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Abstract: This study focuses on using machine learning techniques to accurately predict the generated
power in a two-stage back-pressure steam turbine used in the paper production industry. In order to
accurately predict power production by a steam turbine, it is crucial to consider the time dependence
of the input data. For this purpose, the long-short-term memory (LSTM) approach is employed.
Correlation analysis is performed to select parameters with a correlation coefficient greater than
0.8. Initially, nine inputs are considered, and the study showcases the superior performance of
the LSTM method, with an accuracy rate of 0.47. Further refinement is conducted by reducing the
inputs to four based on correlation analysis, resulting in an improved accuracy rate of 0.39. The
comparison between the LSTM method and the Willans line model evaluates the efficacy of the
former in predicting production power. The root mean square error (RMSE) evaluation parameter is
used to assess the accuracy of the prediction algorithm used for the generator’s production power.
By highlighting the importance of selecting appropriate machine learning techniques, high-quality
input data, and utilising correlation analysis for input refinement, this work demonstrates a valuable
approach to accurately estimating and predicting power production in the energy industry.

Keywords: machine learning techniques; prediction/forecasting; long short-term memory (LSTM);
Willans line model; generator’s power production

1. Introduction

Advancements in artificial intelligence (AI) techniques offer a new approach for pre-
dicting power generation in steam turbines, bypassing the need for traditional mathematical
and thermodynamic models. The techniques presented in the field of learning from data
can be classified into two categories: supervised learning and unsupervised learning. In
supervised learning techniques, the model is trained using labelled data. Usually, a classifi-
cation process is utilised for this purpose. On the other hand, for unsupervised learning, a
model is trained through an existing technique such as clustering on the non-labelled data.
In addition, the type of data examined is very influential in choosing a learning method.
Some types of data do not have time continuity, and it is possible to shuffle the data for
the test, train, and validation operations. However, in some cases, there is a temporal
connection between each data line and the next line due to the time gap and the data being
sequential. As such, if the data lines are moved, meaningful relational information is lost. In
this case, especially where there is a time dependency between records, it is recommended
to use special techniques such as recurrent neural networks (RNN), convolutional neural
networks (CNN), and long short-term memory (LSTM) [1]. In this research, an attempt is
made to forecast the power production of a two-stage back-pressure steam turbine genera-
tor using various input parameters, utilising the LSTM method. The organisation of this
study can be outlined as follows:
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• In Section 2, previous research studies that have utilised machine learning methods to
predict industry-related parameters are examined and evaluated.

• Section 3 describes the framework and methodology employed in this study.
• Section 4 explains the Willans line model, which is used to estimate generator power by

calculating enthalpy, entropy, and work transfer based on thermodynamic principles.
The model relies on these calculations to predict power generation.

• In Section 5, a thorough assessment of the outcomes is conducted, including a compar-
ison of the projections with the results obtained through the Willans line model.

• In Section 6, the findings are appraised, emphasising the significance of using machine
learning models, particularly LSTM, within the context of various industries.

2. LSTM and Energy Systems Background

The previous work done in this research field can be examined from two perspectives.
Firstly, the development of machine learning methods using the input data to create a
model, and secondly, the use of that model for achieving the required goal. This section
provides a summary of various research studies carried out in the past that have achieved
different goals in the field of energy systems. These goals can be broadly categorised into
system power output prediction, error detection, performance degradation and modelling,
and environmental effects. The studies were conducted on different types of energy systems,
such as photovoltaic solar panels, wind turbines, and gas and oil energy systems, with
the majority focusing on the latter. Notably, most past research studies have employed
the long-short-term memory (LSTM) method to predict the production capacity of energy
systems. Some studies have also combined the LSTM method with other techniques, such
as the convolutional neural network (CNN) method [2]. The effectiveness of these methods
depends on the quality of the input data used; for instance, the time interval of the input
data can significantly impact the performance of the system.

To provide further insights into the different techniques used in these studies, a
selection of relevant articles has been chosen for comparison and in-depth examination.
Table 1 presents a summary of these studies, including the year of publication, the specific
methods employed, the type of case study, and the primary aims, such as power and
electricity prediction, fault detection, and environmental impact. As depicted in the table,
the energy systems examined can be classified into two overarching categories: oil and gas
energy production systems, which include the use of steam turbines within this category,
and the second category comprising renewable energy systems. Notably, the research
conducted within the first group exhibits a well-balanced distribution and primarily focuses
on predicting the lifespan errors and degradation patterns and ultimately forecasting the
output power of these system types. On the other hand, with respect to renewable energy
systems, as indicated in Table 1, given the inherent instability of such resources, the primary
emphasis has been on accurately forecasting the production capacity. Throughout these
research endeavors, the predominant methods employed have been LSTM, followed by the
combination of LSTM with various other techniques, and ultimately, the utilization of the
multi-layer perceptron (MLP) [3] method.

However, one persistent challenge that remains in this field is the intelligent selection
of appropriate input variables and suitable architectural configurations to achieve predic-
tions with minimal errors. This necessitates an ongoing effort to refine the choice of input
features and the architectural design in order to enhance the accuracy and reliability of
predictions in the realm of energy system analysis.

Previous research has utilised a range of software platforms, including MATLAB
software in some cases [4], WEKA software in a few cases [5], and predominantly the
Python platform [2]. Furthermore, in the context of the research described in this paper,
the Python platform was employed for implementing both the LSTM and Willans line
models [6].
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Table 1. Summary of most recent learning models focusing on LSTM in energy systems.

Reference Year Method

Type of Case Study Aim
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Nikpey et al. [7] 2013 Multi-Layer Perceptron
(MLP)

√ √

Wu et al. [8] 2016 LSTM
√ √

Roni et al. [4] 2017 MLP
√ √

Talaat et al. [9] 2018 MLP
√ √

Zhang et al. [10] 2018 LSTM
√ √

Cao et al. [11] 2018 LSTM
√ √

Zhang et al. [12] 2019 Gaussian Mixture Model
(GMM) + LSTM

√ √

Jung et al. [13] 2019 LSTM
√ √

Gao et al. [14] 2019 LSTM
√ √

Adams et al. [15] 2020 SVM
√ √

Arriagada et al. [16] 2020 MLP
√ √

Yongsheng et al. [17] 2020 Extreme Learning
Machine (ELM) + LSTM

√ √

Wang et al. [18] 2020 Time correlation
modification + LSTM

√ √

Mei et al. [19] 2020 LSTM
√ √

Yuvaraju et al. [20] 2020 LSTM
√ √

Cao et al. [21] 2021 LSTM
√ √

Bai et al. [22] 2021 LSTM
√ √

Alsabban et al. [23] 2021 LSTM
√ √

Dong et al. [24] 2021 LSTM+ Gaussian mixture
mode (GMM)

√ √

Zhang et al. [25] 2021 CNN + LSTM
√ √

Zhou et al. [26] 2021 Lower and upper bound
estimation (LUBE) + LSTM

√ √

Kong et al. [27] 2022 LSTM
√ √

Ijaz et al. [28] 2022 LSTM
√ √

Zhang et al. [29] 2023 LSTM
√ √

Kabengele et al. [30] 2023 MLP
√ √

This present study focuses on the prediction of the power output of a two-stage
back-pressure steam turbine generator used in the paper production industry. To this
end, a simple and computationally efficient LSTM method has been utilised, contrasting
with the hybrid deep learning method reported in [4]. The use of machine learning
algorithms is particularly relevant in this study, as thermodynamic models used to estimate
production power are often time-consuming and require numerous constants for calculation.
The predicted results are compared with those obtained from the thermodynamic model,
providing an evaluation of the LSTM method’s performance and potential advantages.
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3. Resources and Techniques

This section delves into three key aspects: the framing of the problem in this case
study, the exploration of data necessary for developing a solution, and the presentation of
the technique utilised for predicting power production.

3.1. Description of an Industrial Process

For this research, a two-stage steam turbine at a Kraft Pulp and Paper Mill has been
used as a case study (see Figure 1). The power production of this steam turbine is approxi-
mately 40 MW. An hourly time-series dataset covering 22 months has been obtained from
the industry in order to estimate the output power with high accuracy, low computational
complexity, and low execution overhead compared to the Willans line model. Figure 1
shows the inputs and outputs of the model.
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Figure 1. Overview of the process and its inputs and output.

Data have been recorded at 10-min intervals, but there are gaps, with some samples
missing. To address this issue, linear interpolation was utilised to fill these gaps. To improve
the accuracy of predicting generator active power, the system employs an LSTM model.

3.2. Materials and Methods

Hochreiter and Schmidhuber introduced the LSTM neural networks in 1997 [1], and the
concept has since undergone numerous improvements by various individuals. Although
LSTM networks are a relatively old technique, they are used in a wide range of applications
and are still popular, as shown in Figure 2, which illustrates the utilisation of artificial
intelligence techniques in a multitude of research studies conducted in the period spanning
from 2016 to 2022. It is evident that in this timeframe, there has been a notable prevalence
of LSTM as the primary technique employed, closely followed by the gated recurrent unit
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(GRU) [31] technique during the initial stages. These two techniques have been employed
more frequently in comparison with other methodologies, as shown by the graph.
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Figure 2. Recent usage of neural networks reported in the literature [32].

LSTM neural networks are categorised as a specific type of recursive neural network
(RNN), designed to effectively capture and model long-term temporal dependencies within
the output data. By incorporating memory cells and gating mechanisms, LSTMs can retain
and selectively update information over extended sequences, enabling them to effectively
handle and exploit the intricacies of time-dependent patterns present in the data. This
distinguishing feature sets LSTMs apart from traditional RNNs, allowing them to excel in
tasks such as time series analysis, where capturing long-range dependencies is crucial for
accurate predictions and insightful analysis.

An indication of the range of applications where LSTM methods have been utilised
is shown in Figure 3. Primarily, this approach has been prominent for time series data
analysis, where the data exhibit temporal interdependencies. Further, LSTM models have
also found application in the domains of language modelling and sentiment analysis.
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Figure 3. The extent to which LSTM neural networks have been used in different fields [32].

The research described here considers different inputs as shown in Figure 4, with
an architecture comprising 50 neurons in LSTM layers having an activation “Relu” [33]
function. The “ADAM” optimizer [34] has been included in the model to minimise errors.
The model was trained using 40% of the available data, and the remaining 60% were
utilised to test the model.
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Figure 4. Steam turbine power prediction model architecture.

The selection of evaluation parameters is also an important issue in the application of
machine learning. When the purpose of machine learning is to predict the value of a specific
variable, the evaluation parameters that are usually used are mean absolute percentage
error (MAPE), root mean square error (RMSE), mean percentage error (MPE), and absolute
percentage error (APE) [35]. The MPE measures the average difference between predicted
and true values over N samples using Equation (1) below. The RMSE measures the square
root of the average of the squared differences between predicted and true values over N
samples using Equation (2).

The APE of each sample is calculated using Equation (3), which measures the absolute
percentage difference between predicted and true values. The MAPE is then calculated
by averaging the APEs over N samples using Equation (4). By selecting appropriate
evaluation parameters, machine learning models can be optimised to improve the accuracy
of their predictions.

MPE =
1
N∑N

i=1(ŷi − yi) (1)

RMSE =

√
1
N∑N

i=1(ŷi − yi)
2 (2)

APEi =

∣∣∣∣ (ŷi − yi)

yi

∣∣∣∣× 100% (3)

MAPE =
1
N∑N

i=1(APEi) (4)

3.3. Correlation Analysis

One of the key aspects of correlation analysis is exploring the interdependence between
different parameters and their influence on the output. Correlation analysis is a crucial
tool in several fields, including economics, as it can offer significant insights into the
connection between variables. This analysis involves calculating the correlation variable
using a specific relationship between the parameters, as shown in Equation (5), resulting in
a value between zero and a positive one. When the value is closer to one, this implies that
the target variable is significantly affected by other variables under consideration, and vice
versa. A zero coefficient denotes an absence of correlation between the variables.

Considering the mathematical relationship shown in Equation (5), a thorough eval-
uation and calculation of the correlations was conducted across all parameters. This
assessment aimed to discern the extent of interdependence and mutual influence between
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the parameters. In Figure 5, the correlation between each pair of parameters is displayed
using distinct colors. To provide a better understanding of the intricate relationships among
various parameters, Figure 6 depicts the magnitude of influence that each parameter exerts
on the others if the correlation factor between them is greater than 0.8. Upon careful exami-
nation of this diagram, it becomes apparent that when the correlation parameter surpasses
a value of 0.8, a linear equation is deemed suitable for capturing the underlying relation-
ship. This line of best fit is employed to describe the connection between the two relevant
parameters, and the corresponding equation is then presented for reference and analysis.

corr(X, Y) =
1
N ∑N

i=1
(
Xi − X

)(
Yi − Y

)
σX × σY

(5)
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Furthermore, in the scope of this research, the focal point revolves around the genera-
tor’s production power, which is considered the ultimate output. Considering this, a careful
selection process was carried out to identify pertinent inputs for the second model under
evaluation. Specifically, as shown originally in Figure 6, four parameters—steam flow to
turbine, pass-out steam pressure, turbine pass-out steam flow compressor, and turbine
exhaust steam flow compressor—were found to exhibit a correlation parameter exceeding
0.8 when compared with the output parameter. Consequently, these four parameters were
designated as inputs for the second model in this study, as their influential impact on the
output power warranted further investigation and analysis.
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4. Willans Line Model and Equations for Power Generation Estimation

The Willans line, a concept in steam turbine engineering, serves as a guiding principle
in the evaluation of the two-stage back-pressure steam turbine. Developed by Robert
Willans, this graphical representation provides essential insights into the efficiency and
performance of the turbine across varying operating conditions [36]. The line establishes
an idealised correlation between power output and steam consumption for an isentropic
turbine. By comparing the actual power generated with mass flow to this theoretical line,
a clear understanding of the turbine’s real-world efficiency is gained [36]. The Willans
line also aids in identifying the most efficient operating range, where the turbine achieves
optimal power output while conserving steam. It is a critical tool for ensuring our steam
turbine operates at its highest efficiency, minimising resource consumption, and maximising
power generation.

The thermodynamic model employed in this study utilises the Willans line to estimate
the generated power of the generator. The calculations are performed using the “CoolProp”
library [37], which provides functions to calculate properties such as enthalpy and entropy
of the working fluid. The model considers multiple stages of the turbine, including the
high-pressure stage (HPS) and the low-pressure stage (LPS).

In the implemented approach, the “PropsSI” function is used to calculate the enthalpy
and entropy of the working fluid based on the given temperature and pressure values.
These calculations are performed for the HPS stage, and the resulting values are stored.
Similarly, the enthalpy of the medium-pressure stage is derived from the HPS entropy
using the entropy–enthalpy relationship, and the entropy of the MPS stage is calculated
directly. The work transfer between stages is then computed by multiplying the mass flow
rates with the differences in enthalpy. This results in the calculation of the work done in
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the HPS stage and the LPS stage. The total generated power is obtained by summing the
individual work transfers.

To optimise the regression of the raw data, the “GEKKO” library [38] is utilized. It
provides capabilities for regression analysis and optimization. The implemented model
performs regression analysis using the “GEKKO” library to find the best-fit parameters
for the power-mass flow relationship. The resulting parameters are used to plot the
regression lines.

Figure 7 shows the different turbine stages, specifically comparing the modelled
Willans line with the raw data. These plots show the performance of the turbine under
varying operating conditions, as well as how closely the model matches the raw data.
For both the higher-pressure stage (a) and the lower-pressure stage (b), there is a close
correlation at higher mass flows, but this begins to deviate away at lower pressures. While
this type of Willans line can be useful for estimating the work generation under various
loads, it is difficult to validate the outputs of these individual stages, as often multi-stage
turbines operate with single, common generators, meaning that individual power values
for stages are not available but rather only the overall power.
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5. Results

This section presents the results obtained from the implementation of the model, pro-
viding a comprehensive understanding of its performance. Figure 8 depicts the outcomes,
revealing that a significant proportion of the predicted points generated by the model,
whether from the testing data or the training data, coincide with the actual data points.
This alignment suggests a minimal level of error between the model’s predictions and the
real data, thus indicating the efficacy of the model.
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Prior to arriving at this stage, an extensive investigation was conducted using sensitiv-
ity analysis to develop two models, each comprising four inputs. To facilitate comparative
analysis, an additional model was constructed based on Willans line equations.

Figure 8 provides insight into the construction process of these models, shedding light
on the various steps involved. Remarkably, the measured real power points, symbolised by
blue dots, exhibit a striking alignment with both the green points of the training data and
the red points representing the testing data. This alignment serves as a demonstration of the
performance of the initial model, which consists of nine inputs. Supporting this observation,
Table 2 presents the evaluation parameter values for both the training and testing data, with
the training data showing a lower RMSE value, aligning with the anticipated outcomes. The
fact that these numbers are less than 0.5 shows the better performance of this model than
other research with the same purpose [21,30,39,40]. Upon comparing the two outcomes,
it was found that the accuracy of the model is better for the training data than the testing
data. The reason for this is that the model was trained using this training data and will
naturally perform better with this data.

Table 2. Root Mean Square Error (RMSE) factor for output of the model for testing and training data.

DATA RMSE Data Set Size

Training 0.36 37,817
Testing 0.47 56,725

The following section provides a comparative analysis of the results obtained from
the three models, which are presented in Figure 9. This graph illustrates the predicted
power in relation to the actual power. An ideal model would exhibit a linear relationship
with a slope of one and a width of zero, signifying a perfect correspondence between
the predicted and actual power values. Considering Figure 9, it becomes evident that
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both the four-input and nine-input models surpass the performance of the Willans line
model. Furthermore, a detailed examination comparing the four-input and nine-input
models reveals that the former displays a narrower dispersion, indicative of its superior
performance and precision. As illustrated in Figure 9, the line produced by the Willans line
model shows a marginal variance from the lines generated by the deep learning model.
This discrepancy arises from the fact that approximately 80% of the input data exhibits
a power output surpassing 22 MW, exerting a substantial impact on the accuracy of the
model derived from the Willans line. Hence, the resultant line is represented as a dashed
line in regions where the power output is less than 22 MW.
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line model, nine-input prediction model, and four-input prediction model.

Further insights into the predicted power levels, taking into consideration the dates
of data collection, are provided in Figure 10. Notably, the predicted powers depicted
in the three charts demonstrate a high degree of consistency, with minimal disparities
observed among them. To augment these findings, Figure 11 portrays the individual
error magnitudes for each model, serving as additional evidence to reinforce the earlier
explanations. This diagram further substantiates the notion that the four-input model
outperforms both the nine-input model and the Willans line model, firmly establishing its
favourable performance ranking.
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6. Conclusions and Perspectives

The study described here demonstrates that the use of long short-term memory
(LSTM), a machine learning algorithm, shows superior performance in predicting the
power production of steam turbines than the conventional thermodynamic models. The
results obtained from the comparison of LSTM and Willans line models, evaluated using
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the root mean square error (RMSE) metric, highlight the superior forecasting accuracy of
the LSTM approach. Initially employing 9 inputs, the LSTM method achieved an RMSE of
0.47; however, by leveraging correlation analysis and refining the input set to 4 inputs, an
even lower RMSE of 0.39 was attained. This study provides evidence for the efficacy of
using machine learning algorithms and artificial intelligence to accurately predict desired
system performance in various industries.

Moreover, the study highlights the importance of choosing the appropriate machine
learning technique based on the type of data examined. In cases where there is time de-
pendence between data lines, techniques such as LSTM that consider the time dependence
of input data should be utilised for accurate predictions. The study also highlights the
significance of the quality of input data used in machine learning models, as the time
interval of the input data can significantly impact the performance of the system.

Overall, the study contributes to the growing body of literature on the use of machine
learning algorithms in the energy production industry. It presents a case study on the
prediction of production power generated by a two-stage back-pressure steam turbine
used in the paper production industry. The results obtained through the LSTM method
demonstrate the superior accuracy of this approach compared to previous algorithms
used in the field. The study provides insight into the potential of machine learning al-
gorithms to improve the accuracy and efficiency of system performance predictions in
various industries.
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