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Abstract: Accurate and efficient prediction of electric water boiler (EWB) energy consumption is
significant for energy management, effective demand response, cost minimisation, and robust control
strategies. Adequate tracking and prediction of user behaviour can enhance renewable energy mini-
grid (REMD) management. Fulfilling these demands for predicting the energy consumption of electric
water boilers (EWB) would facilitate the establishment of a new framework that can enhance precise
predictions of energy consumption trends for energy efficiency and demand management, which
necessitates this state-of-the-art review. This article first reviews the factors influencing the prediction
of energy consumption of electric water boilers (EWB); subsequently, it conducts a critical review of
the current approaches and methods for predicting electric water boiler (EWB) energy consumption
for residential building applications; after that, the performance evaluation methods are discussed.
Finally, research gaps are ascertained, and recommendations for future work are summarised.

Keywords: daily energy consumption; electrical water boilers (EWB); prediction model; residential
buildings

1. Introduction

The high energy consumption of high-rise residential buildings is due to the load
demand from several individual loads, among them the electric water boilers. Electric
water boilers experience demand throughout the year due to a wide range of daily and
hourly activities involving hot water consumption. These activities include showering,
running washing machines, using bathrooms, and operating kitchens [1–3]. Hence, accu-
rate prediction of occupant’s hourly and daily energy consumption is crucial for effective
energy management in the mini-grid demand response system and for minimising the
overall carbon footprint [4–8]. Hourly and daily predictions for electric water boilers offer
the potential to enhance the integration of intraday markets by striking a balance between
predicting energy consumption demand and grid supply [4,9–17]. Energy aggregators
serve as essential connectors between electric water boilers energy consumers and the
energy market, particularly in deregulated markets, thus optimizing economic benefits
while addressing intra-hour demand fluctuations [18]. Aggregators can significantly im-
prove demand response strategies by monitoring and predicting user behaviour [19,20].
For intraday trading, predictive analysis is essential for aggregators to fine-tune trading
strategies and grid stability, leveraging past user behaviour data [9,20,21]. However, man-
aging large-scale user unpredictability poses privacy concerns for aggregators [20,22,23].
As technology advances and more data become accessible, user behaviour-based energy
consumption prediction and trading strategies will gain relevance, warranting immediate
research attention [9,19].

Research has shown that the most accurate predictions are made using real-time data
collected over time on hourly or daily consumption rather than monthly and annually
because user behaviour in relation to energy (kWh) consumption changes as a result
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of influencing factors [1,4,24–28]. Kadir et al. review reveals that 84% of the studies
focus on short-term energy consumption prediction due to its direct relevance to daily
building operations. Conversely, only 12% of the studies concentrate on long-term (yearly)
energy consumption prediction. Additionally, the research indicates that annual energy
consumption prediction models, developed using hourly measurements spanning 1-day, 1-
week, and 3-month periods, exhibit prediction errors of 100%, 30%, and 6%, respectively. De
Simone et al. investigated the factors influencing the use of electric water boilers, classifying
these aspects as contextual and personal factor variables based on daily usage [29]. Sborz
et al. conducted a similar study; their findings suggested that user behaviour had a
significant role, particularly in terms of a lack of information to users about available
operations during peak hours of daily consumption in the morning and evening, which a
robust prediction model could address [30]. Similarly, Fuentes et al. conducted a review
of influential parameters affecting hot water consumption [2]. These studies classified the
factors such as socio-economic factors, building type, seasonality, and climate conditions.
Additionally, their work examined the modelling tools and techniques employed for
predicting electric water boiler usage. Their research evaluated various models, including
those based on technical standards, statistical methods, behavioural patterns, data-driven
approaches, time-series forecasting techniques, and stochastic models, all of which are
employed as tools and techniques for predicting electric water boiler usage. In recent
years, prediction models have been examined using different tools and techniques to
predict hot water usage, but they are subject to influencing input variables. Hadengue
et al. developed an innovative framework that integrates a stochastic demand model with
a process-based library of models to perform material and energy flow analyses (MEFA)
for intricate electric hot water systems. Intriguingly, when non-stochastic water demand
scenarios were considered, they resulted in less precise heat loss predictions, with an
overestimation of heat losses by 12.6% from the system, in contrast to the more accurate
19.6% prediction associated with stochastic water demand scenarios. This framework also
provided a useful platform for collaboration between water experts for adequate planning,
energy management, design, and control strategies [31]. Similarly, Perez-Fargallo et al.
proposed prediction models beyond stochastic and technical-based models to various
time series models; their results showed that exponential smoothing and state–space
methods achieved satisfactory confidence levels of 95% and percentage error minimisation
of 80% [32]. Amasyali and El-Gohary proposed prediction methods and machine learning
algorithms used in prediction [33]. Their study subsequently delved into assessing the
performance of evaluation metrics, aiming to estimate the accuracy and suitability of the
prediction models. Subsequently, Leiria et al. introduced a data-driven methodology to
estimate hot water boiler prediction based on hourly measurements, where hybrid support
vector regression (SVR) and Kalman filters yielded a better result but still required further
investigation of other estimation methods of prediction [34].

This research critically reviews the three fundamental challenges associated with
the prediction of electric water boilers’ energy consumption, representing a significant
research gap requiring urgent attention. Firstly, it addresses the identification of input
variables and factors that exert a substantial influence on electric water boilers’ energy
consumption. Secondly, it explores prediction models and approaches used to predict
energy consumption. Thirdly, it delves into the estimation and evaluation techniques
that are essential in assessing the prediction model’s robustness and fitness within the
context of both data and the electric water boiler system. Figure 1 illustrates the framework
for this review paper, which is structured as follows: Section 2 provides a review of
the factors influencing the energy consumption of electric water boilers in residential
buildings. Section 3 reviews the state-of-the-art prediction models and approaches used
for energy prediction of electric water boilers. Section 4 examines the evaluation tools and
validation techniques of the prediction models. Finally, future research trends and gaps,
recommendations, and conclusions are presented in Section 5.
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Figure 1. Framework of this research review.

2. Factors Influencing the Prediction of Electric Water Boilers Energy Consumption

The influencing factors can be categorised as follows: climate and environmental
factors; time-of-use (ToU) of electric water boilers; building characteristics; user behaviour;
technical factors and system design; design and control strategy; sources of data; and mea-
surement techniques. These influencing variables, resulting in high energy consumption in
residential buildings, are determined by occupant behaviour as hot water consumers. More-
over, personal factors such as economic status, family income, education level, occupation,
and lifestyle significantly influence user behaviour concerning electric water boiler (EWB)
usage, as shown in Figure 2 and Table 1. This is due to the building’s daily hot water needs
and operations, which are primarily for domestic reasons, personnel hygiene, and hot
water consumption [2,6,35–37]. According to Ahmed et al., geographical location has a sub-
stantial impact on electric water boiler energy consumption, which can be assessed as being
largely affected by climatic conditions, making occupants demand more hot water due to
temperature drops and differing among countries and regions [1]. Similar research was
conducted in Belgian residential buildings; seasonal fluctuations in hot water use showed
that in summer, consumption was approximately 13% lower than average, whereas, in
winter, an increase of approximately 12% was estimated [2]. Furthermore, input influencing
variables include social and economic conditions [38–40], occupant behaviour towards
electric water boiler usage considering age and gender [41,42], number of occupants and
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occupant lifestyle, weather conditions [43], energy pricing, work schedule, duration of
time spent at home, and education [29,44]. These findings are consistent with the idea
that time-of-use pricing strategies can significantly influence EWBs’ energy consumption
of EWBs, often resulting in reductions. Several studies have also investigated this phe-
nomenon. Pérez-Lombard et al. found that time-of-use tariffs can lead to reductions of
10% to 15% in residential energy consumption, with a substantial portion attributed to hot
water usage, especially when users shift their demand to off-peak hours [45]. Similarly, in a
study conducted by Zhao et al., they observed a 12% reduction in energy consumption of
EWBs when time-of-use pricing was implemented effectively, encouraging users to heat
water during off-peak periods [46].

Table 1. Summary of research work on factors influencing the prediction of electric water
boilers consumption.

Author/Research Work Climate and
Environment

Building
Characteristics Time of Use User

Behaviour
Design and

Control Strategy
Personal
Factors

Vine et al. [3] ✓a

Papakostas et al. [47] ✓ ✓ ✓
Masiello and Parker [48] ✓ ✓

Aguilar et al. [35] ✓ ✓ ✓ ✓
S. H. Kim et al. [38] ✓ ✓ ✓

Beal et al. [41] ✓ ✓ ✓
Makki et al. [39] ✓ ✓ ✓

Bennett et al. [49] ✓ ✓ ✓ ✓
Gerin et al. [50] ✓
Krippelova and
Perackova [51] ✓ ✓

Rathnayaka et al. [40] ✓
Shan et al. [42] ✓ ✓

K. Ahmed et al. [1] ✓ ✓
George et al. [36] ✓ ✓ ✓

Edwards et al. [52] ✓ ✓ ✓ ✓ ✓
K. Ahmed et al. [4] ✓ ✓

Chmielewska et al. [53] ✓ ✓
de Santiago et al. [26] ✓
Ferrantelli et al. [43] ✓ ✓ ✓

Fuentes et al. [2] ✓ ✓ ✓ ✓
Marszal et al. [6] ✓ ✓ ✓

Rouleau et al. [37] ✓ ✓ ✓
Ivanko et al. [5] ✓ ✓ ✓

De Simone et al. [29] ✓ ✓ ✓ ✓ ✓ ✓
Xie and Noor [54] ✓ ✓ ✓ ✓
Tolofari et al. [55] ✓ ✓ ✓

Mostafaeipour et al. [56] ✓ ✓ ✓ ✓
Meireles et al. [57] ✓
C. Chen et al. [58] ✓ ✓ ✓ ✓
Alipour et al. [59] ✓ ✓ ✓

Sarabia-Escriva et al. [28] ✓ ✓ ✓
a Influencing factor considered by authors.

The continuous need to estimate and accurately predict energy consumption has
paved the way for this review, considering the numerous factors that limit and influence
the prediction of the energy consumption of electric water boilers. A summary of the
research in this domain is presented in Table 1. The influencing input variables are also
discussed in this section. Having sufficient knowledge of these traits is important for
designing energy-efficient systems, developing policies, and creating accurate predictive
models for energy management and demand response.
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Figure 2. Research on influencing factors of prediction of electric water boilers consumption.

2.1. Climate and Environmental Factor’s Influence on Electric Water Boilers’ Consumption

Real-time and realistic prediction of electric water boilers’ energy usage considers
local meteorological conditions and seasonal fluctuations, climate, habits, environmental
concerns, and socioeconomic level, all of which influence electric water boilers’ use geo-
graphically. Table 1 presents a similar research summary for the season, response time,
and daily usage. Figure 2 illustrates the interest in climate and user behaviour (18 papers
related to climate and 15 papers related to user behaviour), highlighting the considerable
research focused on this relationship over the years. This relationship is mostly driven
by the varying energy requirements for heating water, which are determined by ambient
temperature. In colder climates, the incoming cold water has a lower baseline tempera-
ture. Consequently, heating water to an acceptable temperature for residential use, such
as showering or washing dishes, requires more energy. Electric water boilers use more
energy during colder months and in colder climates [2,60,61]. Warmer seasons, on the
other hand, may result in lower energy usage because the baseline temperature of the
incoming water is higher, requiring less energy to heat to the setpoints and less hot water
from occupants [62]. Table 2 and Figure 3 synthesize the literature on daily and seasonal
prediction that deals with the percentage of energy consumption attributed to electric
water boilers in various regions and countries. Historical data reveal a consistent trend of
energy savings in electric water boilers over recent decades, with factors such as outdoor
temperature and distinctions between weekends and working days being identified as
influential contributors [52]. In the study conducted by Zuzana and Jana for one-year
data collected from March 2013 to April 2014, hot water consumption in a building with
167 residents was recorded every hour. The highest daily consumption (around 50 L per
occupant per day) occurred during the winter and spring seasons. In autumn, the average
consumption dropped to about 45 L per day per occupant. The lowest consumption of
the year was during the summer, with approximately 40 L per day per occupant in July
and 34 L per day per occupant in August [51]. These effects are geographic, with electric
water boiler consumption increasing in some regions (New York) and declining by 9% in
others (Florida). Differences in daily energy consumption predictions are also noticeable
between Finland and Germany at approximately 10% and 20%, respectively. In Finland,
consumption is higher in the evening (from 18.00 to 21.00) by 15% and lower in the morning
(from 6.00 to 8.00) by 5%, while in Germany, the pattern is reversed. Furthermore, when
many parameters, such as age and employment, are included in the model’s variables, it
enhances the model’s accuracy, adaptability, and robustness.
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Table 2. Summary of research on seasonal and daily prediction of electric water boiler consumption
considering the time of use.

Authors Seasonal/Monthly Day Sampling Time (s)

Buchberger and Wells [63] ✓a ✓ 60
Jorda and Vajen [64] ✓ ✓ 60

Yao and Steemers [65] ✓ - 60
Bakker et al. [66] ✓ ✓ 60

Popescu and Serban [67] - ✓ –
Widén et al. [68] - ✓ 60

Blokker and Vreeburg [69] - ✓ 1
Heunis and Dekenah [70] ✓ ✓ 3600

Fan et al., 2014 [71] ✓ ✓ –
Gerin et al. [50] ✓ ✓ 300

K. Ahmed et al. [1] ✓ ✓ 3600
Edwards et al. [52] ✓ ✓ 60
Richard et al. [72] ✓ 60

McKenn and Thomson [73] ✓ ✓ 60
Magoules and Zhao [74] ✓ ✓ 3600

Roux et al. [75] - ✓ 60
Marszal et al. [6] ✓ ✓ 3600

Hadengue et al. [31] - ✓ 2
Ritchie et al. [8] ✓ ✓ 60

Xu et al. [76] ✓ - 60
Heidari et al. [77] - ✓ 3600
D. Kim et al. [78] ✓ ✓ 3600
Heidari et al. [79] ✓ ✓
Meireles et al. [57] ✓ ✓ 3600

M.J. Richie et al. [27] ✓ ✓ 3600
Kavya et al. [80] ✓ ✓ 3600

a Influencing factor considered by authors.

Energies 2024, 17, x FOR PEER REVIEW 7 of 33 
 

 

Due to the continuous nature of hot water consumption, with patterns on both daily 
and seasonal scales, researchers have turned to stochastic models to predict electric water 
boilers consumption over the years, with the aim of addressing the inherent challenge 
[2,37,81]. Burch and Christensen have developed a stochastic water temperature model 
that correlates the inlet water temperature to its impact on the indoor supply line, indicat-
ing that the hot water temperature is influenced by the duration of end-user extractions 
[82]. These changes can lead to reductions in consumption ranging from 20% to 50%. Fur-
thermore, variables such as the number of residents may also contribute to seasonal con-
sumption, depending on the building type [2,8,83,84]. 

 
Figure 3. Average daily energy consumption percentage by region/country [2]. 

Dongwoo Kim et al. conducted research on the link between COVID-19 and residen-
tial hot water needs [78]. A non-dimensional and principal component analysis was used 
to determine the relevant factors utilising demand data from the research conducted be-
fore and after COVID-19. The COVID-19 outbreak affected the daily peak time and the 
amount of household hot water usage, according to the analysis, and the active case num-
ber of COVID-19 was a good signal for linking the changes in hot water demand and pat-
terns. Based on this, a machine learning model based on an artificial neural network was 
created to forecast hot water consumption based on the severity of COVID-19 as well as 
the relevant association. According to the model analysis, the increase in the number of 
active cases in the region affected the hot water demand, which increased at a certain rate 
and decreased at its peak in the morning during weekdays and weekends [78]. Further-
more, COVID-19, like other pandemics and viruses, is a major social and environmental 
issue that is seasonal in nature, affecting hot water usage when the pandemic occurs. Mod-
els that withstand pandemics should be the focus of future work. 

2.2. Influence of Building Characteristics on Energy Consumption of Electric Water Boilers  
The key issues related to building characteristics that influence hot water usage are 

the building size, insulation, and hot water distribution schedules. Larger buildings with 
more tenants are likely to have increased hot water demand, resulting in higher total en-
ergy use per person. Furthermore, there exists a clear correlation between the number of 
occupants in a building and the energy consumption of its electric water boiler system 
during evening hours, which corresponds to the peak usage period when individuals 
come home [2,45,60]. Although increased occupancy is expected to increase water use over 
time, as indicated in certain studies in Table 1, this is not always the case. However, electric 
water boiler consumption, on the other hand, is shown to decrease with increasing house-
hold size, which is thought to be due to an economy-of-scale effect [85] or user behaviour 

Figure 3. Average daily energy consumption percentage by region/country [2].

Ahmed et al. dived into the daily use patterns of electric water boilers across 182 Finnish
apartments over two years, showing both individual consumption and seasonal fluctua-
tions [1]. The study revealed fluctuations in electric water boiler consumption, highlighting
the highest consumption in November and the lowest in July, along with variations between
weekdays and weekends. Significantly, when these intricate predictions were integrated
into solar thermal system simulations, energy delivery increased by 4.7% compared to
models that did not account for these monthly fluctuations. This seasonality influences
the energy consumption of electric water boilers. Research has also shown that the an-



Energies 2024, 17, 443 7 of 32

nual energy consumption of electric water boilers is more important because, throughout
the year, hot water consumption is compared to other heavy energy-consuming systems
like heating and HVAC systems that are seasonal. Figure 2 summarizes the research on
seasonal and daily consumption of electric water boilers. Out of the 26 articles reviewed,
24 focused on daily consumption, 19 considered both daily and seasonal consumption, and
only 17 explored seasonal consumption exclusively. These show an interest in the effect
of daily prediction on annual consumption and highlight research trends in this domain,
which is a research concern.

Due to the continuous nature of hot water consumption, with patterns on both
daily and seasonal scales, researchers have turned to stochastic models to predict elec-
tric water boilers consumption over the years, with the aim of addressing the inherent
challenge [2,37,81]. Burch and Christensen have developed a stochastic water temperature
model that correlates the inlet water temperature to its impact on the indoor supply line,
indicating that the hot water temperature is influenced by the duration of end-user extrac-
tions [82]. These changes can lead to reductions in consumption ranging from 20% to 50%.
Furthermore, variables such as the number of residents may also contribute to seasonal
consumption, depending on the building type [2,8,83,84].

Dongwoo Kim et al. conducted research on the link between COVID-19 and residential
hot water needs [78]. A non-dimensional and principal component analysis was used to
determine the relevant factors utilising demand data from the research conducted before
and after COVID-19. The COVID-19 outbreak affected the daily peak time and the amount
of household hot water usage, according to the analysis, and the active case number of
COVID-19 was a good signal for linking the changes in hot water demand and patterns.
Based on this, a machine learning model based on an artificial neural network was created
to forecast hot water consumption based on the severity of COVID-19 as well as the relevant
association. According to the model analysis, the increase in the number of active cases in
the region affected the hot water demand, which increased at a certain rate and decreased
at its peak in the morning during weekdays and weekends [78]. Furthermore, COVID-19,
like other pandemics and viruses, is a major social and environmental issue that is seasonal
in nature, affecting hot water usage when the pandemic occurs. Models that withstand
pandemics should be the focus of future work.

2.2. Influence of Building Characteristics on Energy Consumption of Electric Water Boilers

The key issues related to building characteristics that influence hot water usage are the
building size, insulation, and hot water distribution schedules. Larger buildings with more
tenants are likely to have increased hot water demand, resulting in higher total energy use
per person. Furthermore, there exists a clear correlation between the number of occupants
in a building and the energy consumption of its electric water boiler system during evening
hours, which corresponds to the peak usage period when individuals come home [2,45,60].
Although increased occupancy is expected to increase water use over time, as indicated
in certain studies in Table 1, this is not always the case. However, electric water boiler
consumption, on the other hand, is shown to decrease with increasing household size,
which is thought to be due to an economy-of-scale effect [85] or user behaviour adaptations
under high occupancy conditions where facilities are shared among users [86,87].

Well-insulated buildings retain heat for longer periods, meaning that residents might
require hot water less frequently, especially during colder months. In buildings with
efficient ventilation and well-sealed windows, the hot water demand for domestic purposes
might be more consistent across different times. Most times, it is apparent that modern
building insulations directly benefit thermal management efficiency and overall energy
savings and result in less hot water consumption [88]. Similar research findings by Fabrizio
Ascione et al. confirm that effective insulation enhances thermal gains and reduces hot
water demand from electric water boiler systems [89]. The significance of pipe insulation
in reducing heat loss cannot be overstated; it also minimizes heat loss to the surrounding
environment and reduces the energy needed to heat water by 20–40%. Additionally,
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buildings with properly insulated hot water pipes consume less energy [2]. Energy usage
is also influenced by the architecture of the hot water distribution system. Centralised
systems that rely on a single hot water heater might result in significant heat loss (41.3 L per
day) as the water travels great distances to reach different usage sites, while decentralised
systems that use smaller water heaters situated closer to the point of consumption have
the potential to reduce energy losses [90,91]. Energy consumption is affected by factors
such as hot water usage schedule and location, as well as daily hot water consumption
volume [92,93].

The energy consumption patterns in various settings, such as bathrooms, showers, and
kitchen sinks, can be influenced by the temperature of hot water. Typically, these settings
maintain temperatures between 40 and 45 ◦C, achieved by the blending of hot and cold
water to ensure user comfort. In contrast, washing machines and dishwashers commonly
utilise hot water, with temperatures typically ranging between 55 and 60 ◦C. These specific
temperature thresholds are often employed as standardised criteria for assessing the energy
consumption of water boilers [36,82]. Buildings that receive ample sunlight, especially
during winter months, can naturally maintain warmer internal apartment temperatures.
This is due to a 1–2% increase in ambient temperature resulting from the external sunlight
effect. As a result, occupants may require less hot water usage during sunny hours,
potentially reducing the frequency of electric water boiler usage. Recent research has
focused on grouping apartments with similar consumption patterns into centralised or
mini-centralised electric water boiler systems in order to limit network complexity and
losses, reduce energy waste, and optimise the energy management of electric water boiler
systems, particularly in complex and residential buildings. Finally, the design and operation
of the hot water distribution system, combined with consumption patterns and temperature
needs, have a significant impact on energy use and can aid in the design of more energy-
efficient hot water system strategies for long-term home hot water supply. Larger buildings
or those with more occupants tend to have higher hot water demands. While electric water
boilers might appear as standalone systems, their energy consumption is intricately linked
to the building’s insulation characteristics and occupants’ behaviour. Future research can
use the link to improve energy management and efficiency measures, particularly when
considering usage timing.

2.3. Effect of Time of Use on Electric Water Boilers’ Energy Usage

The amount of time spent using hot water is determined by the occupant’s behaviour.
Hot water can be used for showers in the morning or evening chores. Recent studies
(Table 2) have also explored the impact of time of use (ToU) tariffs on the prediction of
electric water boiler consumption in residential settings. Time-of-use pricing, implemented
by utilities, adjusts electricity rates according to demand. Peak hours experience higher
rates, while off-peak hours, occurring at night or during mid-day in certain regions, feature
reduced prices. This pricing strategy, similar to electric water boilers, promotes off-peak
energy utilization. However, households with knowledge of time-of-use pricing may
adjust their hot water consumption patterns accordingly [3,4,52,64,94]. Vidal Lamolla et al.
presented an agent-based combination of traditional prediction models with behavioural
analysis to predict electric water boiler consumption [81]. The results from this modelling
indicate that the implementation of a time-of-use system would reduce hot water usage
by 17.2%. Moreover, the reduction was not homogenous for the socioeconomic groups
of households, while 20% of low-income households had the lowest water bill savings
(9.3%). Nevertheless, high-income households present 11% water bill savings with 10% hot
water use. Moreover, the use of smart metering in residential structures has demonstrated
a substantial correlation between the input variable of hot water’s time of use. The energy
consumption of electric water boiler systems can utilise time delays to optimise demand
response energy management [43,95]. Table 1 presents research carried out at the time of
use. Ritchie et al. created a model based on the relationship between usages at different
times of the day [27]. This model reduced hourly prediction errors by 19.6% for electricity
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usage and 25.0% for hot water usage when the first 12 h of the day were known. Future
work could consider the time of year (yearly seasonality) from daily hour prediction, the
total number of tenants, including the number of children, weather information, and user
input (set of holiday dates). Furthermore, these estimates could be tested in the context of
demand-side management (DSM) and demand response (DR) in the future.

The correlation matrix is presented in Table 3, and Figure 4 illustrates the assessment
of similarity between the days of the week [5]. In Figure 4, the blue and red colours denote
the minimum and maximum hot water consumption rates. Furthermore, electric water
boiler data from nursing homes, spanning 52 weeks, were systematically compared within
each week using Student’s t-test and Fisher’s exact test. To determine when profiles on
different days could be considered statistically similar, factors such as the accuracy of
Student’s t-test and Fisher’s exact test, as well as the percentage of atypical days, were
considered. Accepting an error of 5% for both tests and estimating an acceptable error
of 14% for atypical electric water boilers’ heat-use days, days with statistically similar
profiles in over 86% of the considered weeks were grouped into two categories: a from
Monday to Friday group; and a Saturday and Sunday group. Researchers have stressed
the importance of data granularity, especially from smart metres, for precise electric water
boiler prediction in the context of time-of-use tariffs. This study suggests that incorporating
real-time or hourly data from smart meters enhances the model’s adaptability to sudden
consumption changes influenced by time of use. Consequently, the integration of building
energy simulation tools with predictive models for electric water boilers that consider
the time of use variables is anticipated to improve the accuracy of residential energy
consumption prediction models. Future work can examine the effect of the time-of-use
tariff on user behaviour based on occupant composition, economic factors, and personal
factors on hourly and daily consumption.
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Table 3. Daily electric water boiler consumption correlation coefficient for nursing homes [5].

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 100 - - - - - -
Tuesday 93 100 - - - - -

Wednesday 97 97 100 - - - -
Thursday 87 97 93 100 - - -

Friday 95 97 97 97 100 - -
Saturday 32 59 32 55 51 100 -
Sunday 30 71 48 71 61 97 100

2.4. User Behaviour Influence on Energy Consumption of Electric Water Boilers

The energy efficiency of electric water boilers is primarily dependent on user behaviour
rather than technical factors. Moreover, using the electric water boiler sporadically rather
than in a regimented manner can affect its efficiency, especially when the boiler constantly
maintains higher temperatures. Furthermore, users who leverage time-of-use tariffs and
operate boilers during off-peak hours might influence not only individual costs but also
overall grid efficiency. Energy consumption is heavily influenced by factors such as the
frequency, duration, volume, and preferences of hot water users. Previous knowledge of
user behaviour in plumbing fixtures, such as showers and bathtubs, is predominant since
they contribute significantly to overall home hot water usage. Showers alone contribute to
over half of a household’s hot water consumption. Additionally, the study conducted by
Papakostas et al. explores the influence of “family size” on hot water usage, finding that
the majority of families consume between 25 and 35 L per person per day, with an average
annual energy consumption of 0.83 kWh per person per day [47]. Beyond considering
frequency and volume, certain users may desire higher temperatures when using hot water
piped equipment like dishwashers or washing machines. Although this choice may elevate
energy consumption by extending heating time, designers of prediction models need to
assess its impact on user comfort and safety. Different persons have varying usage habits
based on various demographics, such as age or gender. According to studies, women and
children shower more frequently than men, while pensioners use more hot water [41,42,49].
Gender and age have been found to be two of the most relevant elements in influencing
shower time in both Greece and Poland, according to studies [47,96]. Males typically take
9.1% less time than females, whereas children take 15.1% fewer showers per week, and
among houses occupied by people of all ages, those occupied by seniors typically consumed
22 to 27.5% more hot water than those occupied by younger people possibly because retired
senior occupants are at home more often according to the research conducted by Yixing
et al. [42].

Table 1 shows a summary of similar work on user behaviour in the literature. Some
experts believe that greater water appliance usage by seniors spending more time at
home increases water usage; money and wealth also play a factor in deciding how much
water a household uses [29,39,42]. This research gap could be attributed to the emer-
gence of an economy-of-scale effect for shared facilities, in which individuals frequently
modify their usage patterns [48]. However, by designing systems with user behaviour
and temperature preferences in mind, efficient hot water utilisation is possible, hence
increasing sustainability.

2.5. Technical Factors and System Design Efficiency Influence on Energy Consumption of Electric
Water Boilers

Technical factors and effective system design have a considerable impact on the en-
ergy consumption of electric water boilers. Improving the precision of these parameters
and their influences allows for more precise prediction of energy use, paving the way for
improved prediction approaches and energy management. Most of the time, technical
issues are related to the hurdles, such as the boiler’s efficiency rating, which is a measure
of its energy conversion effectiveness. Furthermore, operating conditions, such as the



Energies 2024, 17, 443 11 of 32

set-point temperature and frequency of boiler usage, influence energy consumption. In-
creased energy consumption is caused by high set-point temperatures or frequent use [82].
Furthermore, the overall system design of the hot water distribution network influences the
energy losses and overall energy consumption [69,97], and an efficient system design can
minimise these losses [2,98,99]. Fuentes et al. evaluated the impact of technical standards,
such as heating element efficiency and system design, on electric water boilers’ energy
usage [2]. Additionally, Jordan and Vajen investigated hot water distribution systems,
specifically pipe insulation and home-run plumbing designs [64]. The review discovered
that addressing these parameters significantly reduced energy losses and boosted consump-
tion efficiency. Other studies, such as B. Hendron et al., investigated demand-controlled
recirculation loops, as well as the time and frequency of hot water draw events, which
significantly showed that these variables were found to have an effect on electric water
boilers’ energy usage [93].

2.6. Design and Control Strategy Influence on Energy Consumption of Electric Water Boilers

The design and control strategy should incorporate the implementation of reschedul-
ing control, considering the occupant’s consumption patterns or behaviour. This approach
aims to minimise wastage and maximise the functionality of each electrical water boiler,
thereby reducing the energy required for hot water heating in residential buildings. Strate-
gic operations must go beyond simple on/off switching to include controlled rate warming
speeds without sacrificing the hot water comfort of occupants via intelligently managed
thermostats integrated with timer sequences that reduce frequent temperature fluctuations
as well as optimising utilisation, increasing usage efficiency, and reducing unwanted energy
consumption by electrical water boilers [2,33,100]. The traditional means of scheduling
and controlling electrical water boilers involve the use of a thermostat and timer control.
However, the implementation of timers or scheduling control systems can enhance the
efficiency of hot water control by operating the system during peak demand periods and
minimising energy consumption during periods of low demand [101,102]. A higher ther-
mostat set point necessitates more energy to heat the water to the desired temperature,
resulting in increased energy consumption. However, lowering the thermostat temperature
reduces energy consumption [103]. These measures can be aligned with utility demand–
response programmes, which reduce energy costs during off-peak hours. Additionally,
advanced machine learning algorithms can forecast hot water use patterns and adjust the
operation schedule of electrical water boilers accordingly, resulting in additional energy
savings [104–106]. Control tactics and design have a considerable impact on the forecast of
energy consumption by electrical water boilers in residential buildings. Table 1 shows a
review of similar studies on the design and control of electric water boilers. Their operating
schedule can significantly alter their energy consumption by aligning the operation to
coincide with periods of hot water demand, and energy savings can be achieved [107].
Electrical water boilers equipped with hourly smart prediction model controls can opti-
mize their operation by leveraging real-time data on hourly daily energy pricing and user
demand patterns, thereby enhancing efficiency [108,109]. Additionally, the incorporation of
hot water recovery technologies in electric water boilers can further contribute to reducing
energy consumption [107,110–112].

Kapsalis et al. investigated a comfort and cost-oriented optimisation method for
operation scheduling of electric water heaters under dynamic pricing [44]. Utility-centred
strategies used by electricity providers to reduce the peak load of aggregate electrical
water boilers load in order to provide balancing and regulation services, such as ON/OFF
control [84,113], water temperature adjustment [113–115], voltage control [116,117], were
highlighted. Further study could look at developing predictive models that take these
parameters into account for better prediction and optimisation of energy use in electrical
water boilers [17,118], particularly in high-rise residential structures. Furthermore, most
research places less emphasis on individual electrical water boilers’ energy usage, which is
impacted by the occupants’ behaviours and preferences [2,119].
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2.7. Data and Measurement Techniques for the Prediction of Electric Water Boilers Consumption

Data from numerous sources each contributes unique insights into various aspects
of energy consumption behaviour, which are generally obtained from the electrical water
boiler system specification, which normally contains its efficiency rating, capacity, and
heating element specifications, among other things [120]. Regardless, data collection and
measurement techniques must be methodical, rational, and standardised [2,34]. Table 4
shows the source of data and measures as found in the literature; these are sometimes
obtained from the manufacturer’s specification or from actual measurements collected
during systems operation. The prediction accuracy is heavily dependent on the accessi-
bility of accurate and comprehensive data gathered from various sources [83,121]. Direct
measurements of user behaviour can be obtained using flow metres and temperature
sensors [99,100]. Also, indirect data collection methods, such as user surveys or diaries
tracking usage habits, can also provide valuable prediction outcomes [122]. Dishman
et al. presented the sources of data and measures as documented in the literature [98]. In
addition, the accuracy of predictions is greatly influenced by the availability of reliable and
complete data obtained from many sources [83,121]. Flow metres and temperature sensors
have been utilised to directly measure user behaviour [99,122]. Valuable insights can be
gained through indirect data collection methods, such as user surveys or diaries that collect
hot water consumption [123,124].

Non-invasive load monitoring (NILM) technologies have been employed to collect
more detailed data on the utilisation of certain appliances [125,126]. Data collection capabil-
ities of the Internet of Things (IoT) technology have been significantly improved in recent
research. However, smart metres and sensors have the capability to provide real-time, high-
resolution data, hence significantly enhancing the precision of predictive models [126–130].
Nevertheless, with the diverse array of data sources, there are persistent challenges in the
areas of data collection, quality assurance, and processing. These challenges are crucial
obstacles that require immediate attention in order to achieve accurate predictions of energy
consumption. There is a need to ensure data quality, address missing or inaccurate data,
and effectively manage data with high levels of complexity [74,131]. Accurate modelling
of hot water usage can be enhanced by incorporating specific information regarding the
timing and process in which hot water is used. This data can be gathered via several means,
including the direct use of instruments such as flow metres and temperature sensors or indi-
rectly via surveys or user diaries [132,133]. In addition, the collection of meteorological data
are needed, particularly ambient temperature, which influences the heating requirements,
affecting how often and for how long electric water boilers need to operate to maintain
the desired water temperature. In colder weather, the ambient temperature is lower, and
electric water boilers may need to work harder and longer to meet the heating demand.
This impacts the thermal dissipation of the electric water boiler and the overall building
performance [102,134,135]. The acquisition of real-time weather data for the purpose of
precisely assessing energy consumption is typically facilitated through the use of local
weather stations or online meteorological databases [57,136]. Future research can prioritise
the improvement in data collection methods, measurement methodologies, and data quality
and processing. These factors are significant in determining the energy consumption of
electric water boilers, both in terms of energy consumption and future predictions. By re-
fining these approaches and addressing issues related to data collection and data structure,
the accuracy and reliability of electrical water boilers’ energy consumption prediction can
be enhanced.

Zhang et al. underlined the need for data pre-processing and cleaning in experimental
situations where faulty or missing data could skew results and cause forecasts to be
incorrect [137]. Similarly, Zhou et al. used multi-parametric feature collection to increase
the forecast accuracy of electric water boilers’ energy prediction [20]. Artificial intelligence
(AI) and machine learning (ML) algorithms thrive on data, and the quality and size of
the dataset significantly impact the performance and applicability of these models in real-
world scenarios. Researchers emphasize the importance of large, high-quality datasets



Energies 2024, 17, 443 13 of 32

to train algorithms that can make accurate predictions and decisions across different
situations [100,138,139]. It is evident that data privacy is essential in the realm of electrical
water boilers’ energy consumption prediction, surpassing the relevance of data quality,
availability, and privacy. In order to achieve a resilient system and optimise energy use,
it is imperative that the data employed are both accurate and comprehensive. The use of
personal data for the purpose of estimating energy usage, particularly where user activity
plays a significant role, gives rise to problems regarding data privacy. Greveler et al.
investigated the issue of protecting user privacy during the data collection process for
predictive models [140]. Furthermore, it is critical to recognise that the energy consumption
forecast of an electric water boiler is dependent on the quality and privacy of data in order
to improve data collecting, processing, and prediction model processes. Future research
can focus on strengthening data collection and processing techniques, safeguarding data
privacy, and optimising prediction models through the use of data.

3. Prediction Models and Approaches for Electric Water Boilers Energy Consumption

Researchers have explored several techniques for electrical water boilers’ energy
consumption prediction over the years. This paper reviewed these categories of some tech-
niques as found in the literature: deterministic and traditional methods; probabilistic and
stochastic methods; data-driven and machine learning methods, and hybrid approaches.
Table 4 represents some of the techniques explored in this research.

Table 4. Summary of reviewed papers on methods, dataset, and research gaps for the prediction of
electric water boilers consumption.

Authors Methods/Algorithms Nature and Sources of Data Research Gaps

Ladd and Harrison [139] Deterministic + Monte Carlo EWBs consumption of US
dwelling.

High computational time and
limited to a scenario.

Belmonte et al. [7] Deterministic + Stochastic Data for 104 apartments in
Madrid, Spain, dwellings.

Limited data, no robustness to
increase in price.

Dolan et al. [141] Monte Carlo + stochastic Athens EWBs load distribution. Does not represent all scenarios.

Aki et al. [24] Statistical + Stochastic
EWBs consumption in Japan

(Osaka) dwellings and
10mins timestamp

Does not consider
user behaviours.

Buchberger et al. [63] Statistical + Stochastic EWB consumption for 4 single
families in the USA. Limited to 4 single families.

Widén et al. [68] Statistical + Stochastic TUD of 179 occupants Swedish
and 5mins time-step. Limited to data measurement.

Ritchie et al. [8] Probabilistic + Stochastic Seventy-seven residential
households, at 1-h intervals.

Limited data limit efficiency
and visualization models.

Jordan and Vajen [142] Probabilistic +Statistical
EWBs consumption for

Switzerland and
German residents.

User behaviour was not
considered, and significant

fractional influences
were found.

George et al. [36] Statistical + probabilistic A total of 119 households, 1
timestep Canada (Halifax).

Only Halifax region, limited
data of 119 households,

no occupancy
behaviour considered.

Hendron et al. [93] Probabilistic + Clustering EWBs consumption from USA
dwellings, 6-min intervals.

Parameters not valid for all
climate conditions.

Diao et al. [115] Parametric Stochastic A total of 147 households EWBs.
Examine real-time realistic

scenarios and other
analytical methods.

Yao and Steemers [65] Stochastic EWBs consumption from
UK dwellings.

Does not consider user
behaviour scenarios.

McKenna and
Thomson [73] Stochastic TUD of UK dwelling.

It is desirable to implement
model on other dwellings not

limited to the UK.
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Table 4. Cont.

Authors Methods/Algorithms Nature and Sources of Data Research Gaps

Richard [131] Stochastic REUWS database.
Model complexity, limited to

single family users and
sensitivity to parameters.

Fischer et al. [99] Stochastic Individual residential
German households.

Occupant types and comfort
need to be considered.

Ferrantelli et al. [43] Stochastic
EWBs consumption in Finnish

apartment dwellings and
1 h timestamp

Does not consider region, social,
recurring user patterns

and correlation.
Gelažanskas and

Gamage [143]
Times series + seasonal

decomposition
EWBs consumption for 95

dwellings and 24 h timestamps.
Seasonality and number of

occupants are not considered.

Leiria et al. [34] K-filter + SVR Twenty-eight Danish apartments.

Limited data set, regional,
investigating other estimation

methodologies, separate
heating, and EWBs system.

D. Kim et al. [78] ANN
From 2017 to 2022, 1 h interval
data of apartment complex in

Seongnam-si, Korea.

Season, culture, and user
behaviour also affect hot water

demand, which was
not considered.

Gelažanskas and
Gamage [144] ANN EWBs consumption for 112

dwellings and 24 h timestamps.
Limited to 112 data to capture
robust EWBs usage patterns.

Sonnekalb and
Lucia [120] NN User behaviour + IoT data of

Britain individual occupant.

Does not consider real
measurements, other ML
(LSTMs, etc.), and smart

grid implementation.

Maltais and
Gosselin [145] MPC + NN Forty EWBs consumption profiles.

High computational complexity
leads to forecasting
model inaccuracies.

Amasyali et al. [146] RL TUD price and hot water usage
profiles for 30 days.

Needs to be deployed on real
system, examining the

representation of hot water
patterns on set of
proxy variables.

J. Cao et al. [147] Deep RL + LSTM --
Does not consider the

uncertainty of future prices and
variability of EWB types.

Roux et al. [75] Meta-heuristic algorithm Individual data of 34 EWB
controllers in 34 weeks.

Does not capture unpredictable
user behaviour, hot water

variations, or
energy fluctuations.

3.1. Deterministic and Traditional Methods

These approaches for modelling electrical water boilers’ energy consumption are based
on physical laws like balanced energy models (heat transfer) and fluid dynamics, which
have traditionally been used for energy prediction modelling [64,148]. Also known as
deterministic models, these models consider system thermal properties, user behaviour,
and environmental conditions [64,124,149]. They have a solid theoretical base, but data
availability and quality limit their accuracy, most specifically electric water boilers’ testing
standards, which define energy prediction and design flow rates for electric water boilers’
tapping patterns [150–152]. Over the years, Monte Carlo simulations were used to generate
hot water load predictions for residential users using statistical technical-based standards
(STS) and equations to model the daily consumption of electric water boilers, which are
correlation-based models [141,142]. Table 4 presents a summary of some technical and
research gaps in these models.

Marini et al. compared five technical standard-based software calculation tools applied
the CC BY-NC-ND 4.0 license and utilized versions 8.0.0, 2014.6.5.0, 8.5, 9.92, and 5.2.d
respectively, for predicting residential buildings’ monthly and daily electric water boilers’
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consumption [150]. This work further compared UK dwelling measurements with models
based on several technical standards, including total hot water volume, energy losses,
system efficiency, and hot water temperature. The results showed approximately 40%
variation in measured data, but the accuracy of technical-based standards (STS) techniques
mostly depends on input design values for evaluation, and methods based on the country’s
specific standards yield better estimates.

Jordan and Vajen examined how consumption patterns affect energy savings using
electric water boilers’ load prediction on a solar hybrid system [64]. Unlike in other studies,
the authors used statistical methods to predict electric water boilers’ load on a 1-min time
scale using a TRNSYS (version 14.2) simulated hot water profile, considering use rate, flow
rate, and time of use. Storage systems where duration and flow rate affected storage tank
temperature stratification saved over 2% of energy [64]. Limiting its applicability to other
systems or energy sources, electric water boilers’ consumption distribution assumptions
did not consider all end-user behaviour, including weather, system maintenance, and user
behaviour, which greatly affected energy consumption. Future research can address these
limitations by considering multiple users in residential buildings.

3.2. Probabilistic and Data-Driven Stochastic Methods

The techniques for estimating electric water boiler consumption widely used are
stochastic and probabilistic models derived from monitored data and survey information.
Stochastic methods based on time-used data (TUD) compute the probability density func-
tions of resident activities and the resulting energy use prediction [68,153]. The probabilities
of state transitions are modelled using methods such as the Markov chain process and
Monte Carlo, where the resulting probability distributions are calibrated using consump-
tion measurements and time-used data (TUD) [141]. In the context of hot water energy
consumption, these simulations, with their probability distribution, could consider factors
such as variability in hot water usage, changes in weather, and differences in appliance
efficiency. The advantage of these methods lies in their ability to accommodate uncertainty
and variability in prediction, which is particularly relevant given the numerous factors
that can influence energy consumption, including user behaviour, appliance efficiency,
and weather conditions. Although data-driven methods, including machine learning, are
dependent on the quality and quantity of data available for training the models, they are
also mostly perceived as black-box models due to their complexity and the difficulty of
interpreting the model dynamics [100].

Data-driven stochastic methods and machine learning techniques, such as SVR and
ANN, have been used to model and forecast energy use in residential buildings [119,154].
These methods can handle large amounts of high-dimensional data and can uncover com-
plex non-linear relationships between input variables and energy consumption. Both
methods provide valuable tools for predicting energy consumption in electric water boil-
ers, each with its own advantages and limitations, as summarised in Table 4. Future
research could focus on combining these approaches to leverage their respective strengths
and mitigate their weaknesses. Additionally, scheduled electric water boiler control can
reduce electricity use, but the achievable savings have not been purposefully and me-
thodically analysed and quantified to find an optimal control strategy (including schedule
and temperature) that considers actual hot water usage patterns without considering user
comfort. These cannot be achieved without adequately predicting the electric water boilers’
consumption for a robust scheduling and control strategy [155].

Ritchie et al. presented a probabilistic hot water usage model and simulator for
residential energy management, addressing the research gap in the existing residential
hot water consumption models that do not account for user preferences and seasonal and
daily changes [8]. A probabilistic data-driven model of personalised hot water profiles
and a hot water usage simulator account for these variables. For each of the four seasons,
77 homes provided data for model training and evaluation. Simulation match observed
hot water use profiles. The aggregated energy load on the grid was also modelled to match
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measured data, halving the modelling error compared to hot water usage. The hot water
usage simulator improves water heaters and demand-side management. More measured
water flow data beyond 77 apartments may increase forecasting accuracy, efficiency, and
probability density functions for clustered water usage. Furthermore, the model data
visualisation may inspire future research.

3.3. Times Series Forecasting Models

Time series models predict future water consumption based on past trends, helping en-
ergy management and infrastructure planning, which includes optimising energy-intensive
task scheduling, demand–response strategies, and water and energy system capacity plan-
ning [2,154–156]. Time series models use hourly, daily, weekly, or monthly consumption
data to identify patterns and trends, which can be caused by daily routines (hotter wa-
ter usage in the morning and evening), seasonal effects (more hot water usage in colder
months), and specific events or anomalies. However, time series models like autoregressive
differencing and moving average (ARIMA) models predict future values. Autoregression
and differencing make the time series stationary [154], while seasonal ARIMA (SARIMA)
models account for data seasonality [139]. State–space models and Kalman filter models
are useful when the system’s underlying states (hot water consumption patterns) are not
directly observable but can be estimated from observed data [146]. Machine learning (ML)
methods, like recursive neural networks (RNNs) and long short-term memory (LSTM), can
detect complex time series patterns, improving prediction accuracy [103,150]. Likewise,
Prophet, an additive model that fits non-linear trends with yearly, weekly, and daily sea-
sonality and holiday effects to forecast time series data, identifies hot water use drivers
and improves energy-saving interventions [20,25]. Although the models assume that past
patterns will continue, which may not always be true because water pricing, water-saving
technologies, and behavioural changes can disrupt past patterns and make models inac-
curate, there are limitations associated with the models [157,158], which are presented in
training time series models and require a lot of historical data, which is limited by the lack
of or difficulty of collecting such data [68,119,136]. Nevertheless, time series models are
difficult to develop and require statistical modelling and data analysis expertise. Most
models neglect non-temporal factors like behavioural, socioeconomic, and demographic
variables, which future work could consider minimising relative error of ±10%. To improve
model accuracy above 85%, these factors should be included. Moreover, advanced time
series models, like those using machine learning or artificial intelligence, can improve
prediction by capturing complex and non-linear data relationships.

Gelažanskas and Gamage paved the way for demand-side management strategy based
on residential hot water consumption forecasting data analysis and validated the following
prediction methods: exponential smoothing; seasonal autoregressive integrated moving
average; seasonal decomposition; and their combination [144]. The benchmark models
(mean, naive, and seasonal naive) perform worse than these models, indicating that the
seasonal decomposition of the time series has the most effective forecast accuracy. Future
work can include considering the time of year (yearly seasonality), the total number of
occupants, the number of children, weather information, and user information (set of
holiday dates). Furthermore, these forecasts could be tested in the context of demand-side
management (DSM) and demand response (DR) in future research. Similarly, Gelazanskas
et al. developed a management demand strategy based on residential dwelling data on
the prediction of electrical water boilers’ consumption for various time series models and
a combination of them [145]. Seasonal decomposition, autoregressive integrated moving
averages, and exponential smoothing are promising techniques for different prediction
techniques that were used to forecast data over a 24-h period. However, their ability to
account for factors such as seasonality, variations in the number of occupants, holiday
dates based on user feedback, and family compositions. These models hold significant
potential for Demand Side Management (DSM) control without compromising the comfort
of the user.
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Bacher et al. presented a method for separating spikes from noisy time-varying data
series measuring a single-family house’s total heat load [156]. It uses the fact that domestic
hot water heating generates short-lived spikes in the time series, while space heating
changes slowly throughout the day depending on climate and user behaviour. A non-
parametric kernel smoother estimates space heating, and any value significantly above this
estimate is a domestic hot water heating spike. First, simple kernel smoothing fails. Thus,
the problem is generalised to a local least squares problem, enabling spike-resistant kernel
smoother design. A generalised model estimates higher-order local polynomials. Finally,
the results show that the method can accurately split the heat load into two components
with an accuracy of approximately 85%, and this study also only applied to single-family
homes, but the application to diverse and other types of buildings may be an interesting
future research direction. Thus, future research should compare the proposed method to
other time-series methods to prove its efficacy.

3.4. Machine Learning Methods

Table 5 shows a synthesis of the literature on machine learning models used for the
prediction of electric water boiler consumption. The classification of machine learning
methods is mostly determined by the type of learning employed by the algorithm, such as
fitting a linear equation to observed data. The Multiple Linear Regression (MLR) approach
models the relationship between two or more features and a response. It is also simple and
does not necessitate extensive computational resources [159–161]. However, its main flaw is
that it assumes that dependent and independent variables have a linear relationship, which
may not always be true in real-world applications. Because of its ability to model complex
non-linear relationships between input and output variables, artificial neural networks
(ANN) have gained interest in energy prediction [49,149,162,163]. However, training the
ANN model can be computationally demanding; it also acts as a black box, which means it
lacks interpretability and can make knowing how it makes predictions challenging. Support
Vector Machines (SVM) are useful for prediction problems because they can handle both
linear and non-linear data [160]. SVMs are also less prone to overfitting and produce solid
results even with small sample sizes [24,26,139,161,164]. Notwithstanding, the performance
is largely dependent on a suitable kernel and parameter adjustment, which can be a difficult
undertaking. Random Forest (RF) is an ensemble learning method that can effectively deal
with non-linear and high-dimensional data. It also estimates the relevance of features and
is less likely to overfit than other techniques [76,165,166]. However, it is computationally
demanding and may not perform well with sparse data or categorical variables with
several levels. Gradient Boosting Machines (GBM) are another ensemble approach that
creates new predictors with the goal of correcting the residual errors of the prior predictor.
Despite the fact that they are robust to outliers and can handle diverse types of predictor
variables [164]. Nonetheless, GBMs can overfit if the data is noisy, and they require careful
parameter tweaking.

Table 5. Summary of similar works on machine learning models.

Authors Machine Learning Algorithm Aim and Goals

Bakker et al. [66] ANN Cost and energy minimisation.
Barteczko-Hibbert et al. [165] ANN Cost and energy minimisation and user comfort.

T. Sonnekalb et al. [120] ANN Cost and energy minimisation and user comfort.
Maltais and Gosselin [145] NN Energy minimisation.

Guo and Mahdavi [167] RNN Cost and energy minimisation and user comfort.
Zhengwei Qu et al. [168] FNN Cost and energy minimisation and peak LDS.

Al-Jabery et al. [169] Fuzzy Q-learning Energy minimization.
De Somer et al. [170] Actor–critic Q-learning Cost minimisation.

Ruelens, et al. [171] Auto-encoder network and
fitted Q-iteration Cost and energy minimisation.



Energies 2024, 17, 443 18 of 32

Table 5. Cont.

Authors Machine Learning Algorithm Aim and Goals

Ruelens, et al. [172] Q-iteration Cost and energy minimisation and user comfort.
Aki et al. [24] SVR Cost and energy minimisation.

S. Cao et al. [164] SVM Cost and energy minimisation and user comfort.
Guo and Mahdavi [166] SVM Cost and energy minimisation.

Kara et al. [173] K-means Energy conservation.
Gong et al. [174] K-means Cost and energy minimisation.
Kazmi et al. [175] BRL Cost and energy minimisation, and user comfort.
J. Cao et al. [147] DRL Cost and energy minimisation and user comfort.

Amasyali et al. [146] RL Cost and energy minimisation over time of use (TOU).
Xu et al. [76] RL Energy minimisation.

Heidari et al. [79] RL Energy minimisation and user comfort.
Amasyali et al. [176] RL Cost and energy minimisation.

When household income, the number of adults, children, teenagers, and appliance
stock efficiency are considered, artificial neural network (ANN) models can predict resi-
dential hot water end-user consumption per household per day with moderate accuracy of
10 to 20% of the total energy consumed [45]. Bakker et al. used an ANN model to predict
daily electric water boilers’ thermal energy 24 h ahead using household heat demand
profiles from the previous day and week and weather data [66]. This model estimates
daily electric water boilers’ predictions well, but it needs more user behaviour variables.
Furthermore, hotels, hospitals, sports centres, social facilities, and multifamily residential
buildings are increasingly using central electric water boiler systems. Forecasting and
aggregating diverse electric water boiler predictions to create a consumer-representative
pattern are needed to optimise such systems [2]. Additionally, clustering techniques are
needed to integrate electrical water boilers’ consumption predictions from diverse users
and buildings [165]. A clustering aggregation tool can predict patterns used by a centralised
control system from electric water boilers’ daily predictions from different buildings, and
the tool can use parallel validation to test the output patterns used to make decisions
against the input prediction. Nevertheless, future work should consider the following
research gaps associated with machine learning (ML) methods:

1. The quality and availability of the prediction heavily depend on the quality and
quantity of available data. Incomplete, inaccurate, or sparse data can lead to inaccurate
predictions [66,149];

2. Model interpretability systems such as ANN operate as black boxes, making it
challenging to understand how predictions are made. This lack of interpretability
can be a disadvantage in contexts where understanding model decisions is impor-
tant [66,120,148,165];

3. Computational resources: some models can be computationally intensive, particularly
with large datasets. This can be a limitation in contexts with limited computational
resources [49,149,160,161].

Maltais and Gosselin evaluated machine learning (ML) forecasting within model
predictive control (MPC) systems for electric water boilers, testing four controllers: a
rule-based controller; an optimal controller; an MPC with a prophet demand forecast;
and an MPC with an ML forecast model [148]. In simulations involving 40 electric water
boilers’ predictions based on measurements in single-family residential units, ML integrated
with MPCs outperformed other models. However, it faced research limitations related to
inaccurate predictions, making MPC less viable for single-family or small systems. This
underscores the need for better demand forecasting models. A comparison of controllers
suggests that hybrid or advanced controllers could enhance electric water boilers’ efficiency,
and machine learning (ML) models play a significant role in improving electrical water
boilers’ demand forecasts. The MPC’s poor forecasts and delayed action have resulted in
more temperature constraint violations. To reduce constraint violations, forecasting models
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must be timely and accurate. Model predictive control (MPC) with ML should also be
tested outside single-family homes. Future work direction can consider this.

Gough et al. presented a smart residential water heating device using machine learning
(ML) that optimises water boilers’ operation by predicting hot water demand using machine
learning [106]. This forecasting mechanism predicts hot water volume and consumers’
unpredictable behaviour using only non-intrusive data, which is a major challenge. Data
collection and artificial intelligence methods reduced these, but the device’s “heat now”
function addresses consumer behaviour uncertainties by letting consumers override the
predictive control mechanism. Moreover, in a six-month pilot on Sao Miguel island,
Portugal, it accurately predicted hot water demand and optimised electrical water boilers’
operation. This prediction model saved 1.33 kWh/day on water heating; the devices could
reduce energy consumption by 2832 kWh daily, or 0.21% of total electricity generated;
thermal generation could be reduced by 0.37% and CO2 emissions by 693.31 metric tonnes
per year if deployed more widely. A survey showed that this model’s effectiveness and
robustness did not compromise consumer comfort, and that is the significance of the
forecasting algorithm based on non-intrusive vibration data. Nevertheless, the research
relied on machine learning to accurately predict hot water demand from vibration data.
The non-traditional data source shows the flexibility and potential of machine learning
(ML) and artificial intelligence (AI) in energy management and optimisation. Finally, it
points to promising research and development in this domain.

3.5. Hybrid Approaches

Hybrid models combine two or more methodologies to create a more accurate or
efficient prediction model. These models have been increasingly used in energy consump-
tion prediction because they can harness the strengths of multiple individual models and
overcome certain limitations that single models may have. Table 4 presents some of the
hybrid approaches reviewed. Also, combining data-driven and physics-based models can
predict energy consumption by integrating heat transfer, energy usage, and conservation
laws. Raissi et al. presented a physics-informed neural network (NN) model that guides
learning using differential equations [160]. It uses neural networks to model complex data
patterns while maintaining physical consistency with system propositions and dynamics.
However, the Grey System approach is employed in modelling and prediction systems for
its effectiveness in utilising limited information, particularly in situations with insufficient
or uncertain data. In the prediction of electric water boiler energy consumption, Grey
System Theory (GST) can be employed to handle incomplete or imprecise data, providing
a method for modelling and forecasting energy consumption patterns. GST’s capacity
to handle uncertain information aligns with advanced machine learning models, which
train multiple algorithms and combine their predictions. Furthermore, these models have
demonstrated superior performance in terms of generalization and accuracy [176,177].
Though these models are often promising, they have relative limitations in complexity to
implement and interpret compared to single models. The overfitting challenge is where
the model fits the training data too closely and performs poorly on unknown data. Fu-
ture work should mitigate the trade-off between model performance and complexity, the
trade-off between predictive power and model simplicity, computational efficiency, and
interpretability to prevent overfitting in hybrid models.

Khashei et al. proposed a hybrid ARIMA–ANN model for energy load forecasting
that mitigates the ARIMA model’s linear relationships while the ANN model’s non-linear
ones [154]. Additionally, the hybrid model outperformed the ARIMA and ANN models
alone. Zhang et al. similarly proposed a hybrid model that combines ARIMA and SVM
for the prediction of residential hot water consumption. The model uses ARIMA to
model and predict the linear part of the time series data and SVM to model and predict
the nonlinear part most significantly [137]. Their results showed that the hybrid model
significantly outperformed the individual models. Keynia et al. proposed a model that
uses the wavelet transform and neural networks to predict the electric water boilers’ energy
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consumption [178]. The wavelet transform is used to decompose the load series into
different frequency load demand components, and neural networks are used to predict
each decomposed series. The final prediction is obtained by aggregating the predictions of
each series. Although their work was on energy load prediction, the methodology could
potentially be applied to electric water boilers’ prediction of consumption. Recently, with
the evolution theory GA-NN, a genetic algorithm has been used to optimise the weights of
the NN, reducing the chances of the model getting trapped in local minima and potentially
improving the prediction performance [171].

4. Prediction Evaluation and Validation Methods

There are numerous methodologies for assessing and validating the accuracy and
dependability of prediction models for electrical water boilers’ energy consumption. These
evaluation techniques are broadly classified into two types: those that use statistical
measures to compare predicted and actual energy consumption and those that employ
more sophisticated machine learning and artificial intelligence techniques. The major
challenge associated with the accuracy of these two categories is overfitting, which occurs
when the chosen evaluation model deviates too far from the true values of the known
observations or parameters [172]. Additionally, the evolution of model evaluation aims to
address this problem by selecting flexible methods capable of accurately determining many
different possible known true values. Overfitting leads to the model closely following the
errors or noise [6]. This phenomenon forms the basis of the discussion in this section on the
prediction of prediction evaluation techniques.

4.1. Statistical Evaluation Approach

Statistical methods are widely used due to their relative simplicity and interpretability,
particularly in the evaluation of energy consumption prediction models. Typically, such
methods use regression analysis, which uses historical energy consumption data to fore-
cast future energy consumption [13,33]. Furthermore, statistical evaluation methods are
basically used to assess the performance, accuracy, and reliability of models or predictions
based on statistical measures and tests. Examples of the method are Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), p-values, confi-
dence intervals, hypothesis testing, etc. These methods aim to provide insights into the
statistical significance of the results, helping researchers and engineers understand the
reliability of the prediction models. Various measures of fitness estimation are as follows:

i. Root Mean Squared Error (RMSE): the mathematical computation involves taking
the square root of the average of squared differences between predicted Pi and actual
values Ai,

RMSE =

√
∑n

i=0|Ai − Pi|2

n
(1)

where n is the number of observations of the ith predictions.
The squaring operation in RMSE gives more emphasis to larger errors |Ai − Pi |2,

making RMSE valuable when large errors should be penalised more. Nevertheless, if
there are extreme values in the dataset, it can disproportionately influence the RMSE re-
sult [84]. Also, the squaring operation eliminates the sign of the error, which limits RMSE
in providing information about the direction of errors (overestimation or underestima-
tion). It treats all deviations equally without distinguishing between over-predictions and
under-predictions [34]. In cases where the distribution of errors is not normal, alternative
evaluation metrics might be more appropriate;

ii. Mean Absolute Percentage Error (MAPE) is expressed as a percentage (making it
scale-independent):
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MAPE =
1
N

N

∑
i=1

∣∣∣∣Yi − Ỹi
Yi

∣∣∣∣× 100 (2)

where N is the number of observations. The result is directly interpretable as the average
percentage difference between predicted Ỹi and observed Yi values. This allows for the
comparison of prediction accuracy across different datasets. Furthermore, most deter-
ministic and traditional probabilistic and data-driven stochastic methods use MAPE and
RMSE to evaluate their models [6,178,179]. Lower MAPE values indicate better prediction
accuracy, facilitating easy model comparisons. Nevertheless, MAPE can become undefined
or extremely large when Yi is close to zero, which may lead to numerical instability when
N is relatively small. In addition, it might not be suitable for datasets with intermittent or
sporadic demand;

iii. Mean Absolute Error (MAE) represents the average absolute difference between
predicted Yi and Ỹi observed values [6]:

MAE =
1
N

N

∑
i=1

∣∣Yi − Ỹi
∣∣2 (3)

Unlike the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), which
are sensitive to outliers (meaning that if there are extreme values in the dataset, they can
disproportionately influence the RMSE), MAE is not sensitive to outliers. It gives equal
weight to all errors, making it robust in the presence of extreme values. Nonetheless, MAE
treats all errors equally, irrespective of the magnitude. In circumstances where larger errors
are more dominate, MAE might not appropriately penalise them. Since MAE considers
only the absolute differences, it does not provide information about the direction of errors
(overestimation or underestimation). In some scenarios, understanding the direction of
errors is significant for model interpretation [6,84];

iv. Coefficient of Determination (R2) is mathematically expressed as the proportion of
the variance in the dependent variable Yi that is predictable from the independent
variable(s) Xi:

R2 =

{
1
N

∑
(
Xi − Ẋ

)(
Yi − Ỹ

)(
σx − σy

)2

}2

(4)

where N is a number of observations; X and Y are observations of i for Xi and Yi; Ẋ and Ỹ
mean of X and Y, respectively; σx and σy are standard deviations, respectively. It provides
a standardized measure for comparing different models. Models with higher R2 values are
generally considered better predictors [6].

A value of 1 indicates that the model perfectly predicts the dependent variable, while
a value of 0 indicates that the model does not provide any predictive value. The higher
the R2, the better the model fits the data [6,33]. Nevertheless, a high R does not guarantee
accurate predictions; it can be influenced by the specific sample used for model estimation,
which may result in the model performing poorly on new and unseen data [33,84]. There
are other methods like Mean Squared Error (MSE),

MSE =
1
N

N

∑
i=1

(
Yi − Ỹi

)2 (5)

Normalised Mean Squared Error (NMSE),

NMSE =

∥∥(Yi − Ỹi
)∥∥2

2∥∥Ỹ
∥∥2

2

(6)
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and Cross-Variation (CV)

CV =
Si
Yi

(7)

where N is the number of observations; X and Y are observations of i for Xi and Yi; Ẋ and
Ỹ mean of X and Y, respectively; Si is a variance in intertemporal [84,180–186].

Marszal-Pomianowska et al. initially validated their method using data from both
single-family houses and apartments. Subsequently, they applied this method to a dataset
comprising hourly total heat consumption readings from 38 single-family houses. The
model’s evaluation involved the use of the standard deviation as a preliminary classification
criterion to determine whether the method could be applied or not. They established two
limits: σ > 240 for apartments and σ < 800 for single-family houses [6]. Similarly, Zlatanovic
et al. conducted simulations for the hot water line with a tuned flow over a 5-s time
step, resulting in only slightly improved statistical parameters. Specifically, the correlation
coefficient (R) improved from 0.978 to 0.982, while the Root Mean Squared Error (RMSE)
and Nash–Sutcliffe efficiency (N-S) remained in the same order at 0.955 and 1.382 (1.384),
respectively. Notably, excluding hours without demand from the statistical analysis (from
00:00 to 6:00 and from 19:00 to 00:00) led to enhanced R and Nash–Sutcliffe efficiency (N-S)
values, reaching 0.984 and 0.999, respectively. However, RMSE increased to 1.748, although
it remained at less than half of the standard deviation of the measured time series (6.478) [84].
Leiria et al. utilised the normalized mean bias error (NMBE) and the coefficient of variation
in the root mean square error (CVRMSE) to assess the combined Kalman filtering and
SVR–Univariable/multivariable estimator they developed. The error distribution is quite
diverse, with five apartments showing an EWBs demand overestimation of more than +25%.
Among these, one household had an extreme EWBs prediction with an overestimation of
+85%, while four apartments had a slight underestimation of over −10% [34].

Statistical evaluation methods play a crucial role in assessing the performance, ac-
curacy, and reliability of electric water boiler prediction models. These methods provide
valuable insights into the statistical significance of the results, aiding researchers and engi-
neers in understanding the reliability of their models. However, it is important to choose
appropriate evaluation metrics based on the specific characteristics and objectives of the
prediction model. While metrics like Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and R-squared (R2) offer valu-
able information, careful consideration is necessary, as each metric has its advantages
and weaknesses.

4.2. Machine Learning Model Evaluation Approaches

Machine learning model evaluations have been introduced into the field in recent years,
and they showed promising results in forecasting the energy consumption of electrical
water boilers [33,157,187]. These models are frequently more complex and require more
computational resources than statistical models, but they are usually more accurate and
can deal with non-linear relationships between variables more efficiently. However, the
application necessitates significant computational resources as well as data expertise. These
models are typically evaluated by dividing the data into a training set and a test set.
To evaluate its predictive accuracy, the model is trained on the data set and then tested
on another data set. In addition, to ensure robustness and avoid overfitting, different
techniques are used.

i. Cross-validation (k − fold Cross-validation),

CV(k) =
1
N

k

∑
i=1

MSEi (8)

is computed by estimating the average MSE equation values represented in Equation (8),
with k − folds random values dividing the set of k groups, where the first fold is mostly
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treated, and the validation set fits across the k − 1 folds, which is repeated k times, also
known as the estimation error test [180,181].

K-fold cross-validation finds significance by training and testing on different subsets,
reducing the bias introduced by overfitting to a specific training set [182]. Moreover, it may
require substantial memory, especially for large datasets, as multiple models are trained
and stored during the cross-validation process. For time-series data, random shuffling may
not be appropriate, and the sequential order of data points needs to be preserved, which
k-fold cross-validation may not address [33,181];

ii. Confusion Matrix (CM) provides a clear and detailed breakdown of different aspects
of classification model performance by differentiating between false positives and false
negatives. Confusion Matrix (CM) offers insights into the types of errors the model is
making [183,184]. This information can guide model refinement, which is designed
for binary classification problems [182]. Moreover, it becomes more complex and less
intuitive when dealing with multi-class classification. CM treats all misclassifications
equally, regardless of how confident the model was in its predictions. It does not
consider the certainty or uncertainty associated with each prediction.

Table 6 presents the confusion matrix (MC) classification used to evaluate the perfor-
mance of a predictive model, which consists of four main metrics: True Positives (TP); True
Negatives (TN); False Positives (FP); and False Negatives (FN) [178]. Subsequently, some
commonly used metrics derived from the confusion matrix (MC) are as follows:

1. Accuracy(ACC) = TP+TN
TP+TN+FP+FN ;

2. Precision = TP
TP+FP ;

3. Recall = TP
TP+FN ;

4. F1 score = 2
(

Precision Recall
Precision+Recall

)
.

Table 6. Confusion Matrix representation.

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

These metrics offer a thorough assessment of the model’s performance, encompassing
several characteristics like overall accuracy, the capacity to correctly identify positive cases,
and the trade-off between precision and recall [178,181];

iii. Area Under the Receiver Operating Characteristic curve (AUC-ROC)

AUC − ROC =

1∫
0

True positive Rated(False Positive Rate) (9)

is an essential metric in evaluating the performance of prediction models. It provides a
comprehensive measure of a model’s ability to distinguish between positive and negative
instances across various decision thresholds, as represented in Equation (9) [187]. It is
robust and less sensitive to class inequity, making it suitable for inequity datasets [178,180].

Research studies and applications often cite the AUC-ROC when evaluating the
effectiveness of classification algorithms. Fawcett provides an in-depth exploration of
ROC analysis and its applications, emphasizing the significance of the AUC-ROC as a
performance metric for classification models [187]. However, in highly imbalanced datasets,
where the number of negative instances significantly outweighs the positive instances (or
vice versa), AUC-ROC might not fully represent the model’s performance, especially if the
model is optimized for the majority class. AUC-ROC does not inform about the model’s
calibration, i.e., whether predicted probabilities align well with actual probabilities. Well-
calibrated models are important in certain applications. Amasayali et al. conducted a
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comprehensive review of studies that developed data-driven building energy consumption
prediction models with a specific focus on evaluating the performance measures employed.
The findings revealed that among the reviewed studies, 41% utilized Cross-Validation (CV),
29% used Mean Absolute Percentage Error (MAPE), and 16% relied on Root Mean Squared
Error (RMSE) as their evaluation metrics [33]. Interestingly, Cross-Validation emerged
as the most commonly employed evaluation measure, possibly due to two key factors.
Firstly, it aligns with the performance evaluation measures recommended by ASHRAE for
assessing energy consumption prediction models. Secondly, Cross-Validation normalizes
prediction errors relative to average energy consumption, yielding a unitless measure that
facilitates convenient comparisons.

Evaluating and validating the accuracy and reliability of electrical water boilers’ predic-
tion models pose a number of challenges and limitations. Firstly, the quality and quantity of
data can also be a concern, as erroneous readings, missing data, and outliers can negatively
affect the model’s accuracy [182]. Furthermore, a lack of comprehensive data can lead to
incomplete modelling and inaccurate validation results [183]. Secondly, the complexity of
models, in theory, is often difficult to evaluate and validate due to their black-box nature.
The dynamic models and identifying errors can be quite challenging. They are also prone to
overfitting, especially when the dataset is small or noisy [165,182,184]. Thirdly, parametric
uncertainty is associated with the predictive models, mainly due to unpredictable changes
in user behaviour, weather conditions, equipment performance, and other variables. Lastly,
selecting an appropriate validation methodology can also be a challenge. Common meth-
ods include hold-out validation, confusion matrix or error matrix, cross-validation, and
bootstrap validation, each with its own strengths and limitations [33,185,186]. Future work
can consider strategies to address these challenges, such as extensive data collection, ad-
vanced data pre-processing and cleaning techniques, and robust validation methods that
need to be employed. Also, techniques to prevent overfitting, such as cross-validation and
regularisation, and probabilistic models to account for uncertainty while adopting machine
learning techniques that can handle complex data and uncertainties, among others. These
can improve the accuracy of the prediction models.

5. Future Research Trends, Recommendations, and Conclusions

The ubiquitous use of electric water boilers in buildings, where hot water usage varies
across all four seasons, accounts for 35% of the energy consumption in residential buildings,
according to Matthew et al., making it imperative to predict electric water boiler energy
consumption [108]. The results also showed an average reduction of 1.33 kWh/day per con-
sumer, which equates to an average decrease of 35.5% in water heating costs. A significant
research gap exists; previous studies have predominantly concentrated on aggregate energy
consumption, with limited emphasis on predicting individual electric water boiler energy
usage, especially in high-rise residential buildings, as indicated by some of the reviewed
research in Table 1. The prediction could aid in the development of more energy-efficient
management and reduction in overall energy use. Nevertheless, some research has been
conducted on the impact of hot water use patterns like showering, hand washing, clothes
washing, and dishwashing on electric water boilers’ energy consumption [2]. The influence
of these factors at an individual level, particularly in high-rise residential buildings, is less
well understood and requires further investigation. More research is needed to determine
how emerging technologies, like machine learning (ML) and artificial intelligence (AI),
may be used to develop prediction models that consider variables such as user behaviour,
building design, and weather patterns [34,121].

This paper reviews factors affecting electrical water boilers’ consumption, prediction
techniques for energy consumption patterns, and performance metrics for prediction
methods. It identifies research gaps and offers recommendations for residential building
applications. Summarised findings include the following:

1. Seasonal changes impact consumption patterns, necessitating data classification. Mod-
els ignoring inhabitant count may overestimate consumption rates;
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2. Hot water consumption analysis should extend beyond residential buildings to differ-
ent building types with distinct energy patterns and user behaviour;

3. Assessing the impact of building renovations on occupant well-being and behaviour
requires more attention;

4. Further studies should analyse hot water usage across geographical zones and cli-
mates, especially for non-residential buildings, considering daily and seasonal variations;

5. Research should explore the influence of time-of-use on hot water behaviour, ac-
counting for occupant composition, economics, and personal traits on hourly and
daily usage;

6. Predicting individual electrical water boilers’ energy consumption, particularly in
high-rise residential buildings, merits focus. Machine learning, IoT, and AI methods
can enhance predictive models;

7. The effect of specific hot water usage patterns (showering, bathing, dishwashing)
on electric water boilers’ energy consumption in high-rise residential buildings
warrants investigation;

8. Future research should enhance data collection methods, quality, and processing to im-
prove measurement precision for predicting electric water boilers’ energy consumption;

9. Larger datasets would enhance prediction methods’ reliability and applicability to
different regions with similar metering practices and building features;

10. Addressing data privacy concerns when considering user behaviour in data collection
for prediction models is essential;

11. Balancing model performance, complexity, predictive power, and interpretability,
particularly in hybrid models, can prevent overfitting;

12. Future research may explore the involvement of market frameworks in aggregators’
role for residential consumers in optimising flexible components in various markets;

13. Qualitative and empirical analysis of household electrical water boilers’ energy con-
sumption patterns, including energy usage and dynamics, can inform policymaking
and market design.
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