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Abstract: In this study, we perform an extensive evaluation of a simple model for hydrate equilibrium
calculations of binary, ternary, and limited quaternary gas hydrate systems that are of practical
interest for separation of gas mixtures. We adopt the model developed by Lipenkov and Istomin
and analyze its performance at temperature conditions higher than the lower quadruple point.
The model of interest calculates the dissociation pressure of mixed gas hydrate systems using a
simple combination rule that involves the hydrate dissociation pressures of the pure gases and the
gas mixture composition, which is at equilibrium with the aqueous and hydrate phases. Such an
approach has been used extensively and successfully in polar science, as well as research related to
space science where the temperatures are very low. However, the particular method has not been
examined for cases of higher temperatures (i.e., above the melting point of the pure water). Such
temperatures are of interest to practical industrial applications. Gases of interest for this study include
eleven chemical components that are related to industrial gas-mixture separations. Calculations
using the examined methodology, along with the commercial simulator CSMGem, are compared
against experimental measurements, and the range of applicability of the method is delineated.
Reasonable agreement (particularly at lower hydrate equilibrium pressures) between experiments
and calculations is obtained considering the simplicity of the methodology. Depending on the
hydrate-forming mixture considered, the percentage of absolute average deviation in predicting the
hydrate equilibrium pressure is found to be in the range 3–91%, with the majority of systems having
deviations that are less than 30%.

Keywords: gas hydrates; hydrate equilibrium pressure; gas-mixture separation

1. Introduction

Under conditions of low temperatures or high pressures, water molecules can self-
assemble in forming three-dimensional crystalline structures that contain cavities/cages.
These cavities can be stabilized if a fraction (i.e., rendering hydrate non-stoichiometric
materials) of them, which belong to the hydrate crystal unit cell, are occupied by certain
types of guest molecules that have an appropriate size to fit within them (e.g., CH4,
CO2, N2, etc.). Such ice-like, solid materials are known as clathrate hydrates or simply
“hydrates” [1–3].

Hydrates are very important compounds due to their involvement in a number of
major energy-related industrial [4–8] and environmental [9,10] applications. Depending on
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the particular application, the appearance/formation of hydrates can be seen either as a
major nuisance or as acting beneficially for the process of interest.

For example, hydrate formation is a major concern for safety and flow assurance
in gas/oil pipelines [11–13], as well as unit operations where pressure and temperature
conditions exist, such that hydrate formation is possible [3]. Significant effort and finan-
cial resources are dedicated in order to either completely avoid hydrate formation or to
effectively control hydrate formation and the subsequent hydrate particle agglomeration.
In a related context, during oil/gas exploration/exploitation operations, drilling through
hydrate layers requires special care, since uncontrolled hydrate dissociation can be the
cause of serious industrial accidents [14,15].

On the other hand, the hydrate characteristic to incorporate/store large volumes of
gases within the hydrate crystal can be beneficial. In particular, hydrates are studied as
a possible source of energy [4–7], since an enormous amount of carbon is deposited in
worldwide accumulations of hydrates, containing predominantly methane, both on-shore
(under the permafrost), and off-shore (in marine sediments). The recoverable amount of
methane is, however, an issue that is currently under debate [16–18]. Methane production
from the dissociation of hydrates confined within marine sediments requires a better
understanding of the interactions between the dissociation thermodynamics occurring
under different types of confinement, hydrate saturations, and the different production
schemes (i.e., depressurization, thermal stimulation, hydrate inhibitor injection) [19–23].
Significant challenges need to be addressed in an adequate manner in order to incorporate
hydrate deposits into the future energy mix in use [7,24]. Furthermore, hydrates can
be used for storage and transportation of “energy carrier” gases (e.g., methane [25,26],
hydrogen [27–29]). The characteristic of hydrates to selectively incorporate gases in their
solid structure has been considered in order to achieve gas-mixture separation [30–33].
Similarly, the exclusion of ions from the hydrate crystals makes the use of hydrate-based
technologies attractive for water desalination as well [34,35].

The particular aspect of hydrates to selectively incorporate gases in their solid structure
and its use in hydrate-based applications for gas-mixture separations is the main focus
of the current study. In order to design gas-mixture separation processes, such as natural
gas purification or CO2 capture from flue-gas streams that are based on hydrates, accurate
thermodynamic, transport, and kinetic properties are required for all the involved pure
components and their mixtures [8]. As discussed extensively in [36,37], there are three
major approaches that have been employed in order to obtain such properties, namely,
(i) experimental measurements, (ii) atomistic scale simulations, and (iii) continuum-scale
theories. It should be noted that each one of the approaches for property estimation has
advantages and disadvantages, including the following:

(i) When fluid mixtures are involved, performing experiments that consider all the
possible mixture compositions can be significantly expensive and time-consuming.
Therefore, it is of utmost importance to develop alternative thermodynamic tools that
can be used to calculate the required properties of the pure components and their
mixtures. Such are the cases of atomistic scale simulations, and the models based on
continuum-scale theories.

(ii) Molecular simulations (e.g., Molecular Dynamics [38–46] or Monte Carlo [47–57]
simulations) can use very detailed physics at the microscopic level; however, they
are very computationally demanding, and therefore, the size of the system under
consideration is very small, and the considered times are usually short (e.g., up to
several microseconds). Therefore, such types of simulations are hard to use during
process design or process-optimization schemes.

(iii) Models based on continuum-scale (macroscopic) theories, which are related to hydrate-
forming systems, include those developed for the calculation of the three-phase
(Hydrate–Liquid water–Vapor; H–Lw–V) equilibrium pressure and temperature con-
ditions via a methodology that couples the van der Waals and Platteeuw statistical
theory [58] with an Equation of State (EoS) [59–64]. The particular coupling is con-
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sidered as one of the best examples of the application of Statistical Thermodynamic
Theory toward the solution of a real industrial problem. Parrish and Prausnitz [59]
pioneered the earlier development of the methodology, and an extensive review of
the earlier studies was provided by Holder et al. [61] and Englezos [65]. While a
significant number of studies considered the use of cubic EoS [59–62,66–70], during
recent years, non-cubic EoS (e.g., SAFT-type [63,64,71,72]) has also been considered.
Medeiros et al. [73] and Khan et al. [74] provided comprehensive reviews of hydrate
equilibrium calculations using the van der Waals–Platteeuw theory, while the aspects
of the particular theory under confinement have been discussed in [19,75].

A major requirement of the macroscopic tools developed for hydrate equilibrium
calculations, in addition to their accuracy, is their computational efficiency. An accurate
and computationally fast tool, at the macroscopic level, can be used for initial screening
purposes in the optimization of a given separation process. Therefore, the motivation of
the current study is to identify/develop such a reliable macroscopic tool that can accu-
rately describe the hydrate equilibrium pressure of hydrates of gas mixtures, while being
computationally efficient.

The objective of the current study is to perform an extensive evaluation of a simple
model for three-phase equilibrium calculations of mixed gas hydrates that are of practi-
cal interest for gas-mixture separations. The model considered in this study calculates
the equilibrium pressure of the mixed gas hydrate using a simple combination rule that
employs (i) the hydrate dissociation pressures of the pure gases involved, and (ii) the gas
mixture composition. In particular, we examine the methodology presented by Lipenkov
and Istomin [76]. The particular approach has been used extensively and successfully in
polar science studies [76,77], as well as research related to space science [78,79] where the
temperatures are very low (i.e., below the freezing point of pure water, which is also close to
the lower quadruple point, Q1, of the corresponding hydrate systems). However, to the best
of our knowledge, the particular method has not been examined systematically for cases
of higher temperatures (i.e., above the Q1), which are going to be of interest to practical
industrial applications of gas-mixture separations. Gases of interest for the current study
include those that are indicated in Table 1. Such gases are encountered in typical industrial
applications. Some preliminary results considering some limited binary gas mixtures have
been reported in an earlier study [80]. Therefore, the current work is a systematic extension
of the aforementioned paper.

Table 1. Parameters for the correlation of the dissociation pressure of pure gases using Equation (3).
Temperature is in K and pressure is in kPa. T range denotes the temperature range of applicability of
the parameters. N/A denotes not applicable.

Gas T Range (K) Type of
Equilibria Ai (−) Bi (K) Source Refs.

CH4 248–273 H–I–V 14.7170 −1886.79 Holder et al. [61] N/A

CH4 273–298 H–Lw–V 38.9803 −8533.80 Holder et al. [61] N/A

C2H6 248–273 H–I–V 17.5110 −3104.535 Holder et al. [61] N/A

C2H6 273–287 H–Lw–V 44.2728 −10,424.248 Holder et al. [61] N/A

C2H6 287–304 H–Lw–LH 14.5831 ± 0.0367 −1860.741 ± 10.867 This work [81]

C2H4 269–274 H–Lw–V 24.7929 ± 1.7055 −5016.239 ± 466.056 This work [82–84]

C2H4 274–286 H–Lw–V 47.1247 ± 1.7384 −11,138.677 ± 490.000 This work [83–85]

C2H4 286–291 H–Lw–V 42.6159 ± 0.3859 −9941.235 ± 109.283 This work [83–85]

C2H4 291–295 H–Lw–LH 120.9001 ± 2.8681 −32,679.321 ± 838.367 This work [83,85]

C3H8 248–273 H–I–V 17.1560 −3269.646 Holder et al. [61] N/A

C3H8 273–278 H–Lw–V 67.1301 −16,921.840 Holder et al. [61] N/A
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Table 1. Cont.

Gas T Range (K) Type of
Equilibria Ai (−) Bi (K) Source Refs.

C3H8 278–303 H–Lw–LH 14.5533 ± 0.0684 −2286.93 ± 19.215 This work [86,87]

CO 274–285 H–Lw–V 32.4755 ± 0.1108 −8199.692 ± 31.071 This work [88]

CO2 248–273 H–I–V 18.5939 −3161.410 Holder et al. [61] N/A

CO2 273–284 H–Lw–V 44.5776 −10,245.010 Holder et al. [61] N/A

CO2 283–292 H–Lw–LH 118.5425 ± 4.0947 −31,030.579 ± 1171.400 This work [1]

N2 248–273 H–I–V 15.1289 −1504.276 Holder et al. [61] N/A

N2 273–298 H–Lw–V 37.8079 −7688.626 Holder et al. [61] N/A

H2S 248–273 H–I–V 16.5597 −3270.409 Holder et al. [61] N/A

H2S 273–298 H–Lw–V 34.8278 −8266.102 Holder et al. [61] N/A

O2 268–271.7 H–I–V 16.7315 ± 0.0871 −2017.949 ± 23.298 This work [89–91]

O2 271.7–291 H–Lw–V 41.9589 ± 0.1963 −8894.429 ± 54.799 This work [89,90,92]

SO2 T < 270.65 H–I–V 8.9306 ±1.3650 −1579.951 ± 365.068 This work [93–95]

SO2 270.7–286 H–Lw–V 50.8949 ± 2.3810 −12,940.097 ± 667.712 This work [93–95]

H2 267–273.7 H–I–V 53.0775 ± 0.9598 −11,120.167 ± 259.541 This work [96]

H2 273.7–348 H–Lw–V 19.3750 ± 0.2126 −1769.473 ± 64.707 This work [96]

The purpose of the current study is two-fold: (i) to extend the Lipenkov–Istomin
methodology to mixed gas hydrate systems of industrial interest by calculating the param-
eters of pure components that are not available, with emphasis on conditions above the Q1,
and (ii) to evaluate the quality of the predictions of the three-phase equilibrium conditions
by comparing to experimental measurements. To this purpose, reported experimental
measurements (i.e., the recent experimental data collection reported by Kastanidis et al. [97]
is utilized) of hydrate equilibrium pressures are compared against (i) calculations using the
examined Lipenkov–Istomin methodology [76], and (ii) calculations based on a commercial
simulator (CSMGem [1]). As a result, the range of applicability of the Lipenkov–Istomin
method is delineated.

The remainder of the manuscript is organized as follows: Initially, the Lipenkov–
Istomin methodology is briefly discussed, followed by the presentation of the extensive
series of calculations for the examined hydrate-forming gas mixtures. Finally, the conclu-
sions are presented.

2. Methodology
2.1. Calculation of Hydrate Dissociation Pressures

Lipenkov and Istomin [76] introduced a simplified methodology for calculating the
hydrate dissociation pressure of a gas mixture to a first approximation, and after assuming
that (i) the clathrate of the gas mixture behaves as an ideally dilute solid solution, and
(ii) that the ratio of occupancies for the small and large cages is constant and the same for all
guest molecules. According to the proposed methodology, the hydrate dissociation pressure
of a gas mixture can be expressed as a function of the hydrate dissociation pressures of the
pure gases and the corresponding mole fractions of the gas phase as follows:(

Peq
H

)
gas−mixture

=

(
n

∑
i=1

yi

(Peq
H )i

)−1

(1)

where
(

Peq
H

)
i

is the hydrate dissociation pressure of the pure gas i (with i = 1, 2, . . . , n),
and yi is the equilibrium gas-phase mole fraction of the gas i, which belongs to a gas
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mixture that contains n different components. It should be pointed out that yi used in
Equation (1) corresponds to the vapor phase that is part of the three-phase equilibrium
system (i.e., Hydrate—Liquid water (or ice)—Vapor). However, a number of experimental
studies, instead of reporting the measured yi values, report the initial feed composition
zi values, which may be different compared to yi. In the current study, we also examine
the cases when zi values are reported (i.e., yi is replaced by zi in Equation (1), which is a
reasonable assumption) and present the corresponding results separately. Also, it should
be noted that CSMGem needs the overall composition, zi, as an input parameter and upon
completion of the calculation, the resulting yi values are very close to the corresponding
zi values. In summary, Equation (1) is a simple empirical model according to which the
hydrate dissociation pressure of a gas mixture can be expressed as a function of the hydrate
dissociation pressures of the pure gases and the corresponding mole fractions of the gas
phase. On the other hand, CSMGem is a specifically designed model for the prediction
of thermodynamically stable hydrate structures and cage occupancy. The model utilizes
Gibbs energy minimization principles, providing insights into hydrate formation conditions
for gas.

The hydrate dissociation pressure of the pure gas i is a function of temperature:(
Peq

H

)
i
= f (T) (2)

Within the narrow temperature ranges of interest for this study, the three-phase (H–
Lw–V) equilibrium curves can be obtained rather accurately through the following simple
empirical relation:

ln
(

Peq
H

)
i
= Ai +

Bi
T

+
Ci
T2 +

Di
T3 + . . . (3)

where Ai, Bi, Ci, Di, etc., are component-specific parameters that are usually obtained
from fitting Equation (3) to available experimental data. All of the hydrate-forming gases
considered in the current study use a first-degree polynomial (with respect to 1/T) for
the description of the RHS of Equation (3), namely an Arrhenius-type description. Notice
however, that a higher-degree polynomial can be used if it is deemed necessary to improve
the accuracy.

2.2. Parameter Estimation

In the current study, the values for the parameters Ai and Bi are either (i) obtained
from Holder et al. [61], or (ii) they are calculated in the current study using available
experimental measurements. A schematic showing the steps followed in the current study
is shown in Figure 1. We consider two or three different zones, depending on whether a
particular hydrate-forming gas has only the lower quadruple point, Q1 (e.g., methane), or
there is also an upper quadruple point, Q2 (e.g., propane, carbon dioxide). Therefore, for
conditions below Q1, the type of phase equilibria observed is Hydrate–Ice water–Vapor,
H–I–V. For conditions above Q1 (when no Q2 is present) or between Q1 and Q2 (when
Q2 is present), the type of phase equilibria observed is Hydrate–Liquid water–Vapor, H–
Lw–V. Finally, for conditions above Q2 (when Q2 is present), the type of phase equilibria
observed is Hydrate–Liquid water–Liquid hydrocarbon/gas, H–Lw–LH. Figure 2a is a
typical example of the particular calculation for the cases of oxygen and sulfur dioxide
where a first-degree polynomial is used, while Figure 2b shows the cases of carbon dioxide
where a higher-degree polynomial is required for the description of the H–Lw–LCO2 zone.

Table 1 gives the values of the parameters Ai, and Bi, for the cases of all gases that
are of interest for the current study. The parameters have been calculated by performing a
regression analysis on the published experimental data (also shown in Table 1) for each pure
gas hydrate, as implemented using Excel 2021. Shown also in Table 1 are the corresponding
errors that resulted from the parameter estimation, as well as the temperature ranges of
applicability of the empirical relation for all hydrate-forming components. The last column
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of Table 1 indicates the references for the experimental data that were used in the current
study for obtaining the component-specific parameters.
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3. Results and Discussion

As discussed in the previous section, Lipenkov and Istomin [76] introduced a sim-
plified methodology for calculating the hydrate dissociation pressure of a gas mixture at
low temperatures (i.e., Ts corresponding to values below the lower quadruple point, Q1).
This methodology is used in order to examine binary, ternary, and some limited quaternary
mixed gas hydrates that are of industrial interest. The emphasis in the current study is on
conditions above the lower quadruple point, Q1. In this work, we use experimental data
obtained from the data collection reported by Kastanidis et al. [97]. In particular, we exam-
ine the experimental hydrate systems that are indicated in Table 2. Namely, 98 publications,
reporting 135 experimental mixed hydrate systems, were considered, containing a total of
2516 experimental data points.
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Table 2. Hydrate-forming gas mixtures considered in the current study and the corresponding
experimental studies.

Notation System Comment References Examined

GM–1 CO2 + N2 “Flue Gas” A [98–118]

GM–2 CO2 + N2 + O2 “Flue Gas” B [113]

GM–3 CO2 + H2 Methane steam reforming [101,119–129]

GM–4 CO2 + CH4 Biogas upgrade [99,103,106,108,110,112,115,117,127,130–154]

GM–5 CO2 + gas (other) CO2-containing mixtures [108,112,155–158]

GM–6 CH4 + H2 – [125,148,159–163]

GM–7 CH4 + N2 – [115,164–170]

GM–8 CH4 + N2 + O2 “Coal-mine” gas mixture [171]

GM–9 CH4 + CO2 + N2 – [117,148,154,166,172–179]

GM–10 CH4 + hydrocarbon gas
mixtures CH4-containing mixture A [166,180–184]

GM–11 CH4 + gas (other) CH4-containing mixture B (No system considered)

GM–12 Light hydrocarbon binaries Other cases [166,185,186]

GM–13 H2S + gas (other) H2S-containing mixtures [128,142,187–189]

GM–14 H2 + natural gas mixtures H2-containing mixtures [128,148,160,161,190]

GM–15 Air + gas (other) Air/N2-containing mixtures [91,92,191,192]

Two different comparisons are reported. In particular, we compare the hydrate dissoci-
ation pressure values that were obtained using (i) the Lipenkov–Istomin methodology (LI),
and (ii) the commercial simulator CSMGem [1], against the aforementioned experimental
values. The overall results of both comparisons are reported in Table 3, while additional
more detailed results are reported in the Supplementary Material file. We report in Table 3
the total number of available experimental data points (ndp) and the percentage of the
absolute average deviation in predicting the hydrate equilibrium pressure (% AAD) for
calculations using either the equilibrium gas-phase mole fraction (yi) or the initial feed
composition (zi), or both, depending on the information provided by each experimental
study, which is calculated as follows:

% AAD =
100
ndp

×
ndp

∑
i=1

∣∣∣∣∣∣∣
(

Peq
H

)exp

i
−
(

Peq
H

)calc

i(
Peq

H

)exp

i

∣∣∣∣∣∣∣ (4)

Initially, some general conclusions are presented. For cases of hydrate-forming systems
that both computational methods can be applied to, the CSMGem method performs better
than the LI for gas mixtures GM–1, GM–5, GM–7, and GM–10. On the other hand, the
LI approach performs better for the cases of mixtures GM–4, GM–9, GM–12, and GM–
13. The better performance of the CSMGem should be expected since the parameters of
the methodology are optimized in order to minimize the error in predicting the three-
phase equilibrium conditions (it should also be noted that the quality of the experimental
measurement affects the performance of the CSMGem approach). On the other hand,
the LI is a simplified mixing rule of the equilibrium pressures of the corresponding pure
components of the mixture.
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Table 3. Percentage average absolute deviation (% AAD) during the calculation of hydrate equilibrium
pressure, Peq

H , for the hydrate mixture systems considered (i.e., cases of y-values or z-values reported).
The number of experimental data points is denoted as ndp. N/A denotes that the corresponding
CSMGem parameters for O2, H2, CO, and SO2 are not available.

Gas Mixture System

#
of

Ex
pe

r.
St

ud
ie

s
Ex

am
in

ed

Total ndp

% ADD in Peq
H % ADD in Peq

H

CSMGem Lipenkov–Istomin

y-Values z-Values y-Values z-Values

GM–1: CO2 + N2 20 432 15.73 25.74 7.40 17.54

GM–2: CO2 + N2 + O2 1 4 N/A N/A - 14.85

GM–3: CO2 + H2 12 194 N/A N/A 9.24 34.45

GM–4: CO2 + CH4 36 719 10.79 14.12 7.44 13.23

GM–5: CO2 + gas (other)

CO2 + C2H6 3 127 1.40 3.42 5.66 6.11

CO2 + C3H8 2 66 - 18.18 - 19.37

CO2 + C2H6 + C3H8 1 5 - 15.68 - 31.81

CO2 + CO 1 6 N/A N/A - 91.45

CO2 + SO2 2 75 N/A N/A - 21.38

GM–6: CH4 + H2 7 338 N/A N/A 9.38 27.61

GM–7: CH4 + N2 8 93 4.61 7.21 12.77 9.50

GM–8: CH4 + N2 + O2 1 6 N/A N/A - 25.31

GM–9: CH4 + CO2 + N2 12 146 33.77 14.11 15.79 9.66

GM–10: CH4 +
hydrocarbon gas
mixtures

CH4 + C2H6 3 35 3.15 18.72 14.38 17.30

CH4 + C3H8 3 38 - 13.17 - 85.03

CH4 + C2H6 + C3H8 2 20 - 6.87 - 65.16

GM–11: CH4 + gas (other) - - - - - -

GM–12: Light
hydrocarbon binary C2H6 + C3H8 3 78 - 13.16 - 25.28

GM–13: H2S + gas (other)

H2S + CO2 2 19 90.97 25.92 3.11 15.02

H2S + CH4 2 11 - 8.75 - 14.58

H2S + CH4 + CO2 2 13 8.60 9.93 15.52 3.30

H2S + CH4 + C3H8 1 10 - 128.72 - 78.83

H2S + H2 + CO2 1 4 N/A N/A 24.65 48.74

GM–14: H2 + natural gas
mixtures

H2 + CH4 + C3H8 1 22 N/A N/A 49.51 -

H2 + CH4 + C2H6 + C3H8 1 16 N/A N/A 82.69 -

H2 + C2H4 1 6 N/A N/A 21.49 -

H2 + CH4 + C2H4 1 4 N/A N/A 37.33 3.73

H2 + CO2 + CH4 1 5 N/A N/A 33.13 -

H2 + CO2 + H2S 1 4 N/A N/A 32.41 15.42

GM–15: Air + gas (other) 4 20 N/A N/A - 13.90

A more detailed comparison between the two computational approaches and the
experimental data is presented in the Supplementary Material file (i.e., tables included in
Sections S1–S15) where a distinction is made for experimental studies published either
before or after 2008. The particular year is selected since it is the year that CSMGem was
made available. Therefore, experimental data that were published during earlier years
could have been included (in principle) in the development of CSMGem (i.e., during
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parameter optimization). On the other hand, experimental data that are published after
2008 can serve only for testing the accuracy of the considered model. In the tables included
in Sections S1–S15, we report for each study the total number of available experimental
data points, ndp, and the percentage of the absolute average deviation in predicting the
hydrate equilibrium pressure, % AAD.

It should be noted that for gas mixtures containing either one of the gases O2 (GM–2,
GM–8, GM–15), H2 (GM–3, GM–6, GM–13, GM–14), CO (GM–5), and SO2 (GM–5) (also see
Table 3 for particular cases considered in the current study), we report calculations in the
current study only with the LI method, since optimized parameters for those components
are not available in the CSMGem simulator [1].

Next, some characteristic comparison examples are plotted in Figures 3–9, and are
further discussed. Figure 3 shows the comparison between experimental (denoted with
circles) and calculated values with (i) the LI method (shown with solid lines), and (ii) the
CSMGem simulator (shown with dashed lines), for the hydrate equilibrium pressures
of the binary gas mixture: CO2 + N2 (GM–1). In particular, Figure 3a shows the case of
the experimental data for Peq

H , which are plotted as a function of yCO2 , that were reported
by Bruusgaard et al. [102], which were measured at constant temperature, T. Similarly,
Figure 3b shows the case of the experimental data for Peq

H plotted as a function of T that
were reported by Olsen et al. [98], which were measured at constant feed composition, z.
Reasonable agreement is found between the computational approaches examined (LI and
CSMGem) and the two aforementioned studies.
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+ N2. (a) Experimental data at constant T from Bruusgaard et al. [102], and (b) experimental data at
constant z from Olsen et al. [98].

In order to further quantify the performance of the two calculation methodologies
under consideration, we plotted in Figure 4 the overall % AAD corresponding to the
calculation of the three-phase equilibrium pressure for different experimental studies
for varying T, y, and z. Figure 4a shows the % AAD plotted as a function of T, for the
experimental data of Bruusgaard et al. [102], Belandria et al. [104], and Lang et al. [105]
for which studies’ y-values have been reported. For the case of the binary gas mixture
CO2 + N2, the CSMGem method results, in most cases, in lower % AAD values (i.e., less
than 4%). On the other hand, for the case of the LI method, the resulting % AAD values vary
in the range 5–30%. Furthermore, no clear/systematic trend for the % AAD values can be
identified. For example, the % AAD increases when T increases for the experimental data of
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Bruusgaard et al. [102], while the % AAD decreases when T increases for the experimental
data of Belandria et al. [104].
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different experimental studies for the binary gas mixture (GM–1): CO2 + N2. Solid red lines denote
calculations with the LI model, while dashed blue lines denote calculations using the CSMGem
simulator [1]. (a) Experimental studies (Bruusgaard et al. [102], Belandria et al. [104], Lang and
Servio [105]) reporting y-values, and (b) experimental data by Bruusgaard et al. [102]—comparison
between experimental measurements reporting y- or z-values.

The corresponding figures for % AAD plotted as a function of yCO2 (Figure S1a) or
zCO2 (Figure S1b) are shown in Figure S1 of the Supplementary Material. For most cases
shown, the % AAD values are lower than 20% for the case of the CSMGem method, while
on the other hand, they are lower than 40% for the case of the LI method. It should
be noted that for the case of the experimental data of Herri et al. [103], the LI method
results in lower % AAD values when compared to CSMGem values, which is a notable
exception for the gas mixture GM–1. Additional exceptions include the experimental data
of Belandria et al. [104] and Le Quang et al. [106].

Figure 4b utilizes the experimental data reported by Bruusgaard et al. [102] in order
to assess the effect of using the available initial feed composition zi values in Equation (1),
instead of the required measured yi values. For the particular experimental data set, it
is clear that for both methods (i.e., LI and CSMGem) we obtain lower values for % AAD
when yi values are used. The difference in % AAD is higher at lower Ts. As T increases and
the upper quadruple point, Q2, for CO2 is approached (i.e., T = 283.0 K), we observe that
the % AAD for the cases of yi or zi values is converging asymptotically. A more detailed
discussion on Q2 for the case of CO2 can be found in Kastanidis et al.’s report [193]. In
addition, from Table 3, we can observe that for the vast majority of cases, the % AAD values
when yi values are reported are lower than those when zi values are reported.

Similarly, Figure 5 shows the comparison between experimental and calculated values
for the hydrate equilibrium pressures of the binary gas mixture: CO2 + CH4 (GM–4). In
particular, Figure 5a shows the case of the experimental data of Belandria et al. [138],
which were measured at constant temperature, T, while Figure 5b shows the case of the
experimental data of Seo et al. [135], which were measured at constant pressure, P. For both
cases, experimental values for yi have been reported.

A general observation that can be made from the figures shown, as well as from all
the calculations that were performed, is that the % AAD in hydrate equilibrium predictions
increases as the hydrate equilibrium pressure (or temperature) increases. For hydrate
equilibrium pressures that are below 10 MPa, the % AAD is kept well below 8–10%.
Therefore, the accuracy of the methodology deteriorates as we go with higher pressures.
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Figure 5. Comparison between experimental (denoted with circles) and calculated values (solid lines
denote calculation of the current study, while dashed lines denote calculations using the CSMGem
simulator [1]) for the hydrate equilibrium pressures of the binary gas mixture (GM–4): CH4 + CO2.
(a) Experimental data at constant T from Belandria et al. [138], and (b) experimental data at constant
P from Seo et al. [135].

We can further observe in Table 3 that for the case of gas mixture GM–4, the LI method
gives lower overall % AAD values. Some typical examples are also shown in Figure 6, where
we plot the % AAD as a function of T for several experimental studies, which provide y-
values (Figure 6a) or z-values (Figure 6b). Additional plots showing the % AAD as a function
of yCH4 (Figure S2a) or zCH4 (Figure S2b,c) are shown in Figure S2 of the Supplementary Ma-
terial. It is evident that for most cases of experimental data sets (e.g., Adisasmito et al. [131]
(e.g., see Figure S2a), Unruh et al. [130], Servio et al. [194], Lee et al. [146], Belandria
et al. [138,145], Sfaxi et al. [110], Sadeq et al. [115] (e.g., see Figure S2b,c)), the % AAD values
are lower than 10%, or in the range 10–20% (e.g., Beltran et al. [136], Bruusgaard et al. [137],
Belandria et al. [138] (e.g., see Figure 6a,b)). Only a few exceptions to the aforementioned
rule have been identified. Namely, the experimental data of Obanijesu et al. [148] and
Legoix et al. [117,151] have % AAD values in the range 30–60% (see Figure S2b and Tables
in Section S4 of the Supplementary Material). Given that the calculations (LI or CSMGem)
for the other experimental data sets result in % AADs with significantly lower values,
this could lead to the conclusion that the three particular data sets may have problematic
experimental measurements that could be resolved by performing additional experimental
measurements under similar conditions.

Figure 7 examines the case of the binary gas hydrate CH4 + N2 (GM–7). It shows the
case of the experimental data for Peq

H plotted as a function of T, measured at constant feed
composition, z. In particular, Figure 7a,b show the experimental data of Sadeq et al. [115],
while Figure 7c,d show the experimental data of Lee et al. [167]. As can be seen from
Figure 7 and also Table S7 of the Supplementary Material for the particular experimental
data sets, both methods considered in the current study give similar results. Overall, for
the case of gas mixture GM–7, CSMGem performs slightly better than the LI method. In
particular, CSMGem has a % AAD equal to 4.48% with the corresponding LI equal to
12.57% for cases when y is reported. On the other hand, CSMGem has a % AAD equal to
9.50% with the corresponding LI equal to 7.20% for cases when z is reported. Additional
comparisons are provided in Figure S3 of the Supplementary Material, where the % AAD
values are plotted as a function of zCH4 . The majority of cases result in % AAD values that
are less than 10%, while a limited number of cases are in the range 10–20%.
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Figure 6. % AAD vs. T, resulting during the calculation of the three-phase equilibrium pressure for
different experimental studies for the binary gas mixture (GM–4): CH4 + CO2. Dashed redlines denote
calculation of the current study (LI), while solid blue lines denote calculations using the CSMGem
simulator [1]. (a) Experimental studies (Beltran et al. [136], Bruusgaard et al. [137], Belandria et al. [138])
reporting y-values, and (b) experimental data by Belandria et al. [138] reporting z-values.
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Figure 7. Comparison between experimental (denoted with circles) and calculated values (solid lines
denote calculation of the current study, while dashed lines denote calculations using the CSMGem
simulator [1]) for the hydrate equilibrium pressures of the binary gas mixture (GM–7): CH4 + N2.
(a,b) Experimental data at constant z from Sadeq et al. [77]. (c,d) Experimental data at constant z from
Lee et al. [83].
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Figure 8 shows the comparison between experimental and calculated (LI method)
values for the hydrate equilibrium pressures of the binary gas mixture CO2 + H2 (GM–3).
In particular, Figure 8a shows the case of the experimental data for Peq

H as a function of yCO2

that were reported by Sugahara et al. [119], which were measured at constant temperature,
T. Similarly, Figure 8b shows the case of the experimental data for Peq

H as a function of T that
were reported by Kumar et al. [120], which were measured at constant feed composition, z.

Figure S4 of the Supplementary Material shows additional comparisons for the gas
mixture GM–3. Namely, Figure S4a shows the % AAD values for the prediction of the three-
phase equilibrium pressure of three experimental studies (Sugahara et al. [119], Belandria
et al. [121] (reporting y-values), and Belandria et al. [121] (reporting z-values)) plotted
as a function of T. Figure S4b shows the corresponding % AAD values of all available
experimental data (Table S3 of the Supplementary Material) plotted as a function of zCO2 .
The majority of the cases result in % AAD values in the range 10–50%, while for the case of
Belandria et al. (y-values), the % AAD values are lower than 8%.
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Figure 8. Comparison between experimental (denoted with circles) and calculated values with the
LI methodology (denoted with solid lines) for the hydrate equilibrium pressures of the binary gas
mixture (GM–3): CO2 + H2. (a) Experimental data at constant T from Sugahara et al. [119], and
(b) experimental data at constant z from Kumar et al. [120].

Figure 9 shows the comparison between experimental and calculated (LI method)
values for the hydrate equilibrium pressures of the binary gas mixture CH4 + H2 (GM–6).
Figure 9a shows the case of the experimental data for Peq

H as a function of T that were
reported by Pang et al. [125], which were measured at constant feed composition, z, while
Figure 9b shows the corresponding cases of the experimental data of Zhang et al. [161], and
Obanijesu et al. [148].

Additional comparisons are provided in Figure S5 of the Supplementary Material,
where the % AAD values for the prediction of the three-phase equilibrium pressure of four
experimental studies (Zhang et al. [161], Skiba et al. [162], Pang et al. [125], and Obanijesu
et al. [148]) are plotted as a function of zCH4 . The majority of cases result in % AAD values
that are less than 10%, while a limited number of cases have % AAD values that are in the
range 10–20%.
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Figure 9. Comparison between experimental (denoted with symbols) and calculated values with the
LI methodology (denoted with solid lines) for the hydrate equilibrium pressures of the binary gas
mixture (GM–6): CH4 + H2. (a) Experimental data at constant T from Pang et al. [125] (denoted with
circles), and (b) experimental data at constant T from Zhang et al. [161] (denoted with squares) and
Obanijesu et al. [148] (denoted with triangles).

4. Model Limitations

Macroscopic tools developed for hydrate equilibrium calculations need to be (i) accu-
rate, and (ii) computationally efficient. An accurate and computationally fast tool can be
used for initial screening purposes in the optimization of a given separation process. The
identification/development of such a reliable macroscopic tool that can accurately describe
the hydrate equilibrium pressure of hydrates of gas mixtures, while being computationally
efficient, is the main motivation of the current study. The current section summarizes the
limitations of the examined/proposed LI methodology.

(1) In the current study, the vast majority of the experimental data that were examined
have P and T conditions that are between the upper and lower quadruple points of the
participating pure components in the hydrate-forming gas mixtures. From the analysis
in this work, we can conclude that the presence of a component exhibiting an upper
quadruple point, Q2, results in calculations of the hydrate equilibrium pressures with the LI
method that have usually higher values of % AAD, particularly at the proximity or above
Q2. Therefore, it would be of interest to conduct a more systematic study of such hydrate
systems (i.e., containing CO2, H2S, C2H4, C3H6, etc.), particularly at the proximity or
above Q2. Such aspects, however, which may also include structural transition phenomena
(i.e., sII to sI), are beyond the scope of the current study and are left for the future.

(2) The examined LI methodology is not capable of providing any information regard-
ing cage occupancies. For the case of methods that couple the van der Waals–Platteeuw
statistical theory with an EoS, such as the CSMGem method, the calculation of cage occupan-
cies is a side result obtained during the calculation of three-phase equilibrium conditions.

(3) The LI methodology is applicable to mixtures with components for which the
parameters Ai and Bi, for calculating the equilibrium pressure (via Equation (3)) of the
pure component, are available. Namely, the methodology is limited to hydrate-forming
components listed in Table 1. Therefore, in order to extend the methodology to other
components, an approach such as the one described in the flowchart, shown in Figure 1,
should be followed.

5. Conclusions

In this work, we have considered a simple methodology, called LI, for the calculation
of the hydrate equilibrium pressure of gas mixtures. Gas mixtures of interest for this
study were binary, ternary, and limited quaternary mixtures that were made up of different
combinations of eleven components (i.e., CH4, C2H6, C2H4, C3H8, CO, CO2, N2, H2S, O2,
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SO2, and H2). In total, 98 publications, reporting 135 experimental mixed hydrate systems,
were considered, containing a total of 2516 experimental data points. Such gas mixtures are
encountered in practical industrial applications of gas-mixture separations.

An extensive series of calculations using the examined LI methodology were per-
formed and the calculations were compared against available experimental measurements,
as well as with the CSMGem simulator. It should be noted that the intent of the study is
not to replace the CSMGem simulator with the proposed methodology but to examine
if a simpler and more computationally efficient approach can produce reasonable results
(at least within some specific temperature, pressure, and composition range) that can be
used during the preliminary stage of the design of processes. After all, the theoretical basis
behind CSMGem or other similar van der Waals–Platteeuw-based models is significantly
stronger than the simplified LI approach.

Reasonable agreement between experiments and calculations with the LI methodology
was obtained, considering its simplicity. The agreement was found to be better at lower
hydrate equilibrium pressures.

Finally, higher deviations have been observed for hydrate-forming gas mixtures that
contain a component exhibiting an upper quadruple point, Q2, particularly at the proximity
of Q2. Such systems require a more detailed study in order to examine if the performance
of the LI method can be further improved. This aspect is left for a future study.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/10
.3390/en17020440/s1, Sections S1–S15 contain a detailed presentation of the calculations with the LI
approach and the CSMGem simulator. Figures S1–S5 show additional plots of % AAD vs. T, y, or z.
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Nomenclature

%AAD % absolute average deviation, defined by Equation (4)
Ai Component-specific parameter of Equation (3)
Bi Component-specific parameter of Equation (3)
Ci Component-specific parameter of Equation (3)
Di Component-specific parameter of Equation (3)
f Symbol denoting a function
n Number of components in the gas mixture
ndp Number of experimental data points
Peq

H Hydrate equilibrium pressure (Pa)
T Temperature (K)
Teq Hydrate equilibrium temperature (K)
y Gas composition expressed as mole fraction (–)
z Initial feed composition expressed as mole fraction (–)
Subscripts:
i Component i of a mixture with n gas components
gas-mixture Denotes property of the gas mixture
H Hydrate
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Superscripts:
calc Calculated
eq Equilibrium
exp Experimental
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