenoid valves (HSVs) directly determine
the fuel injection accuracy of electronically controlled injectors. Moreover, energy loss in
the current drive system during its operation generates heat that affects the service life of
the fuel injector [4]. Therefore, optimizing the dynamic response characteristics of the HSV
opening and closing process and reducing energy losses in the current drive system are of
great significance for improving the efficiency of the fuel injection systems.

Optimization studies of the HSV as the actuator of the fuel injector have been conducted
from various aspects. Regarding electromagnetic materials used in HSVs, Wang et al. [5]
designed a novel magnetic circuit structure based on an Al-Fe soft magnetic alloy, which
effectively reduces magnetic resistance and increases magnetic conductivity, resulting in
a shorter dynamic response time for HSVs. Tao et al. [6], using finite element methods,
discussed the influence of soft magnetic materials and structural parameters on the mag-
netic circuit of the HSV while proposing an optimization design method that can achieve
greater electromagnetic force and lower power consumption. Michał et al. [7], discussed

Energies 2024, 17, 300. https://doi.org/10.3390/en17020300 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17020300
https://doi.org/10.3390/en17020300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en17020300
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17020300?type=check_update&version=1


Energies 2024, 17, 300 2 of 18

how to reduce the impact of external vibrations on hydraulic valves in hydraulic drive
systems. The analysis included reducing the potential vibration of the valve casing by
flexibly installing the valve on the vibrating surface and also analyzed the effectiveness
of materials with elastic and vibration dissipation characteristics in improving vibration
isolation. This paper was significant for improving the accuracy and speed of fuel valve
operation. In terms of the structure of the HSV, Liu et al. [8] proposed a novel HSV with a
permanent magnet based on the parallel magnetic circuit principle, which can reduce the
peak current, peak voltage, and holding current of the new HSV by 20.5%, 7.8%, and 43.9%,
respectively, while increasing the response speed by 11.9% compared to the original HSV.
Ebrahimi et al. [9] optimized the design of an HSV, which is composed of two opposing
helical coils with a shared permanent magnet core. They considered factors such as wire
length, inner diameter, average diameter, number of turns, and fill density of the coil in
their optimization process. Additionally, they studied the effect of coil cross-sections with
the same area but different perimeters and eccentricities on the magnetic field. The results
showed that increasing eccentricity significantly enhances both the magnetic field and force
at the center of the coil. In terms of a driving strategy for HSVs, Zhao et al. [10,11] found
that increasing boost voltage improves opening response speed; however, this improve-
ment diminishes as boost voltage continues to increase. They concluded that there exists an
optimal boost voltage that achieves a balance between dynamic response time and effective
electromagnetic energy conversion rate. Farid et al. [12] achieved a significant reduction in
dynamic response time by optimizing driving parameters, such as peak current, holding
current, and reverse current. Lu et al. [13] proposed a dual-power-source driving method
to improve opening response times for HSVs. Their research indicated that this driving
strategy can also significantly reduce the time interval between two injections.

The above studies indicate that improving the performance of the HSV can be achieved
by altering its structure and driving strategy. However, as a complex electromagnetic-
mechanical system, it is necessary to use multi-objective optimization methods to optimize
the performance of the HSV. Li et al. [14] employed a multi-objective simulated annealing
optimization algorithm to conduct multi-objective optimization designs of key structural
parameters of HSVs, resulting in a 15.4% reduction in the opening response time and a
25% reduction in the closing response time. Liu et al. [15], in order to enhance the dynamic
response speed of the HSV, utilized a response surface method and a genetic algorithm
to determine the optimal solution where the electromagnetic force increased by 25.8%
without increasing the armature mass. Li et al. [16] established a response surface model
for response time based on a central composite design and conducted multi-objective
optimization calculations using a genetic algorithm, resulting in a 17.7% reduction in the
opening response time and a 37.4% reduction in the closing response time of the HSV.
Fan et al. [17] developed a prediction model for the response time of the HSV using
experimental design methods and optimized the pull-in and release response times of
the HSV using a genetic algorithm, resulting in an overall response time improvement
of 10.3%. Neural networks, as advanced prediction model construction algorithms, are
also applicable in the multi-objective optimization of HSVs. Shen et al. [18] proposed
a prediction model for the electromagnetic force based on BPNN and conducted multi-
objective optimization research on the response time of the HSV in conjunction with the
armature mass, achieving a reduction in the dynamic response time of the HSV. The above
studies demonstrate that constructing multi-objective prediction models based on neural
networks and optimizing prediction models based on genetic algorithms are feasible.

The aforementioned researchers have focused on optimizing the dynamic response
characteristics of the HSV. According to Faraday’s law of electromagnetic induction, in-
duced currents are generated inside a conductor when the magnetic field changes, forming
closed loops that cause eddy currents. Therefore, during high-frequency operation, an
HSV inevitably generates eddy current energy. Eddy currents can reduce the delay time
between the start of the driving current decrease and the start of armature downward
movement [19], but excessive eddy currents can affect the effective conversion of kinetic



Energies 2024, 17, 300 3 of 18

energy and prolong the open response time of an HSV. According to Ampere’s circuital law
and Ohm’s law, passing current through a coil generates Joule heating losses. Xie et al. [20]
found that a driving strategy is one of the most important factors affecting power loss
and thermodynamic characteristics of HSVs, with power loss being the main heat source
that raises coil temperature. At the same time, temperature rise reduces magnetic flux
density and weakens the magnetic induction intensity of HSVs, increasing total energy loss
significantly and affecting the durability of HSVs [21]. Therefore, considering service life,
energy loss characteristics need to be taken into account when optimizing HSVs.

Currently, most research focuses more on the influence of structural and driving
parameters on the dynamic response of the HSV or explores factors that affect the durability
of the HSV. However, collaborative optimization for both dynamic response and energy loss
is rarely carried out when optimizing the operating characteristics of HSVs. In this paper,
the research object was an HSV for high-pressure common rail injectors, and prediction
models for opening response time, HSV driving energy, and Joule energy based on BPNN
were constructed. Considering the synergistic effect of dynamic response and energy loss,
the current drive strategy of an HSV is optimized by a multi-objective genetic algorithm.
The main innovation of this article is the use of the BPNN algorithm to develop a multi-
objective optimization prediction model, with the driving strategy as input and dynamic
response and energy loss as outputs. Additionally, the use of a genetic algorithm for multi-
objective optimization is employed. The proposed multi-objective optimization method for
an HSV driving strategy is of significant importance for enhancing the durability of HSV.

2. Establishment and Verification of HSV Simulation Model
2.1. Mathematical Model

The HSV consists mainly of an armature, iron core, coil, and reset spring. When driven
by a periodically varying current, the HSV generates a periodically varying electromagnetic
force at the core. The interaction between this electromagnetic force and the elastic force
of the reset spring causes the armature to produce a reciprocating lifting motion. The
HSV is a complex electromagnetic-mechanical coupling system, and the periodic current
drive strategy directly affects its operating characteristics. When modeling the system, it
is necessary to consider the interaction among the circuit, magnetic circuit, mechanical
system, and various forms of energy generated within these systems.

In a circuit system, the coil current, voltage, resistance, and inductance relationship is
as follows:

U = RI + N
dΦ
dt

(1)

where U is the coil driving voltage, R is the coil resistance, I is the current through the coil,
N is the turns number of the coil, Φ is the magnetic flux, and t is the time.

In the magnetic circuit system, the relationship between the electromagnetic force and
the magnetic flux and the absorption area is as follows:

Fmag =
Φ2

µS
(2)

where Fmag is the electromagnetic force, µ is the magnetic conductivity of air, and S is the
suction area.

The mechanical motion system of the HSV can be simplified as a mass–spring damper
system. The motion process is described as:

Fmag − λ
dx
dt

− kx − F0 = m
d2x
dt2 (3)

where λ is the damping coefficient, k is the spring stiffness, x is the armature displacement,
F0 is the spring preload force, and m is the armature mass.
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In the HSV operation process, the total energy input to the circuit is the HSV drive
energy Eele., which is defined as:

Eele. =
∫ t

0
UIdt (4)

Various energies are also generated during the HSV operation, including eddy energy,
Joule energy, elastic energy, damping energy, kinetic energy, and so on. When the driving
current changes, the magnetic field changes, resulting in induced eddy currents in the iron
core and forming eddy energy Eedd., which is defined as:

Eedd. =
∫ t

0

Cedd. f 2Bmd2

ρ
dt (5)

where Cedd. is the eddy current coefficient, f is the frequency of magnetic field, Bm is the
magnetic induction intensity, d is the wall thickness of the iron core, and ρ is the resistivity.

When the current passes through the coil, a certain amount of heat is generated, which
is defined as the Joule energy EJou.:

EJou. =
∫ t

0
I2Rdt (6)

The spring will be compressed when the armature moves and the elastic energy Eela.
generated is

Eela. =
1
2

kx2 (7)

The force of friction between the components will affect the armature movement and
then generate a damping energy Edam.. At the same time, the movement the armature will
have kinetic energy Ekin..

Edam. =
∫ x

0
λVd dx (8)

Ekin. =
1
2

mV2
d (9)

where Vd is the moving speed of armature.

2.2. HSV Finite Element Model Coupled with Current Feedback Model

When constructing the finite element model (FEM), simplifications and assumptions
regarding the geometric structure and simulation conditions of the simulated object can
help improve grid quality and computational efficiency. In this study, non-magnetic
components, such as gaskets and reset springs, were ignored when constructing the FEM of
the HSV. Only the armature, core, and coil were modeled. Due to the symmetric structure
of the HSV, only half of the model was developed. The gaps between coils were ignored
and treated as an annular structure when modeling the multi-turn coil. In the simulation,
elastic collisions between the armature and electromagnetic iron, as well as between the
armature and valve seat, were disregarded along with any resulting deformation caused
by these collisions. Based on the structure of the HSV, the maximum gap was 0.12 mm, the
air gap was 0.07 mm, the number of coil turns was 52, and the preload force of the spring
was 60 N. The FEM of the HSV established on the Ansoft Maxwell 19.2.0 software platform
is shown in Figure 1. For the armature and core of the HSV, a mesh size of 0.5 mm was
used, and for the coils, a mesh size of 1.0 mm was used. The generated mesh consisted of
86,555 elements and 15,682 nodes.
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Figure 1. The simplified 3D simulation model of HSV.

Although the Ansoft Maxwell 19.2.0 electromagnetic simulation software contains
a circuit simulation module for driving the electromagnetic actuator, it cannot realize
the construction of the “peak-hold-hold” current feedback driving strategy of the HSV.
Therefore, this study utilized the Ansoft Maxwell 19.2.0 software and Simplorer 19.2.0
software to establish a 3D finite element model and an actual current feedback driving
strategy and coupled them using Simplorer 19.2.0 to simulate the dynamic process of the
HSV [22]. The calculation model for the dynamic response of the high-speed solenoid valve
with current feedback is shown in Figure 2, where E1–E3 represent power supplies, S1–S6
are switches, MOS1–MOS6 are power switches, TPH1–TPH6 are hysteresis comparators,
D1–D3 are diodes, L2 represents coil inductance, R3 is coil resistance, R4 is sampling
resistor, and F0 denotes the preload force of spring.
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2.3. Verification of HSV Simulation Model

The accuracy of the FEM of the HSV constructed in the previous section needs to be
ensured through experimental data validation. Experimental data for the HSV are obtained
from a dynamic response characteristic test bench. Information regarding the setup and
measurement equipment of this test bench can be found in previous studies [10,11,22]. The
HSV dynamic response test bench accurately measures armature displacement within the
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range of 0–1 mm, while maintaining a peak voltage between 42 and 80 V and ensuring that
both peak current and holding current are within limits of 25 A and 12 A, respectively.

The comparison results of the experimental data and simulated values for the armature
lift and driving current curve are shown in Figure 3. In this study, the time from the start of
drive current loading to when the armature reaches maximum displacement is defined as
the opening stage, with its corresponding time being referred to as the opening response
time. Similarly, the time from when the drive current is cut off to when the armature returns
to its initial position is defined as the closing stage, with its corresponding time known
as the closing response time. The interval between these two stages is referred to as the
holding stage. During both the opening and closing stages of the HSV, FEM accurately
predicts and captures the moments of armature pull-in and reset motion processes. In the
opening stage of driving current, there is a gap between the experimental and simulated
values, which is due to the influence of inductance. The inductance calibration of the HSV is
based on the measurement of the electromagnetic assembly, and for the coil, its inductance
value is much smaller than that of the electromagnetic assembly. In the simulation, the
model uses the inductance value of the electromagnetic assembly, and a larger inductance
will result in a slower change in current compared to the experimental value. However,
since the inductance in the circuit is constantly changing, as the simulation progresses, the
error between the current and the experimental value becomes very small. Due to collisions
between the armature and iron core and valve seat during the actual operation, along with
fluctuations in the drive circuit current, there may be some variation in armature lift during
the holding stage. Nevertheless, the error between experimental and simulated values
remains within an acceptable range during this stage. Through analysis, it can be concluded
that the FEM model established in this study achieves an accurate prediction of the actual
working process of the HSV while providing a solid foundation for future research.
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3. Influence of Driving Strategies on HSV Working Characteristics
3.1. Dynamic Response Characteristics

The driving current loading strategy during the opening stage not only affects the
response time of the HSV but also significantly impacts energy loss. This study analyzes
the driving strategy at the moment of HSV opening, investigating the effects of different
strategies on dynamic response and energy consumption characteristics during this stage.
The original driving strategy for the HSV is a “peak-hold-hold” type. To optimize it, this
study proposes two modified strategies based on the original. Figure 4 illustrates the timing
of current loading for both the original “peak-hold-hold” strategy and two “peak-hold”
strategies. Driving Strategy 1 represents the original approach, while in Driving Strategy 2
the peak current loading time is equal to that of the Driving Strategy 1 plus a first-order
hold current loading time. In Driving Strategy 3, the peak current falls between Strategies 1
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and 2, with a consistent peak current loading time as in Strategy 2. Specific parameters for
each driving strategy are shown in Table 1.
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Table 1. Parameter comparison of different driving strategies.

Design Variable, Symbol Unit Strategy 1 Strategy 2 Strategy 3

Peak voltage, Vpeak V 70 70 70
Peak current, Ipeak A 24.5 24.5 19

Peak current loading time, Tpeak s 0.00023 0.00049 0.00049
First-order holding current, Ihold I A 14 - -

First-order holding current loading time, Thold I s 0.00049 - -
Second-order holding current, Ihold II A 5 5 5

The comparison of the armature lift and electromagnetic force curves of the HSV under
different driving strategies is shown in Figure 5. During the opening stage, the armature
rising time of the HSV is the same for all three driving strategies, while Driving Strategy
2 has the shortest time for the armature to reach maximum displacement, and Driving
Strategy 3 has the longest time. Additionally, in the early stage of motion, there is an
overlap between lift curves for Driving Strategies 1 and 2. This occurs because, in Driving
Strategy 1, the armature has not yet reached maximum displacement when the driving
current begins to decrease to 14 A, entering into a first-order holding stage. Within a certain
range, a larger peak current and first-order holding current result in a shorter opening
response time for the HSV. From observing changes in trends within electromagnetic force
curves, it can be seen that the electromagnetic force starts generating when the current
begins loading and reaches its peak when the armature moves near maximum displacement
before starting to decrease. At 0.49 ms, the current enters the final holding stage where
the electromagnetic force decreases to 110 N. The magnitude of the electromagnetic force
strongly correlates positively with the current within the circuit. Therefore, increasing
the current during the opening stage can be considered to minimize the opening time.
Considering the pre-loading force of the spring at 60 N allows room for current decrease
during the holding stage. However, any changes made to the driving strategy need to
consider the variation in energy consumption.

From the figure above, it can be observed that the moment when the displacement
of the armature begins to change during the opening stage is inconsistent with the time
when the electromagnetic force increases. The armature only starts to move when the
electromagnetic force reaches approximately 110 N. Therefore, to thoroughly evaluate
the impact of different driving strategies on the opening stage of the HSV, the ratio of
the armature motion time (Tlift) to the solenoid valve opening response time (Topen) is
defined as the effective time ratio (τ). The overcoming resistance time (Tforce) of the HSV
is then calculated as the difference between the HSV opening response time and the
armature motion time, Tforce = Topen − Tlift. Figure 6 illustrates the effects of different
driving strategies on Topen, Tlift, Tforce, and τ. A comparison between Driving Strategies 1
and 2 reveals that their Tforce values are consistent, both at 0.14 ms, while the Tlift of Driving
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Strategy 2 is shorter than that of Driving Strategy 1, indicating that increasing the first-
order holding current can reduce Tlift in the peak-hold-hold driving strategy. Contrasting
Driving Strategies 1 and 3, it is found that the deviation of Tlift is only 0.53%, while the
deviation of Topen is 3.35%. Consequently, the peak current significantly affects Tforce in the
peak-hold-hold driving strategy. In terms of τ, Driving Strategy 1 is the largest, followed by
Driving Strategy 3, and Driving Strategy 2 is the smallest, indicating that Driving Strategy
1 can effectively convert kinetic energy for armature motion.
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3.2. Energy Consumption Characteristics

The larger the driving current during the opening stage, the shorter the response time
of the HSV. However, a larger driving current also leads to greater energy loss. Therefore,
when optimizing driving strategies, it is necessary to consider the synergistic effect of
dynamic response and energy loss. Figure 7 illustrates the energy loss during the opening
stage under different driving strategies. Across various driving strategies, eddy current
energy and Joule energy during the opening stage account for more than 85% of the total
energy, with eddy current energy representing over 55% of the total energy. Due to the
longest peak current loading time in Strategy 2, the HSV has the highest total energy
consumption at 149.72 mJ compared to Strategies 1 and 3 which have relatively similar
total energies. Since the rate of change in the current increases, so does the eddy current
energy. Similarly, as the current increases, so does the Joule energy. Consequently, during
the opening stage, Driving Strategy 1 has a higher proportion of eddy current energy and a
lower proportion of Joule energy compared to Driving Strategies 2 and 3 which have similar
proportions of eddy current energy but with Driving Strategy 2 having a higher proportion
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of Joule energy. However, in terms of specific energy loss, the eddy current energy and
Joule energy of Drive Strategy 2 are the largest, 84.20 mJ and 46.20 mJ, respectively. The
eddy current energy of Drive Strategy 3 and the Joule energy of Drive Strategy 1 are the
smallest, 69.07 mJ and 31.96 mJ, respectively.
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The trend of eddy current energy and Joule energy, which account for the largest
proportion of energy loss, over the entire HSV working cycle is illustrated in Figure 8.
Regarding Joule energy, its trend follows that of the drive current. When the driving
current fluctuates at approximately 24.5 A, 230 W of Joule energy will be generated. When
the drive current fluctuates at approximately 19 A, 138 W of Joule energy will be generated,
and when the drive current is at 14 A, the Joule energy is 75 W. Combined with Equation (6),
it can be observed that the Joule energy is proportional to the square of the current, and
thus, a greater peak current leads to a greater Joule energy loss. As for eddy current energy,
its value increases with a higher rate of change in current. Therefore, during stages of peak
current loading, there is a significant instantaneous change in current resulting in a large
amount of eddy current energy loss inside both armature and core components of the HSV.
Under different driving strategies and as the currents enter into the holding stage, there
will be a significant reduction in eddy current energy inside the HSV.

Energies 2024, 17, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. Comparison of eddy current energy loss and Joule energy loss curves under different 
driving strategies. 

Combined with the previous analysis of the dynamic response characteristics of the 
HSV, it can be concluded that in the peak-hold-hold driving strategy, increasing the peak 
current can shorten the time required to overcome resistance for the HSV. However, this 
will significantly increase the Joule energy loss. On the other hand, increasing the 
first-order holding current can reduce armature motion time, and rapidly changing cur-
rent can increase eddy current energy. 

4. Optimization of HSV Driving Strategy Based on BPNN-NSGA-II 
The trade-off relationship between energy loss and opening response time requires de-

cision-making based on specific requirements when optimizing driving strategies. This study 
utilized multiple parameters within the peak-hold-hold driving strategy of an HSV on a 
diesel engine as variables, with Joule energy, HSV driving energy, and opening response 
time as targets for optimization. The BPNN was employed to construct prediction models for 
optimizing objectives while NSGA-II was used for multi-objective optimization analysis. 
Figure 9 illustrates the multi-objective optimization process coupled with BPNN and 
NSGA-II. 

 
Figure 9. Multi-objective optimization flow chart of BPNN-NSGA-Ⅱ. 

Figure 8. Comparison of eddy current energy loss and Joule energy loss curves under different
driving strategies.

Combined with the previous analysis of the dynamic response characteristics of the
HSV, it can be concluded that in the peak-hold-hold driving strategy, increasing the peak
current can shorten the time required to overcome resistance for the HSV. However, this
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will significantly increase the Joule energy loss. On the other hand, increasing the first-
order holding current can reduce armature motion time, and rapidly changing current can
increase eddy current energy.

4. Optimization of HSV Driving Strategy Based on BPNN-NSGA-II

The trade-off relationship between energy loss and opening response time requires
decision-making based on specific requirements when optimizing driving strategies. This
study utilized multiple parameters within the peak-hold-hold driving strategy of an HSV
on a diesel engine as variables, with Joule energy, HSV driving energy, and opening
response time as targets for optimization. The BPNN was employed to construct prediction
models for optimizing objectives while NSGA-II was used for multi-objective optimization
analysis. Figure 9 illustrates the multi-objective optimization process coupled with BPNN
and NSGA-II.
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4.1. Prediction Model of BPNN
4.1.1. Sample Data

In this study, six parameters in the driving strategies were selected for a high-pressure
common rail injector HSV, including peak voltage, peak current, peak current loading
time, first-order holding current, first-order holding current loading time, and second-
order holding current. The geometric structural parameters remained unchanged. Table 2
presents the variation in the six-factor five-level parameters for the HSV driving parameters.
In the table, the baseline values represent the original driving parameters of the HSV
sample. The selection range for each parameter is based on the standard value, with an
equal increase or decrease as the upper and lower limits of the parameter change. When
selecting these limits, it was essential to ensure that all combinations of parameter changes
can work normally for HSVs. The experimental design method chosen was a D-optimal
design method which statistically studies different experimental designs and establishes an
optimal approach. Therefore, regression values obtained based on this method exhibit a
high degree of fit with observed values and hold statistical significance [23–25].
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Table 2. The parameter variation ranges.

Design Variable
Level

Lower Standard Upper

Vpeak/V 65 67.5 70 72.5 75
Ipeak/A 23 23.75 24.5 25.25 26
Tpeak/s 0.00021 0.00022 0.00023 0.00024 0.00025

Ihold I/A 12 13 14 15 16
Thold I/s 0.00045 0.00047 0.00049 0.00051 0.00053
Ihold II/A 4 4.5 5 5.5 6

Using the D-optimal design method resulted in obtaining 94 sets of sample data for
developing a prediction model while randomly selecting 19 sets as testing sets for BPNN;
the remaining 75 sets were utilized as training sets. All sample points in both training
and testing sets were obtained through FEM simulation calculations constructed in the
previous section.

4.1.2. Model Training

A typical n-dimensional input neuron model consists of inputs, network weights and
thresholds, summation units, transfer functions, and outputs [26,27]. The n input variables
of the neuron can be represented as a column vector X:

X = [x1, x2, · · · , xn]
T (10)

The weight of the network connects the input variables with the neuron and can be
represented as a vector W:

W = [w11, w12, · · · , w1n] (11)

The threshold of the network is a scalar, denoted as b. The performance of network
can be adjusted through the weights and thresholds.

The summation unit is the first process for processing the input signals in the neural
network and is used to weight the input signals:

net =
n

∑
k=1

xkw1k + b (12)

The function operation on the weighted signal is the second process for processing the
input signal in the neural network, and the most commonly used function is the Sigmoid
function:

f (x) =
1

1 + e−x (13)

After weighted summation and function operation of the input signal, the final out-
put is

y = f (wx + b) (14)

A typical BPNN model consists of an input layer, a hidden layer, and an output
layer. During the training process of the prediction model, the neurons in each layer are
only influenced by the neurons in the previous layer. When the signal propagates from
the input layer to the hidden layer and then to the output layer without reaching the
expected threshold, it will be propagated back from the output layer to the input layer.
After adjusting the network weights of each layer, this signal propagation is repeated.
After multiple forward and backward signal transmissions, finally, the expected signal can
be obtained. The structure of BPNN is uncertain, and selecting a reasonable number of
network layers and neurons is a prerequisite for achieving optimal performance.

For this study, the number of neurons in the input layer corresponds to the number
of driving parameters, while the number of neurons in the output layer corresponds to
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the number of optimization objectives. In other words, there are six neurons in the input
layer and three neurons in the output layer. The accuracy of the prediction model is
affected by both the number and size of the hidden layers. Generally speaking, a single
hidden layer is preferred for constructing BPNNs. If a single hidden layer fails to produce
accurate results, double or multiple hidden layers can be used instead [28,29]. Based on
preliminary research findings that indicate satisfactory accuracy levels with a single hidden
layer structure network, this study has chosen to use such a structure for BPNN as shown
in Figure 10.
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Figure 10. Structure diagram of a single hidden layer BPNN.

The number of hidden layers has been determined, and it is necessary to further
determine the number of neurons in the hidden layer. In this study, the method of repeated
experiments was used to compare the relative errors of models with different numbers
of neurons, as shown in Figure 11. As the number of neurons within the hidden layer
increases, the relative error of the prediction model for the Joule energy gradually decreases.
When there are more than eight neurons, the relative error is less than 1%. However, when
there are 11 neurons, overfitting occurs with a relative error of 1.57 × 10−10%. Therefore,
through comparison, it is concluded that there should be 10 neurons in the hidden layer of
the BPNN in this study, where the relative error for predicting the Joule energy is 0.27%.
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4.1.3. Model Verification

The prediction models for the opening response time, HSV driving energy, and Joule
energy have been obtained through repeated training and validation. Figure 12 shows the
comparison between the prediction values obtained from the BPNN-trained model and
the simulation results obtained from FEM, where Equation (15) is used to calculate the R2

values of each model. The R2 values of the prediction models for the opening response time,
HSV driving energy, and Joule energy are 0.972, 0.988, and 0.991, respectively. Therefore, the
BPNN-trained prediction model demonstrates good prediction accuracy and generalization
ability, making it suitable for subsequent multi-objective optimization analysis.

R2 = 1 −

n
∑

i=1
(yi − f (xi))

2

n
∑

i=1
(yi − y)2

(15)
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4.2. Multi-Objective Optimization Model of NSGA-II

The genetic algorithm simulates the process of natural selection to solve problems and
select results. It has great potential in solving complex optimization problems and is widely
used in automatic control, transportation, and other fields [30,31]. For multi-objective
optimization problems, Srinivas et al. [32] proposed the NSGA algorithm based on the non-
dominated sorting principle. Deb et al. [33] further introduced the elite strategy, crowding
distance, and crowding comparison operators and proposed the NSGA-II algorithm. In
this study, a multi-objective optimization mathematical model was constructed based
on the prediction model trained by BPNN, and the NSGA-II algorithm was used for
optimization research.

The multi-objective optimization mathematical model comprises variables, objectives,
and constraints. The following definitions and constraints are formulated for the three-
objective optimization problem in this study:

X = [x1, x2, · · · , x6]
T = [Vpeak, Ipeak, Tpeak, Ihold I , Thold I , Ihold I I ]

T (16)

MinF(X) = [ f1
(
x′
)
, f2

(
x′
)
, f3

(
x′
)
]
T
= [Tope., Eele., EJou.]

T (17)

s.t.
{

Minimum ≤ X ≤ Maximum;
f (x′) ≤ f (x);

(18)

where xi (i = 1, 2, · · · , 6) is the initial value of the variable, x′i (i = 1, 2, · · · , 6) is the optimized
value of the variable, and f (x) is the BPNN prediction model.
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4.3. Optimization Results

The termination iteration in the genetic algorithm was set to 2000, with a crossover rate
of 0.9 and a mutation rate of 0.5. After iterative calculations based on the multi-objective
optimization model, Figure 13a shows the distribution of all feasible solutions that satisfy the
constraints, while Figure 13b shows the distribution of the Pareto solution set. The Pareto
solution set refers to a group of solutions where no solution can be improved in terms of
one objective function without sacrificing the values of other objective functions. For a two-
objective optimization problem, the Pareto solution set forms a curve; while for three or more
objectives, it forms a surface or hypersurface. From Figure 13a, it can be observed that the
majority of feasible solutions are concentrated together, with only a few distributed on the
periphery, indicating that the genetic algorithm iterated near the optimal solution within a
limited number of iterations. As for the Pareto solution set shown in Figure 13b, they are
distributed outside the feasible solutions and form an irregular surface. The blue, red, and
green symbols represent the projections of the Pareto solution set on different coordinate
plane. This indicates an inverse relationship between Tope. and Eele., meaning that as HSV
driving energy decreases and opening response time increases. Additionally, there is a positive
correlation between Eele. and EJou., where an increase in driving energy leads to a larger Joule
energy. There exists a trade-off relationship between Tope., Eele., and EJou., and there is no
optimal solution that simultaneously minimizes Tope., Eele., and EJou..

Energies 2024, 17, x FOR PEER REVIEW 15 of 19 
 

 

  
(a) (b) 

Figure 13. Feasible solution set and Pareto solution set: (a) feasible solution set and (b) Pareto so-
lution set. 

In this study, the minimum distance method [34] was used to filter the Pareto solu-
tion set in order to obtain the optimal solution that achieves the best overall performance 
of the HSV. Considering the different units of Tope., Eele., and EJou., implementing the min-
imum distance method requires defining dimensionless objective functions, calculating 
the minimum distance, and selecting the point with the minimum distance. The dimen-
sionless definition of an objective function is given by Equations (19)–(22). By comparing 
the Pareto solutions with their corresponding objective values before optimization, the 
influence of different units on decision-making is eliminated. 

.*
.

.

ope
ope

ope

T
T

T

′
=  (19)

* .
.

.

ele
ele

ele

EE
E

′
=  (20)

* .
.

.

Jou
Jou

Jou

EE
E

′
=  (21)

( ) ( ) ( )2 2 2* * *
. . .min ope ele JouD T E E= + +  (22)

where Tope. and .opeT ′  represent the pre-optimized and post-optimized opening response 

time, and *
.opeT represents the dimensionless opening response time. The same applies to 

the Eele., and EJou.. 
Figure 14 shows the comparison of the opening response time, HSV driving energy, 

and Joule energy of the HSV before and after optimization. After optimization, the 
opening response time increased by 6.24% from 0.329 ms to 0.349 ms. However, both the 
HSV driving energy and Joule energy decreased to different extents. The HSV driving 
energy was reduced by 15.67% from 0.186 J to 0.157 J, while the Joule energy decreased 
by 22.49% from 0.062 J to 0.048 J. The optimization results indicate that using the mini-
mum distance method for filtering the Pareto solution set resulted in a little bit longer 
opening response time for the HSV, reduced energy consumption, and decreased Joule 

Figure 13. Feasible solution set and Pareto solution set: (a) feasible solution set and (b) Pareto
solution set.

In this study, the minimum distance method [34] was used to filter the Pareto solution
set in order to obtain the optimal solution that achieves the best overall performance of the
HSV. Considering the different units of Tope., Eele., and EJou., implementing the minimum
distance method requires defining dimensionless objective functions, calculating the min-
imum distance, and selecting the point with the minimum distance. The dimensionless
definition of an objective function is given by Equations (19)–(22). By comparing the Pareto
solutions with their corresponding objective values before optimization, the influence of
different units on decision-making is eliminated.

Tope.
∗ =

Tope.
′

Tope.
(19)

Eele.
∗ =

Eele.
′

Eele.
(20)

EJou.
∗ =

EJou.
′

EJou.
(21)
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minD =

√(
Tope.∗

)2
+ (Eele.

∗)2 +
(
EJou.

∗)2 (22)

where Tope. and Tope.
′ represent the pre-optimized and post-optimized opening response

time, and Tope.
∗ represents the dimensionless opening response time. The same applies to

the Eele., and EJou..
Figure 14 shows the comparison of the opening response time, HSV driving energy,

and Joule energy of the HSV before and after optimization. After optimization, the opening
response time increased by 6.24% from 0.329 ms to 0.349 ms. However, both the HSV
driving energy and Joule energy decreased to different extents. The HSV driving energy
was reduced by 15.67% from 0.186 J to 0.157 J, while the Joule energy decreased by 22.49%
from 0.062 J to 0.048 J. The optimization results indicate that using the minimum distance
method for filtering the Pareto solution set resulted in a little bit longer opening response
time for the HSV, reduced energy consumption, and decreased Joule heat generation. Since
Joule heat directly affects the working life of the HSV, the optimized HSV can reduce
energy by 38%, thus significantly enhancing the working life of the HSV. Table 3 shows the
comparison of optimization parameters before and after optimization. After optimization,
the current and voltage are reduced to different degrees.
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Table 3. Comparison of optimization parameters before and after optimization.

Design Variable Before Optimization After Optimization

Vpeak/V 70 65
Ipeak/A 24.5 23.0
Tpeak/s 0.00023 0.00021

Ihold I/A 14 12
Thold I/s 0.00049 0.000457
Ihold II/A 5 4

5. Conclusions

This study focuses on the HSV of a diesel injector, considering the synergistic effects
of dynamic response and energy loss. It conducts a multi-objective optimization study on
the driving strategy of the HSV and draws the following conclusions:

(1) An FEM of the HSV coupled with a current feedback model was constructed.
The analysis, based on the validated model, investigated the impacts of different driving
strategies on the dynamic response characteristics and energy loss of the HSV. The peak
current significantly affects the time for the HSV to overcome resistance, while increasing
the first-order holding current can shorten armature movement time. Eddy current energy
and Joule energy account for over 85% of the total energy. The eddy current energy and
Joule energy of Drive Strategy 2 are the largest, 84.20 mJ and 46.20 mJ, respectively. The
eddy current energy of Drive Strategy 3 and the Joule energy of Drive Strategy 1 are the
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smallest, 69.07 mJ and 31.96 mJ, respectively. Lower energy loss can reduce Joule heat
generation, thus improving the working life of the HSV.

(2) A set of 94 sample points was generated based on the D-optimal design method,
and a study was conducted in order to develop prediction models for the opening response
time, HSV driving energy, and Joule energy by utilizing BPNN. The R2 values of the
prediction models were 0.972, 0.988, and 0.991, respectively. A multi-objective optimization
model was established based on these prediction models, and NSGA-II was used for the
optimization analysis resulting in a Pareto solution set for the three optimization objectives.
There is a trade-off relationship between the opening response time, HSV driving energy,
and Joule energy.

(3) The Pareto solution set was filtered using the minimum distance method to obtain
the final optimization results. After optimization, the drive voltage is reduced by 5 V, and
the peak current, first-order current, and second-order current are reduced by 1.5 A, 2 A and
1 A, respectively. And the opening response time was extended from 0.329 ms to 0.349 ms,
HSV driving energy decreased from 0.186 J to 0.157 J, and Joule energy decreased from
0.062 J to 0.048 J. The optimization effects were −6.24%, 15.67%, and 22.49%, respectively.
The optimized HSV significantly reduced energy consumption and generation of Joule
energy while only slightly extending the dynamic response time.

The multi-objective optimization method based on BPNN-NSGA-II proposed in this
paper demonstrates good capability for optimizing HSV and addressing energy loss issues,
thereby enhancing its working lifetime. In the next stage, the design and testing of HSV
samples will be carried out based on the multi-objective optimization results to further
evaluate the effectiveness of the optimizations.
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Abbreviations and Symbols

Abbreviations
HSV high-speed solenoid valve
BPNN back propagation neural network
NSGA-II Non-dominated Sorting Genetic Algorithm II
FEM finite element model
Symbols
U coil driving voltage, V Bm magnetic induction intensity, T
R coil resistance, Ω d the wall thickness of the iron core, m
I current, A ρ resistivity, Ω·m
N turns number of the coil, - EJou. Joule energy, mJ
Φ magnetic flux, Wb Eela. elastic energy, mJ
t time, s Edam. damping energy, mJ
Fmag electromagnetic force, N Ekin. kinetic energy, mJ
µ magnetic conductivity of air, H/m Vd moving speed of armature, m/s
S suction area, m2 Vpeak Peak voltage, V
λ damping coefficient, N/(m/s) Ipeak Peak current, A
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k spring stiffness, N/m Tpeak Peak current loading time, s
x armature displacement, m Ihold I First-order holding current, A
F0 spring preload force, N Thold I First-order holding current loading time, s
m armature mass, kg Ihold II Second-order holding current, A
Eele. HSV drive energy, W Tlift armature motion time, s
Eedd. eddy energy, W Topen solenoid valve opening response time, s
Cedd. eddy current coefficient, - τ effective time ratio, -
f frequency of magnetic field, Hz Tforce overcoming resistance time, s
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