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Abstract: The primary goal of a power distribution system is to provide nominal voltages and power
with minimal losses to meet consumer demands under various load conditions. In the distribution
system, power loss and voltage uncertainty are the common challenges. However, these issues can
be resolved by integrating distributed generation (DG) units into the distribution network, which
improves the overall power quality of the network. If a DG unit with an appropriate size is not
inserted at the appropriate location, it might have an adverse impact on the power system’s operation.
Due to the arbitrary incorporation of DG units, some issues occur such as more fluctuations in
voltage, power losses, and instability, which have been observed in power distribution networks
(DNs). To address these problems, it is essential to optimize the placement and sizing of DG units
to balance voltage variations, reduce power losses, and improve stability. An efficient and reliable
strategy is always required for this purpose. Ensuring more stable, safer, and dependable power
system operation requires careful examination of the optimal size and location of DG units when
integrated into the network. As a result, DG should be integrated with power networks in the most
efficient way possible to enhance power dependability, quality, and performance by reducing power
losses and improving the voltage profile. In order to improve the performance of the distribution
system by using optimal DG integration, there are several optimization techniques to take into
consideration. Computational-intelligence-based optimization is one of the best options for finding
the optimal solution. In this research work, a computational intelligence approach is proposed
to find the appropriate sizes and optimal placements of newly introduced different types of DGs
into a network with an optimized multi-objective framework. This framework prioritizes stability,
minimizes power losses, and improves voltage profiles. This proposed method is simple, robust, and
efficient, and converges faster than conventional techniques, making it a powerful tool of inspiration
for efficient optimization. In order to check the validity of the proposed technique standard IEEE
14-bus and 30-bus benchmark test systems are considered, and the performance and feasibility of the
proposed framework are analyzed and tested on them. Detailed simulations have been performed in
“MATLAB”, and the results show that the proposed method enhances the performance of the power
system more efficiently as compared to conventional methods.

Keywords: distributed generation (DG); optimal DG location; optimal sizing; Fitness-Dependent
Optimizer (FDO); distributed network (DN); renewable energy sources; distribution system (DS);
optimization; control; evolutionary computation
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1. Introduction

With the increasing electricity demand, the energy crisis has become one of the most
important challenges/issues faced today around the world. Dispersed generation, which is
also known as distributed generation (DG), has become a major economical and common
source of energy for electricity generation because it helps to overcome the increasing
load demand. DG represents a modern approach in power distribution systems to handle
the increasing demand for electric energy. It refers to small-scale power generation units
located near the load, such as photovoltaics (PVs), solar panels, wind turbines, synchronous
and induction generators, micro-turbines, and fuel cells [1,2]. Smart grids are also natural
expansions of decentralized generation. DG is an essential component of smart grids,
enables them to generate decentralized power on-site or near the load, helps to reduce peak
loads, and improves the management systems of central power grids [3].

Distributed generation is becoming more popular in power systems due to its numer-
ous benefits, including improvements in voltage profiles and reductions in power losses. It
also improves the power quality of the network. Similarly, when DG is integrated, there is
no need to upgrade the transmission lines of the power network. This eliminates the need
to expand transmission and distribution network capacity, thereby saving on infrastructure
costs while reducing transmission and distribution losses typically associated with central-
ized power generation. As a result, reliance on central generation (CG) is minimized. The
impacts of DG integration are generally on power losses, voltage profiles, load demands,
and the reliability and stability of the power systems, which are significantly considered
important for power systems development and planning. Efforts for effectively utilizing re-
newable energy sources based on DG, like wind power and PV–solar power, have increased
as awareness of energy issues, including environmental pollution and global warming,
has grown. In addition, DG also facilitates the integration of modern renewable energy
sources into power distribution systems, helping to reduce greenhouse gas emissions and
promote the use of sustainable energy in practice for an effective electricity supply. Modern
DG-based renewable energy sources produce high-quality, environmentally friendly, cost-
effective, and reliable power compared to conventional energy sources. These sources help
address energy problems related to pollution and climate change [4]. The optimal place-
ment of DG plays a crucial role in increasing its penetration within distribution networks.
Achieving the greatest benefits from DG integration requires selecting both the optimal
location and size of DG units, which can significantly reduce power losses and improve
voltage profiles [5].

Furthermore, studies have shown that using multiple DG units instead of a single unit
can reduce power losses to a greater extent and enhance voltage profiles. Multiple DG units
also reduce the burden on individual branches, minimizing branch power losses. Therefore,
integrating multiple DG units results in greater reductions in losses and more substantial
improvements in voltage profiles compared to using a single DG unit. To balance voltage
variations, reduce power losses, and overcome stability issues, the strategic placement and
sizing of multiple DG units offer a credible solution [6].

The impact of DG integration is generally on power losses, voltage profiles, load de-
mand, and the reliability and stability of power systems, which are significantly considered
important for power systems development and planning. DG insertion into the power
systems has several kinds of impacts on the electrical power systems, but because of its
plug-and-play capabilities, operational flexibility, and other advantages, it is an attractive
option for future power systems. The primary benefit of connecting the DG is to increase
the overall efficiency of the electrical power systems without requiring major alterations to
the existing infrastructure. Transmission losses, which occur when electricity is transmitted
over long distances, typically range from 5% to 10% of the transmitted power. These losses
arise from various factors like the reactive nature of certain components, bulk resistance,
connection losses, etc. Similarly, utility companies charge a bill to consumers for the elec-
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tricity cost lost due to how far the transmission lines network is from generating units,
which may cause an increase in the electricity generation cost. However, these expenses
can be minimized by the integration of DG with an appropriate size at the appropriate
placements, which is installed near the load site. Additionally, integrating DG units into
power systems can facilitate peak load shaving, improve power quality, and enhance
overall stability [7]. DG integration can reduce power losses and improve voltage profile
areas where service providers have issues with voltage dips and blackouts. In such areas,
where service providers are concerned about voltage dips and blackouts, the injection of
DG may reduce the power losses and compensate for the voltage drop. Incorporating DG
into a power system can improve the voltage profile and minimize power losses, but where
they will be installed in the network depends on the size, type, and ideal placement of DG
units. The optimal integration of modern renewable energy sources (MRES) based on DG
can help enhance the reliability, efficiency, and sustainability of the power system. These
MRES-based DG units, i.e., solar, and wind power, etc., can also help reduce the effects
of greenhouse gas emissions and mitigate climate change, leading to improved energy
efficiency and lower operating costs. Additionally, DG can provide energy independence
to communities or facilities located in remote or off-grid areas, decreasing reliance on fossil
fuels while promoting the use of renewable energy sources. However, if a DG unit of the
appropriate size is not inserted in the proper location, it might have an adverse impact on
the voltage profile, increase power losses, and compromise the reliability and operation of
the power system [8].

However, the improper integration of DG into power networks is found to cause
an increase in voltage fluctuations, power losses, system instability, and deterioration in
power quality. Therefore, the appropriate allocation of DG is essential for improving the
performance of the distribution networks (DN). Optimal integration of DG into existing
power systems helps improve voltage profile and reduce power losses, ultimately improv-
ing the overall quality, stability, and efficiency of the power system for both non-uniform
and non-unity power factor distributed loads [9]. Integration of DG into existing power
system infrastructure can cause challenging issues due to the intermittency and variability
of modern renewable energy sources. Consequently, advanced power system management
and control strategies are essential to ensuring the reliability and stability of the power
system. Additionally, issues related to weak voltage profiles and power losses in distribu-
tion networks are significant factors that motivate researchers to explore further optimal
solutions [10].

This research aims to propose an effective strategy for optimal DG integration into a
power distribution network. This goal is to determine the optimal placement and sizing of
DG units to improve voltage profiles, reduce power losses, and enhance the stability of the
distribution network. Hence, it is extremely important to study the appropriate sizing and
location of DG units within the network to ensure more stable, safer, and reliable power
system operations. Voltage profiles and power losses, which are based on the sizes and
placements of DG units, play a key role in achieving overall optimization. The optimal
placement and sizing of DG can be determined using various optimization techniques. The
optimization problem is formulated based on load flow equations, subject to constraints,
and objective functions, and is then solved using optimization methods. In order to
optimize the DG-integrated hybrid power grid network, there are several optimization
techniques taken into consideration, but computational-intelligence-based optimization is
one of the most effective approaches for identifying the optimal solution [11,12].

In the literature discussed in the past, several techniques have been proposed and
developed for solving DG placement problems, and a few of the studies have been discussed
and illustrated as follows. In reference [13], the author proposed the use of the “Genetic
Algorithm” (GA) for the DG placement problems. This method is tested on the semi-urban
37-bus distribution network (DN), and its results demonstrate its validity. However, there
are a lot of complications when this approach is utilized for larger distribution networks.
In [14], the author proposed a Multi-Objective Index (MOI) technique for DG allocation,
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which accommodates various load models. This technique is applied to the standard IEEE
37-bus systems. In [15], the authors presented another technique for optimal DG placement
and sizing, utilizing the Shuffled Frog Leap Algorithm (SFLA). The validity of this method
is verified on the IEEE 33-bus and IEEE 15-bus systems. In [16], the author presented the
Fuzzy Adaptation Technique (FAT) based on Evolutionary Programming to determine the
optimal capacity and allocation of DG units. In [17], the author used the “Artificial Bee
Colony” (ABC) algorithm, which is based on a “meta-heuristic” approach, to identify the
best locations and sizes of distributed energy sources. In [18], the Global Search Algorithm
(GSA) is used for the optimal allocation and capacity of determination of Distributed
Energy Resources. This approach is tested on the standard IEEE 33-bus and 69-bus systems.
In [19], a Shuffled Frog Leap Algorithm (SFLA), which incorporates a cooperative fuzzy
sustaining method, is employed to solve optimization problems, with the IEEE 69-bus
system used for the evaluation of the suggested system. In [20], the paper proposed a
hybrid technique that combines the “SFLA” and “BAT” algorithms. In [21], the authors
introduced a unique and efficient optimization method for DG placement and sizing,
known as the Shuffled ABC Algorithm (SHABC). This method combines the strengths of
both the SFLA and ABC algorithms to enhance overall search efficiency through a hybrid
approach. In [22], the author proposed a modern, higher-level, nature-inspired algorithm,
Simulated Annealing (SA), for DG integration into distribution networks. This approach
considers economic, technological, and environmental factors, as well as uncertainty. In [23],
the author addressed the issues presented in [22] by proposing a nonlinear programming
technique for determining the optimal location and sizing of DG units. A numerical
problem based on differential evolution was utilized to resolve these issues. However, this
approach also faces significant complications when applied to large distribution networks.
In [24], an analysis was performed on the presence of DG and its impact on power system
performance using nature-inspired techniques such as the “Artificial Bee Colony” (ABC)
and “Cuckoo Search Algorithm” (CSA). These techniques were employed to determine
the optimal placement and sizing of DG units and to improve the efficiency of radial
distribution networks. The Firefly Algorithm (FA) demonstrated exceptional optimization
capabilities by solving non-linear dispatch problems and providing optimal solutions for
systems with multiple generations [25–27]. The Hybrid Firefly–JAYA Algorithm is used
to optimize power flow while considering wind and solar power generation [28]. The
Teaching–Learning-Based Optimization Algorithm (TLBOA) with Optimal Power Flow
(OPF) successfully minimized dual objective functions, outperforming traditional numerical
methods in solving complex optimization problems [29,30]. In [31,32], the author presented
the “Genetic Algorithm” (GA) and a hybrid GA [33]. In [34–36], the author presented
the “Particle Swarm Optimization” (PSO) technique for optimal DG placement and sizing
followed by an improved-PSO [37,38]. A hybrid analytical PSO approach was used in [39],
while a hybrid DA-PSO was used in [40]. In [41–43], a hybrid algorithm combining Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO), known as GA-PSO, is presented.
Various research studies have employed hybrid techniques that combine multiple methods,
such as PSO with a Fuzzy Approach in [44], discrete PSO–Optimal Power Flow (PSO-OPF)
in [45], hybrid PSO–Gradient Search Strategy (PSO-GSS) in [46], and hybrid Gravitational
Search Algorithm–Improved PSO (GSA-IPSO) in [47], all aimed at determining the optimal
DG placement and sizing. In [48,49], the system performance with multiple integrated
DG units was analyzed using standard IEEE bus test systems, employing nature-inspired
computational approaches to enhance voltage profiles and minimize power losses. Optimal
DG allocation in a distribution network (DN) is a challenging optimization problem,
requiring the identification of the best DG location and size to reduce power system
losses and improve voltage stability [50]. Recently, several studies have proposed various
algorithms and optimization techniques to identify optimal solutions for DG-integrated
power systems. After comprehensive literature studies, it is evident that researchers
continued to focus on the optimization problems for DG-interconnected systems, such as
allocation and sizing, since they offer numerous advantages from an economical point
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of view. Conventional methods are almost completely obsolete, and the new modern
approaches are used with many variants of intelligence-based techniques due to their
simplicity, robustness, high search efficiency, and taking less computational time and effort.

Therefore, in this research, a new computational intelligence (CI) optimization ap-
proach, called the hybrid Modified Fitness-Dependent Optimizer (MFDO), is proposed
to optimize DG integration in the hybrid power network. The MFDO is employed for
solving the DG “placement” and “sizing” optimization problems to minimize power losses,
improve the voltage profile, and enhance power reliability and power quality in the distri-
bution network (DN) [51]. The robustness of the MFDO technique in efficiently optimizing
DN is a key factor in its selection. This technique has very satisfactory performance and
takes minimum time to achieve the optimum solutions. Additionally, it is capable of solv-
ing complex optimization problems with low computational time, even for large power
systems, and does so with a reduced number of iterations [52–57]. The MFDO has more
competitive results as compared to other metaheuristic algorithms, making it applicable
for solving a wide range of real-world engineering problems [58–60]. However, while the
original FDO swarm intelligence technique is useful for optimization, it has certain limi-
tations. Both FDO and IFDO demonstrate competitive performance, but they suffer from
several key issues, including premature convergence, poor exploitation, an imbalance of
exploitation and exploration, a slow convergence rate, and insufficient memory allocation.
Consequently, modifications to the FDO are introduced to resolve the FDO and IFDO issues
such as premature convergence, the slow convergence rate, poor exploitability, insufficient
memory allocation, prediction accuracy, and refining solutions. The modified FDO (MFDO)
optimization technique is more efficient, and robust, which is an enhanced version of
original the FDO. It incorporates improvements such as a modified weight factor, pace
updating mechanism, fitness weight adjustment, and optimized hive and scout bee position
and velocity values to resolve the FDO and IFDO issues, thereby increasing prediction
accuracy and solution precision. The MFDO enhances the exploration and exploitation
capabilities; it can be readily constrained into local optima, converges more quickly, and
performs better than FDO and IFDO algorithms. This makes it well suited for solving
complex problems and providing optimal solutions.

In this research work, the power distribution network (DN) is optimized using the
proposed control strategy in conjunction with the MFDO technique. This approach effec-
tively minimizes the power losses and improves the system’s voltage profile by integrating
various types of DG, including type-1, type-2, type-3, and type-4. This is also capable of
finding optimal sizes and locations for integrating single or multiple DG units, within
non-uniformly and heavily overloaded distribution networks [61–63]. To identify the best
positions for DG allocation, several multi-objective functions are considered essential in
this work. The proposed method has been successfully implemented under conditions
of randomly connected, and heavily varying loads at low power factor (PF) levels, and
accommodating both single and multiple DG units. Additionally, the performance of the
proposed method is compared with other techniques, to verify its validity and effectiveness.
To evaluate its validity and effectiveness, the IEEE 14-bus and 30-bus test systems have
been considered as a case study.

The main contribution of this study is as follows:

• A newly developed nature-inspired optimization technique, i.e., Fitness-Dependent
Optimizer (FDO), and its modified and enhanced variant, the so-called Modified
Fitness-Dependent Optimizer (MFDO), are proposed and implemented for power
system optimization problems within a multi-objective framework.

• The improvement proposed in the optimization methodology hybridizes the opti-
mization algorithm with a new fitness-dependent strategy, which includes optimized
updating pace, weight factors, and hybrid sine cosine parameters integrated into
the MFDO to enhance its performance. This approach indicates that the concept of
advanced techniques theory is incorporated into the proposed method to improve
the performance of the convergence rate, reduce simulation time, and enhance the
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quality of the solution, etc., ultimately facilitating the effective attainment of the
optimal solution.

• In this work, a multi-objective weighted sum approach is employed to effectively opti-
mize the multi-objective functions by balancing the various single-objective functions
using relative weights.

• The integration of multiple DG into an existing electrical power network is optimized
under different operating modes to maximize the technical benefits of DG across a
range of load levels. This research proposes a computational intelligence approach
characterized by outstanding search capabilities to determine the optimal placement,
sizing, type, and number of DG units. Unlike previous studies that focused solely
on optimal DG placement and sizing, this study offers a comprehensive solution by
providing optimal settings for DG placement, sizing, type, and number.

• The power distribution network (DN) is optimized using the proposed hybrid MFDO
technique, which effectively minimizes power losses and improves the voltage profile
by integrating different types of DG, including type-1, type-2, type-3, and type-4.

• The MFDO is capable of identifying appropriate sizes and optimal locations for single
or multiple DG units to be integrated into non-uniformly and heavily loaded DNs.

• The overall performance of the power distribution network (DN) can be significantly
improved when the optimal power factor operating mode for DG is selected. Previous
research has often overlooked this aspect, primarily focusing on DG operating under
unity power factor conditions. However, advancements in technology now allow DG
units equipped with power electronic inverters to operate effectively at desired power
factor modes. Our proposed method addresses this issue by successfully managing
randomly connected, heavily varying loads under low power factor conditions for
both single and multiple DG units. The superiority of the proposed approach over
other existing methods was tested and compared. To evaluate the robustness and
validity of the MFDO, its results are compared with benchmarked against several
algorithms, including FDO, Hybrid GA-IPSO, IPSO, PSO, and GA.

• To check the method’s validity and effectiveness, the IEEE 14-bus and 30-bus test
systems have been considered as a case study.

• This study can help power generation and distribution companies, such as IPPs,
GENCO, and DISCOs, avoid reimbursements, fines, or penalties, thereby increasing
their profit margins through accurate power loss analysis. Additionally, it facilitates
the incorporation of renewable energy resources into existing systems.

2. Research Methodology
2.1. Background of Electrical Power System under Case Study

The effectiveness and validity of the proposed method implementation are checked
and tested on the IEEE 14-bus and 30-bus test systems. These systems consist of loads,
transmission lines, and generator sources. The single-line diagram of the 14-IEEE bus
system is shown in Figure 1a, while the single-line diagram of the IEEE 30-bus system
is shown in Figure 1b, respectively. These test systems are preferred due to their easy
data availability and simplicity. They are also easier to handle, making it convenient to
compare results across different studies and optimization methods. In contrast, larger
IEEE test systems feature more complex distribution network structures. The IEEE 14-bus
and 30-bus systems are considered small- to medium-sized test systems, including both
transmission and distribution network models. They are manageable when it comes to
debugging and analyzing results. Due to their smaller size and lower complexity, these
systems exhibit high computational efficiency, generally run faster, and require fewer
computational resources and less execution time. Larger test systems, on the other hand,
demand more advanced computational tools, resources, and execution time. Simulink
software, such as MATLAB, has been used for modeling and analyzing the benchmark test
systems, with simulations performed accordingly. The proposed optimization method was



Energies 2024, 17, 5040 7 of 53

evaluated in the MATLAB 2018 version environment and executed on a personal computer
(Intel Core™ Duo 2.66 GHz, 2 GB RAM).
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2.2. Methodology for DG Optimal Placement and Sizing

To achieve the optimization of DN, the study proposes a mathematical model, problem
formulation, and solution technique to identify suitable possible allocation and sizing of
DG units that reduce the power losses and deviation in voltages while ensuring the stability
of the network, as shown in Figure 2.
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2.3. Mathematical Model and Problem Formulation

Before and after the installation of DG at any arbitrary location in the existing network,
the power losses P(Loss) can be calculated by the given equations, respectively. Power loss
before DG occurs between the ‘i’ and ‘i + 1’ buses.

Pi+1 = Pi − PLoss,i+1 − (PLi+1) (1)

PLoss(i,i+1) =
Ri

Vi
2 .(Pi

2 + Qi
2) (2)

Pi+1 = Pi −
Ri

Vi
2 .(Pi

2 + Qi
2)− (PLi+1) (3)

Then, the total power loss of the power network such as PT(Loss) can be calculated by
summing up as in Equation (4) [47].

PT,Loss(i,i+1) =
n

∑
i=1

{
Ri

Vi
2 ∗ (Pi

2 + Qi
2)

}
(4)

After the integration of DG units, the total power loss PT(Loss) may be determined by
modified equations as shown below (5), and the model shown in Figure 3.

PDG,TLoss(i,i+1) =
Ri

Vi
2 ∗ (Pi

2 + Qi
2) +

Ri

Vi
2 ∗ (α − β) (5)

where; α = PDG
2 + QDG

2, β = 2Pi·PDG − 2Qi·QDG.
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PDG is donated as the DG real output power for ith DG and defined as PDGi =
[PDG1, PDG2, PDG3, . . . . . . . . . . . . , PDGn] and QDG is donated as the DG reactive output power
for ith DG and defined as QDGi = [QDG1, QDG2, QDG3, . . . . . . . . . . . . , QDGn].

2.4. Modeling of Modern Renewable-Energy-Source-Based Distributed Generation Units

Modern hybrid DG based on Renewable Energy Sources (MRESs) are electric energy
resources that can provide energy solutions to clients or end users that are more envi-
ronmentally friendly, cost-effective, highly reliable, and more efficient than conventional
energy sources. The uncertainty of sources such as wind and solar DG is considered in the
proposed network. The MRES based on the DG-integrated hybrid power system is shown
in Figure 4.
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(i) Wind Turbine DG Model.
The wind turbine DG modeling consists of the following steps:

(a) Wind turbine output power: The output power of a wind-based DG can be represented
by a function that relates the speed of wind to the generated power. The output power
of a wind turbine is typically modeled using the power coefficient curve or turbine-
specific power curve. It relates the wind speed to the generated power and can be
represented by an equation as follows:

Pwind = f (v) = 0.5 × ρ × A × Cp × V3 (6)

where A, Cp, ρ, A, P, and V represent the swept area of the turbine rotor, power
coefficient, air density, power output, and wind speed, respectively.

(b) Wind Speed: The wind speed model captures the variation in the wind speed over
time. It can be modeled using stochastic processes or statistical methods based on
historical wind speed data. A simplified representation of the wind speed model
as follows:

Vwind−Speed = g(t) (7)

where V represents the wind speed and t represents time.
(c) Electric Power Conversion: The electrical power conversion model relates the me-

chanical power generated by the wind turbine to the electrical power output. This
model considers factors such as generator efficiency, losses, and control strategies. A
simplified representation of the power conversion model is presented as follows:

Pwind−elec = ηconv × Pmech (8)

where Pelec represents the electrical power output, Pmech represents the mechanical
power, which is generated by the turbine, and ηconv represents the conversion efficiency.

(ii) Solar (P-V) DG Model.
The solar (photovoltaic) DG modeling consists of the following steps:

(a) PV Panel Output Power: The output power of a PV solar panel is typically modeled
using the power–voltage (P-V) characteristic curve or current–voltage (I-V) character-
istic curve. These curves relate the panel’s voltage and current to the generated power
and can be represented by equations as follows:

Psolar = V ∗ I (9)
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where P is the solar panel output power, I is the solar panel current, and V is the solar
panel voltage, obtained from the I-V curve.

(b) Solar Irradiance: The output power of a PV solar is related to the incident solar
irradiance, temperature, and other factors. The solar irradiance model represents the
variations in solar irradiance (incident solar power per unit area) over time. It can be
modeled using historical data, empirical models, or numerical weather prediction
models. A simplified representation of the solar irradiance model is as follows:

Gsolar = f (T) (10)

Psolar = g(G, T) (11)

where P represents the power output, G represents the solar irradiance, and T repre-
sents the temperature.

(c) Temperature Dependency Equation: PV panel performance is affected by temperature
variations. The temperature dependency model accounts for the decrease in panel
efficiency as the temperature rises. This can be presented as follows:

Ptemp. = f (v) = Pre f . × [1 + α × (T − Tre f )] (12)

where Ptemp is the temperature-adjusted power output, Tref is the reference tempera-
ture, Pref is the power output at the Tref, α is the temperature coefficient, and T is the
temperature of the actual panel.

2.5. Synchronous and Asynchronous Different Types (I-IV) of DG Mathematical Model

The optimal sizing at various placements for different types of DGs is determined by
using the power losses formula as follows. The P(DGi) is the active output power and Q(DGi)
is the reactive output power of DG; similarly, P(Di) is the active power demand and Q(Di) is
the reactive power demand at the i bus, represented as follows:

P(i) = P(DGi) − P(Di) (13)

Q(i) = Q(DGi) − Q(Di) (14)

Q(DGi) = α ∗ P(DGi) (15)

where assuming α = tan(cos−1 PFDG) and PFDG is the DG unit power factor. From
Equations (14) and (15), the yield of the injected reactive power at the i bus can be repre-
sented as follows:

Q(i) = α ∗ P(DGi) − Q(Di) (16)

By substituting Pi and Qi from Equations (13) and (14) into Equation (15), we obtain a
modified power loss equation with respect to its active power and reactive power according
to the types of DGs.

(I) Type-1 DG.

In this case, when it only supplies active power P(i), set α = 0, and the power factor is
considered as unity (PFDG = 1).

Active Power Loss Reduction(PLR) =
PLoss − PLoss

DG

PLoss
× 100% (17)

(II) Type-2 DG.

In this case, it supplies both active power P(i) and reactive power Q(i) with α ̸= 0, α is
considered as a constant, and ‘PFDG’ is set to be equal to total combined load values.

Rective Power Loss Reduction(QLR) =
QLoss − QLoss

DG

QLoss
× 100% (18)
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(III) Type-3 DG.

In this case, when active power P(i) is supplied and reactive power Q(i) is con-
sumed/absorbed, then consumed reactive power is considered as a function of active
power and taken as a partial derivative of the power formula with respect to active power
P(i) with zero.

QDG(i) = −(0.5 + 0.04PDG(i)
2) (19)

(IV) Type-4 DG.

In this case, when it supplies only reactive power Q(i), then take the partial derivative
of the power formula with respect to a reactive power Q(i) of zero. This unit is based on a
synchronous machine.

SDG(i) =
√

PDG(i)
2 + QDG(i)

2 (20)

2.6. Technical Objective Function

In this section, various objective functions examine the optimal allocation and appro-
priate capacity of DG units based on single and multiple objectives. The objective functions
are mathematically formulated as follows:

(1) Minimization of Power System Loss.

The minimum function with and without DG for the power loss minimization is
formulated as follows:

PLI =

ni
∑

i=1
(P(Loss,i))

WithDG

ni
∑

i=1
(P(Loss,i))

WithoutDG
(21)

The first objective function is formulated as follows:

f1(k) = minimize(PLI) (22)

where P(Loss, i) is the power loss without DG and P(Loss, i)
DG is the power loss with DG and

for the kth lines. ‘i’ is donated as a branch, and ‘ni’ is donated as the total number of lines
or branches.

(2) Voltage Deviation.

The power system voltages could be within a definite range due to maintaining
the power quality. The minimum function for voltage deviation mathematically can be
presented as follows:

VD = abs

Nb

∑
i=1

(
Vre f −

{
(Vi − Vmin)

2 + (Vi − Vmax)
2
})

Vre f

 (23)

where i = 1, 2, 3, . . .. . .., Nb. (24)

The second objective function is formulated as:

f2(k) = minimize

(
nb

∑
i=1

(VD)

)
(25)

where ‘VD’ is voltage deviation, ‘Vref’ is reference voltage, ‘Vi’ is bus voltage, Vmax repre-
sents the maximum, and Vmin represents the minimum acceptable voltage magnitudes at
ith bus, respectively. ‘nb’ is donated as the total number of node buses.
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(3) Stability Index.

The combined stability factors are used for optimizing the power system by identifying
the control variables. The power system voltages and power could be within a definite
range for maintaining the power system stability [64].

(a) Voltage Stability Index.

The weakest voltage bus in a power system is identified using the stability index (SI).
This index will identify the network’s proper weakest link, which may eventually result
in voltage stability as the load increases. The index value, known as the voltage stability
index, is determined by following Equation (26).

VSI(k) = V(i)
4 − 4(P(k)R(ik) + Q(k)X(ik))× V(i)

2 − 4(P(k)X(ik) − Q(k)R(ik)) (26)

Total voltage stability improvement (TVSI) is defined to see the effects of DG on all
system buses, given by Equation (17).

TVSI =
nb

∑
k=1

{VSI(k)}WithoutDG

{VSI(k)}WithDG (27)

where ‘V’ is the voltage at ith bus, ‘Pk’ is total power at the kth bus, ‘Rik’ is the resistance of
branch ik, ‘Xik’ is the reactance of branch ik, ‘nb’ is the total donated number of buses, and
‘VSI(k)’ is donated to the value of voltage stability at the kth bus.

(b) Power Stability Index.

Power stability improvement (PSI) is defined to see the impacts of DG on power
stability. Power stability is calculated by using Equation (28):

PSI =
ni

∑
k=1

{P(k)}WithDG

{P(k)}WithoutDG (28)

where ‘ni’ is the total number of donated branches, and ‘PSI(k)’ is the value of donated
power stability at the kth branch.

(c) Loading Margin and Line Stability Index.

The value of additional electric load, at any specific point in operation that would
cause a collapse in voltage, is referred to as the system’s loading margin or line stability
(Lmn). The approach of factor analysis for modal participation is proposed. Lmn is presented
mathematically as follows:

Lmn =
4 ∗ Q(k)

V(i){Sin(θ − δ)}4 ≤ 1.00 (29)

where ‘Lmn’ is the line voltage stability index, ‘Vi’ is the sending end voltage, ‘Qk’ is the
receiving end load, ‘θ’ is the angle of line impedance, and ‘δ’ is the difference angle between
the sending and receiving bus. The value of ‘Lmn’ should be less than unity under stable
conditions; when ‘Lmn’ exceeds unity, the system becomes unstable. As a result, the ‘VSI’
and ‘Lmn’ formulas are in opposition to each other; lower values of ‘VSI’ indicate bus
instability, and greater values of ‘Lmn’ indicate line instability. Line stability improvement
(LSI) is defined to see the impact of DG on line stability, as given in below Equation (30):

LSI =
ni

∑
j=1

(Lmn(j))
WithDG

(Lmn(j))
WithoutDG (30)



Energies 2024, 17, 5040 13 of 53

(d) Combined Stability Index.

The combined stability index mathematically can be presented in the following equation:

CSI = 0.5 ∗
{

1
max(TVSI(nb))

}
+ 0.5 ∗

{
1

max(LSI(ni))

}
+ 0.5 ∗ min{PSI(ni)} (31)

where ‘CSI’ is the combined stability index of bus and line voltage, ‘nb’ is the total number
of buses, and ‘ni’ is the branches in the network. It can be seen from Equation (31) that
the inverse of LSI is taken into account in the CSI formulation since the value of PSI and
VSI will be minimized and the value of LSI will be maximized. It should be noted that
terms are multiplied by the constant 0.5 in order to create symmetry in the CSI findings.
As a result, the value of CSI will be in the range of 0 to 1 to optimize the stability for the
selection of candidate buses where DG units are to be installed. The third objective function
is formulated as:

f3(k) = minimize(CSI) (32)

where ‘i’ is donated as a branch, ‘ni’ is donated as the total number of lines or branches, ‘nb’
is donated as the total number of node buses.

(4) DG Optimal Sizing.

This objective function is used to optimize the DG size for the selection of candidate
buses where DG units are to be installed. The optimal size of DG can be formulated by the
following fourth function:

S(DG,i) =
PDG(i,j)

np
∑

j=1

{
PLoad(i,j)

} (33)

f4(k) = minimize(SDG) (34)

where PDG(i,j) is donated as the value of power on the bus for the ith branch, PLoad,(j) is
donated as the value of active power of the load on the bus for j point, ‘np’ is donated as
the total number of load points. S(DG,i) is donated as the size of DG for ith bus.

2.7. Operational Technical Constraints

In all optimization processes, the following constraints should be considered:

A. Equality Constraints

1. Active Power (PGrid) Balance Equations:

PGrid +
ni

∑
i=1

(P(DG,i)) =
ni

∑
i=1

(P(d,i))+
nb

∑
j=1

(P(Tloss,j)) (35)

2. DG Capacity Constraints:

ni

∑
i=1

(P(DG,i)) ≤
3
4
×

ni

∑
i=1

(P(d,i))+
nb

∑
j=1

(P(Tloss,j)) (36)

where PDG represents the power generation and Pd represents the power demand.

B. Inequality Constraint

1. Voltage Limit Constraint.
The inequality constraints of voltages as defined below.

Vi.min ≤ Vi ≤ Vi.max, (37)

where Vi is donated voltage at the ith bus. For i = 1, 2, . . .. . ., N, the voltage mini-
mum value is 0.95 per unit (p.u), and the maximum value is 1.1 per unit (p.u).
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2. Current Limitations Constraint.

Ii ≤ Irated.max (38)

The ‘Ii’ is donated as branch current and ‘Irated’ is rated current limit in the line.
3. DG Units Power Capacity Constraints: The total DG power capacity is restricted

and should be within maximum and minimum permissible values for each DG
capacity as defined below.

PDGi min ≤ PDGi ≤ PDGi max (39)

4. Power (PLoss) Loss Limits Constraints: The total power loss after placement of
DG should be lesser than the power loss before DG was integrated.

PLoss,i
DG min ≤ PLoss,i

DG ≤ P Loss,i
DG max (40)

5. The next inequality constraint is the size of DG and the size can be determined
by the different types of DG penetration levels, and it can be written as.

DGsize =

n
∑

i=1
STotal(Load,i)

100
∗ Penetration_Level (41)

Smax ≥ SDG ≥ Smin (42)

So, the size of the DG should be between 25% and 75% of the distribution
system’s total load.

0.25 × Pload ≤ PDG ≤ 0.75 × Pload (43)

6. The ‘Power Factor’ (P.F.DG), which is adjusted at a practical value of, i.e., 0.85, is
the last but not the least important parameter.

|P.F.max| ≥ |P.F.DG| ≥ |P.F.min| (44)

2.8. Proposed Multi-Objective Function for Optimization

This section investigates various objective functions for optimizing the placement and
sizing of DGs based on single and multiple objectives. Multiple objective optimization
problems (MOPs) are commonly referred to as multi-objective decision-making, multi-
criteria optimization, or Pareto optimization [65,66]. These optimization objectives are
designed to maximize or minimize multiple objective functions simultaneously. Therefore,
multi-objective functions, such as power losses, voltage deviations, and stability factors, are
addressed using the following mathematical formulations. The multi-objective problems
(MOPs) can be mathematically expressed as follows:

MinF(k) = [ f1(k), f2(k), f3(k), . . . . . . . . . . . . , fn(k)] (45)

where F(k) is the objective function at the variable k’s for the nth objective function which is
donated by Fn(k); K is called the decision variable, k = {K1, K2, K3, . . . . . . . . . , Kn}.

The weighted sum approach is a powerful tool, which is used for optimizing power
systems by identifying the control variables. The objective function, as formulated in
Equation (48), can be combined using the weighted sum approach to create a multi-objective
function that balances the various single-objective functions.

Minimize(mo f ) = min(w1 f1 + w2 f2, . . . . . . . . . + wn fn) (46)
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where f 1, f 2, f 3, and fn are objective functions related to power losses, voltage profiles, sizes
and stability.

n

∑
i=1

|w i|= 1

where w1, w2, and wn are the weighting factors assigned to each objective function. The
effectiveness of the proposed strategy for the sizing and optimal placement of DG will be
evaluated using the weighted sum method. In this scenario, the multi-objective function
weighted sum is comprised of power losses, voltage profiles, sizes, and stability [67–70].

f (t) = w1 ∗ f1 + w2 ∗ f2 + w3 ∗ f3 + w4 ∗ f4 (47)

To find the optimal combination of weights that satisfies the previously defined multi-
objective functions, a weight impact study on fitness values has been conducted for analysis
purposes. As a result, the weighting factors for total power losses should range between
0.4 and 0.9, with the remaining percentage allocated to voltage variations. In the proposed
method for optimal DG placement and sizing, the MFDO optimization technique is used
to determine the fitness function. The overall fitness function, incorporating the power
system’s technical objectives, is as follows: the objective function focuses on minimizing
both power losses and voltage deviations, as shown in Equation (48).

Fmin =
N

∑
i=1

w1 ∗ (PLI(i)) +
N

∑
i=1

w2 ∗ (VD(i)) +
N

∑
i=1

w3 ∗ (CSI(i)) +
N

∑
i=1

w4 ∗ (DGsize(i)) (48)

Subjected to Fmin =



0.95 ≤ Vi ≤ 1.1
PDGi.min ≤ PDGi ≤ PDGi.max
VDG.min ≤ VDG ≤ VDGmin

Ii∗j ≤ Ii∗j
max

PDG ≤ PDG
max

0.4 ≤ w ≤ 0.9
0.4Pload ≤ DGcapacity ≤ 0.75Pload

(49)

3. Optimization Techniques

This section provides a brief introduction to recently nature-inspired optimization
algorithms, specifically the Fitness-Dependent Optimizer (FDO), the Improved FDO (IFDO),
and the proposed Modified Fitness-Dependent Optimizer (MFDO), along with an overview
of their actual working mechanism.

3.1. Modified Fitness-Dependent Optimizer (MFDO)

The modified enhanced variant of FDO so-called Modified Fitness-Dependent Op-
timizer (MFDO) is proposed in this research work. The modified variant of the Fitness-
Dependent Optimizer is a recently developed metaheuristic algorithm, introduced by
Hozan and Bryar in 2024. This particular newly introduced metaheuristic algorithm is
therefore well suited for solving various applications, especially in the context of engi-
neering optimization problems. Although FDO and its variants demonstrate competitive
performance, they exhibit several key issues, including premature convergence, poor ex-
ploitability, slow convergence, prediction accuracy, high space complexity, insufficient
memory, longer execution time, not avoiding local optima, and an inability to refine solu-
tions or effectively solve optimization problems. To address these challenges, we introduce
modifications and hybridization to the original FDO. This research work proposed the
hybridization and modification of the original FDO to enhance its performance in terms
of higher imputation and reducing the computational time while also resolving the issues
associated with previous variants of FDO. The proposed MFDO algorithm has greater
exploration and exploitation capabilities, it can be readily constrained into local optima, it
converges more rapidly, and it performs better than both the original FDO and its improved
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variants. Notably, the MFDO demonstrates significant improvements when applied to
multiple real-world applications, providing highly competitive results in comparison to
FDO and its improved variant.

3.2. Fitness-Dependent Optimizer (FDO)

The Fitness-Dependent Optimizer (FDO) is a recently developed swarm intelligence-
based algorithm introduced by Abdullah and Rashid [71]. This particular metaheuristic
algorithm has been used by researchers to solve various applications, especially in the
context of engineering optimization problems. FDO is a novel optimization technique
inspired by the decision-making and reproductive processes of bees swarming. The fitness
function generates weights that guide the search agents during the exploitation and explo-
ration phases, allowing for the calculation of the pace of their movements. This algorithm
effectively replaces the reproductive mechanisms of swarm bees. A significant aspect of the
FDO algorithm is its reliance on hive exploration, which involves selecting suitable options
for scout bees. The artificial scout population is randomly initialized at the beginning of
the algorithm within the search space defined by Xi = (i = 1, 2 . . .. . .. n); each scout’s
position represents a newly identified hive. Similar to how scout bees continue searching
for the most suited hive, once they identify a better hive, they ignore the previously found
hive. Whenever a new feasible solution is discovered, solutions that are inferior to this
new one will be neglected. If the scouts cannot identify a better solution than the one
previously found, they will regard the current solution as the best option. In this approach,
artificial scouts randomly explore the landscape through a mechanism that combines fitness
weights and random walks. Once a decision is made, the remaining scouts return to the
hive to establish their new lives as a colony. The FDO employs fitness weight ( f w), which
is modeled after the collective decision-making process of bees, to guide the search agents
toward the optimal solution. Each search agent, or artificial scout bee, can utilize any of
the hives to represent a possible solution, with the global optimal being represented by
the best hive. The specifications of each hive include its volume, position, and size, which
indicate the fitness function of the corresponding solution. The FDO algorithm begins by
establishing the upper and lower boundaries to randomly allocate solutions to the scout bee
population. The scout bees use a combination of fitness weight mechanisms and random
walks to find hives. To change their position, the scout bees adjust their current location by
adding a pace value. The movement of the scout bees is calculated as follows:

Xi,t+1 = Xi,t + pace (50)

where X is donate the scout bee (search agent), t indicate the current iteration of the artificial
scout bee that is now in use, i is the search scout bee (search agent), and pace is the scout
bee’s movement rate and direction. The value of fitness weight ( f w) determines the pace.
Equation (51) is used to determine the f w. The direction of pace is entirely determined by a
random system, but the pace is typically determined by f w, or fitness weight. Therefore,
the f w of minimization problems can be calculated as:

f w =

∣∣∣∣ x∗i, t f itness
xi, t f itness

∣∣∣∣− w f (51)

where xi, t f itness is the fitness function of the global best solution,xi, t f itness is the fitness
function of the current solution, and w f is the weight factor (its value is either 0 or 1).
Moreover, f w and pace depend on different cases and the rules are stated as follows
(52)–(54):

i f f w = 1, or f w = 0 or xi,t f itness = 0 , pace = xi,t ∗ r (52)

f w < 1 and f w > 0
{

i f r < 0, pace = f w ∗ (xi,t − x∗ i,t) ∗ (−1); (53)
i f r ≥ 0, pace = f w ∗ (xi,t − x∗ i,t) (54)



Energies 2024, 17, 5040 17 of 53

where the random levy number donates r and its value range is [1, 1]; the levy fight form
has been utilized due to its good distribution curve [34].

The weight factor is written as w f , which can only have a value of 0 or 1 and is used to
control the fitness weight ( f w). The fitness function value of the current best global solution
is donated by x∗i, t f itness. The fitness function value of the current solution is donated
by xi, t f itness. A high level of convergence and low possibility of coverage are shown if
w f = 1. However, if w f is equal to zero (w f = 0), it will not affect Equation (51) and can
be ignored. If the variable is w f = 0, it will provide a more stable search. However, it is
actually the reverse because the fitness function’s value is the only factor that depends on
the optimization problem. However, f w will fall in the range of [0, 1]. However, in certain
cases, f w can be equal to 1, such as when the current solution is the global best solution
or when the global best solution and the current solution have the same fitness values.
Moreover, if x∗i, t f itness = 0, there is a chance when f w = 0.

f w = 1; i f


f (X∗

i,t); is the current solution
f (Xi,t) = f (X∗

i,t); and (55)
f (Xi,t) and f (X∗

i,t) boths f itness value are same (56)

Generally, the flow chart of the FDO algorithm is shown in Figure 5, which depicts the
algorithm’s procedures [71].

(A) Limitations of FDO and Improved variant of FDO.

The FDO algorithm is effective in identifying optimal solutions; however, it has several
limitations. The main drawbacks include slow convergence, and unbalanced exploration
and exploitation. Therefore, the existence of numerous randomized parameters such as
w f , pace, f w, updating equation, levy flight, places limits, and optimum updating solution
in FDO. Hence, in FDO, the setting of w f depends on convergence; if this value is zero, it
adversely affects convergence performance, leading to low convergence, as stated in the
paper [71]. Another issue with the FDO is its unbalanced exploration and exploitation.
Because it relies on w f , current fitness, and fitness of the best agent, it struggles to achieve
a proper balance between these two phases. Furthermore, the use of a randomization-
based pace exacerbates this imbalance. The poor performance of the FDO can also be
attributed to the aging of its solutions, which arises from applying pace equations that
yield suboptimal results and using a fixed value for w f . According to literature-based
research, FDO performs inadequately compared to various other algorithms, as it exhibits
insufficient exploitation capability and imbalance issues between the exploration and
exploitation phases [71].

An improved version of the Fitness-Dependent Optimizer (FDO), referred to as the
Improved Fitness-Dependent Optimizer (IFDO), was developed by Daniel et al. in 2019 [72].
The IFDO is more effective in finding the optimal solution. The IFDO was developed to
overcome the certain drawbacks of FDO, enhancing its performance and achieving faster
convergence. However, like other algorithms, the IFDO has its own limitations. Key draw-
backs include premature convergence and poor exploitation capabilities. Additionally, the
IFDO has more complexity, and it takes more computational time for large datasets. It tends
to prematurely converge to local optima, especially in complex search spaces and faces scal-
ability issues that can degrade performance. The IFDO also requires more computational
resources and memory space and may necessitate tuning for specific problems, making it
difficult to identify the optimal parameter set. Furthermore, it struggles to accurately avoid
local optima and refine solutions. Therefore, modifications or a hybridization approach are
necessary to mitigate the issues associated with the FDO and to achieve faster convergence
along with a higher quality of optimal solutions.
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3.3. Modifications in FDO

The Fitness-Dependent Optimizer (FDO) was improved for the first time in 2019 by
Daniel et al. to overcome their drawbacks [72]. While both the FDO and its improved
variant perform competitively, they exhibit several key issues, including premature con-
vergence, low exploitation, slow convergence rate, poor exploitability, prediction accuracy,
and difficulties in avoiding local optima and refining solutions. Therefore, the modification
is suggested as a solution for FDO and its variant issues to enhance their performance.
Consequently, a modification is proposed with the concept of hybridization and modifying
the parameter strategy, which is introduced in the FDO to enhance their performance. This
paper proposes the modification in FDO based on three methods. First, the pace equation is
optimized by incorporating a lambda (λ) parameter in the FDO pace equation. Second, the
weight factor range is refined to optimize it between 0 and 0.2 [0, 0.2], which is utilized to
determine fitness weight. Third, parameters from the sine–cosine algorithm are hybridized;
this includes updating fitness weight and pace, which relate to the bees’ speed using the
sine cardinal mathematical function. This paper proposes a hybrid modified variant of
the FDO, known as the Modified Fitness-Dependent Optimizer (MFDO), which integrates
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using optimized pace, weight factor, and sine–cosine parameters, and indicates that the
MFDO demonstrates outstanding performance compared to other optimization algorithms.
Ultimately, the MFDO proves to be an efficient solution for various optimization problems.

A. Enhanced FDO using Optimized Pace Equation.

In the FDO, the pace parameter is utilized to guide both the direction and magnitude
of the artificial bees’ movement. This paper proposes a modification to the FDO by in-
corporating the lambda (λ) parameter into the pace equation, as shown in Equation (57).
The value of lambda is set to 0.1, which requires minimal computation time to achieve the
optimal solution. Consequently, this adjustment reduces the overall computation time and
enhances the performance of the algorithm.

Xi
t+1 = Xi

t + pace + Lambda (57)

where ‘i’ is the current artificial scout bee (search agent) and (t) is the current iteration; the
pace is the movement rate and artificial bee direction; X is the artificial bee.

B. Enhanced FDO using Optimized Weight Factor and Global Fitness Weight.

This work presents the Modified Fitness-Dependent Optimization (MFDO) algorithm,
which is an enhancement of the original FDO. In the MFDO, an optimized weight factor is
incorporated to regulate the fitness function value during the exploration and exploitation
phases. By integrating this optimized weight factor and global fitness weight into the search
process, the proposed algorithm’s performance can be significantly improved, leading to
enhanced convergence and solution quality.

In the optimization technique, randomizations can play a major role in exploration
and exploitation. Therefore, there are numerous methods for producing random numbers.
Consequently, FDO has several randomly generated areas, including f w, w f , and the levy
flying mechanism. FDO initially used 0 for weight, and it can use the value of w f either
0 or 1 [71]. On the other hand, the IFDO generates a weight factor (w f ) in the range of
[0, 1] [72]. The proposed modified enhanced variant of FDO is introduced in this work,
which is based on the original FDO and IFDO. The MFDO algorithm consists of the weight
factor (w f ) randomization. In MFDO, the weight factor (w f ) is used in the [0, 0.2] range,
which is randomly assigned. Moreover, the fitness weight was controlled by a weight
factor (w f ) in the IFDO. Nevertheless, in the majority of cases, the w f was neglected [71,72].
However, in MFDO, the weight factor (w f ) is used whenever a better fitness weight is
obtained. But any time a higher fitness weight is achieved using the optimized weight factor
(w f ) in MFDO, the algorithm achieves earlier convergence toward global optimality. It is
appropriate to cover the search space to take into consideration that the MFDO algorithm
is enhanced by updating every scout in each iteration. Pace is used in the original FDO,
both for the artificial bee’s direction and degree of movement, to control the pace using
the regular fitness weight ( f w) value. However, the pace direction is entirely determined
by random mechanisms. Therefore, Equation (51) expresses the minimizing of f w. When
using random phenomena to control the fitness weight ( f w) instead of the original FDO,
where the weight factor is assumed to be 0 or 1, the weight factor in FDO is typically
set to 0. According to the development of the FDO algorithm, the weight factor is used
to control the fitness weight and has two possible values: 0 and 1. When the w f = 0, it
indicates a more stable search, and when the w f = 1, it indicates high convergence and low
coverage possibility. The IFDO regulates the fitness weight by producing a weight factor
in the range [0, 1]. However, this work pointed out that although the value of the fitness
function is dependent on the optimization problem, the reverse may also occur. Therefore,
in order to improve the FDO performance, we employ a random technique in our enhanced
Fitness-Dependent Optimizer to regulate the fitness weight by producing a weight factor
in the range [0, 0.2]. The MFDO algorithm generates a weight factor (w f ) in the range of
[0, 0.2], as demonstrated in Equation (58), which illustrates how we change Equation (51)
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in our proposed modification. The improvement of the FDO algorithm in terms of fitness
weight can be expressed as follows:

f w =

∣∣∣∣∣ x∗ i,t f itness

xi,t f itness

∣∣∣∣∣ (58)

Equation (58) is used to determine the fitness weight value. In contrast to the preceding
equation, the weight factor in Equation (58) can be neglected if the value of fitness weight
( f w) is equal to or less than the generated weight factor (w f ). If the value is less than or
equal to the generated weight factor, as indicated in the MFDO procedure (refer to Figure 6),
the weight factor is neglected if determining the fitness weight. If not, then control the
fitness weight by involving the weight component using Equation (59).

f w = f w − w f (59)

As can be seen from Equation (51), this mechanism in the FDO tends to result in slow
convergence. Thus, FDO improved the f w by calculating a weight factor value in the range
[0, 0.2] by using a random mechanism. Furthermore, f w is calculated in Equation (59)
if one of these conditions is true: xit f itness = 0, f w = 0, so, f w >w f . Otherwise, f w is
calculated based on Equation (58).

This is a new method of determining the fitness weight, which is typically avoided
by ignoring wf, and in many circumstances, wf participates reasonably. According to the
MFDO, each scout’s weight factor is randomly assigned at the beginning of each iteration,
and when a new and improved solution is approved, a new wf is generated in the new
[0, 0.2] range. Next, a new wf limited in [0, 0.2] is preferable. In the meantime, the new
solution’s MFDO will be more stable and have better coverage than the previous one since
wf is reduced with each iteration and it has more convergence than the setting where
wf = 0.

Furthermore, whenever a better solution is achieved, in order to maximize the chance
of finding the best solution the optimal solution in the shortest amount of time, a new wf is
created in a new range. Following the addition of the three different conditions to f w, the
following conditions are used to determine this parameter.{

n f wt = f wt − w f t; i f f wt > w f t, (60)
n f wt = f wt; i f f wt < w f t, (61)

where f wt represents the current fitness weight, and n f wt is the new fitness weight at the
tth iteration represented in Equations (60) and (61). w f t represents the current weight factor
in the range [0, 1]. The w f value decreased from w f to zero during increasing iterations.

Therefore, to further optimize and tune random f w by another type of parameter
known as global fitness weight ( f w∗) which is used for the best solution found so far by
any scout bee over all the iterations. The global fitness weight is represented by f w∗, which
is used to refine and donate as in the following Equation (62).

w f t = w f t−1 × r0; i f f w∗ < f wt (62)

where r0 is the random number in the range of [0, 1] and w f t is the current weight factor
whose range falls in the [0,w f t−1].
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C. Enhanced FDO using Hybridization of Sine–Cosine Parameters.

The FDO exhibits an inevitable slow convergence rate when utilizing the fitness weight
( f w) mechanism. The pace-updating strategy described in Equations (52)–(54) may enhance
solution diversity, making it more difficult to find the global optimal solution because of
the FDO’s strong exploration ability. To address this issue, the concept of hybridization and
modification of various strategies, specifically pace-updating, global fitness weight, random
weight factors, best solution tracking, and conversion parameter strategy, is introduced
into the original FDO to improve its performance. This enhancement aims to mitigate
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premature convergence, achieve a better balance between exploitation and exploration, and
accelerate the convergence rate.

In this work, the hybridization of FDO with the Sine–Cosine Algorithm (SCA) is
proposed for solving optimization problems [73]. The SCA, an optimization algorithm
introduced by Mirjalili, is known for its effectiveness in solving optimization problems and
exhibits high search space exploitation.

This work demonstrates that SCA has high search space exploitation and is based
on a population algorithm which was introduced by Mirjalili [74]. The resulting hybrid
SC-FDO integrates the sine–cosine scheme into the modified pace-updating mechanism of
the original FDO algorithm. Initially, the modified pace-updating mechanism facilitates the
search process by exploring several promising solutions in prominent regions. Moreover,
it guides the search agents to maintain a balance between exploration and exploitation
through this modified approach. The following equations outline the calculation of the
modified pace-updating mechanism. The following equations are used to calculate the
modified pace-updating equation.

i f f w = 1, pace = xi,t × r (63)
i f f w = 0, pace = r ∗ (xi,t + r1 ∗ cos(r2) ∗ (r3 ∗ xi,t

∗ − xi,t)) (64)
i f 1 < f w < 0{

i f r < 0, pace = f w ∗ (xi,t + r1 ∗ sin(r2) ∗ (r3 ∗ xi,t
∗ − xi,t))− 1; (65)

i f r ≥ 0, pace = f w ∗ (xi,t + r1 ∗ sin(r2) ∗ (r3 ∗ xi,t
∗ − xi,t)); (66)

where ‘r’ represents a levy random number within the interval [−1, 1] and r1, r2, r3
are represented by random variables,x∗ i,t is the global best solution, xi,t is the current
best solution, f w is the fitness weight, and the weight factor w f is within the [0, 0.2]
range. Although the random walk can be implemented in a variety of ways, levy fight
has been selected because of its good distribution curve, which results in more steady
movements [74,75]. If the fitness values of the global best and current solutions are the
same, then pace is calculated as expressed in Equation (63). The r1 ∗ cos(r2) or r1 ∗ sin(r2)
are used to guide the scout bees towards exploration or exploitation and can be calculated
as Equations (64)–(66). If the values of r1 ∗ sin(r2) or r1 ∗ cos(r2) are in the [1, 1] range,
the scout bees exploit the search solution. However, if the values of sin(r2) or cos(r2)
are greater than 1 or less than −1, the scout bees explore the diversity of solutions. If
x∗ i,t − xi,t, the pace is calculated. Therefore, the pace can be calculated when f w is equal to
1. Consequently, if f w > 0, f w < 1, and r is less than zero, the pace is calculated. Thus, the
pace is found if f w < 1, f w > 0, and r is greater than or equal to zero. The scout bees can
achieve a proper balance between the exploitation and exploration phase by modifying the
pace equation mechanism. Thus, r1 is calculated according to represented Equation (67).

r1 = a∗ ×
(

1 − t
tmax

)
(67)

where a constant, t, is donated as the current iteration and tmax represents the maximum
iteration (it is a constant variable). Furthermore, r2 represents the movement direction
[0, 2π], and r3 parameter shows the random weight [0, 2]. The scout bee’s movement is
defined by Equation (68).

distancebestbee
= r3

∗ × x∗ i,t − xi,t (68)

The impacts of sine, cosine, and the parameters are presented in Equations (52)–(54).
If the value of r1 is greater than 1, the solutions allow the search agents to investigate the
spaces outside of their respective destinations. Meanwhile, if the value of r1 is smaller than
1, the sine and cosine functions allow a solution to be shifted relative to another solution
by exploiting the advantages of the neighboring space. Therefore, in order to improve the
scout bees’ exploration and exploitation balancing, the conversion parameter strategy is
used. The proposed algorithm has improved performance in terms of convergence and
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local optima. Therefore, the sinc method is used in the original FDO Equation (51) to
improve the f w parameter, and the new equation is implemented, which can be expressed
in Equation (69).

f w =

∣∣∣∣∣ x∗ i,t f itness

xi,t f itness

∣∣∣∣∣× sinc(π ∗ w f ) (69)

The mathematics sinc function which is the contraction “sine cardinal” is represented
by sinc(x). There are two conditions that follow as denoted in Equation (70) [74,75].

sinc(x) =

{
1 , i f x = 0

sin(x)
x , otherwise

(70)

Moreover, the improved pace updating mechanism of the MFDO is expressed in
Equation (71).

pace =
{

x∗ i,t × r × sinc(π ∗ w f ) ; i f f w = 0
distancebestbee

× r × sinc(π ∗ w f ) ; i f f w = 1
(71)

However, pace is calculated by multiplying distancebestbee
, sinc(π ∗ w f ) and r (π = 3.1415

approximately). In conclusion, this work presents the modified pace-updating equation,
with the parameter conversion, the global fitness weight parameter ( f w∗) and random
weight factor (w f ), and the optimal solution-updating strategy in the proposed hybrid FDO
method. The efficiency of the hybrid MFDO is enhanced by leveraging the strengths of the
Sine–Cosine Algorithm (SCA) to explore refined search areas for optimal solutions. As a
result, the hybrid MFDO requires less time to achieve superior outcomes. The exploitation
capability and neighboring search of the hybrid MFDO have improved due to the incor-
poration of SCA features [74,75]. Consequently, in terms of exploring solutions within the
search space, the hybrid MFDO demonstrates better performance compared to both the
FDO and IFDO algorithms. Furthermore, the hybrid MFDO is evaluated against other
algorithms, including FDO, Hybrid GAIPSO, IPSO, PSO, and GA. The findings indicate
that the MFDO exhibits a faster convergence rate than the FDO, particularly in selecting
the positions of scout bees and avoiding local optima, among other factors [76].

3.4. The Proposed Method

This work optimizes modern energy sources with integrated hybrid power distribution
systems with the proposed MFDO method to improve the overall efficiency of the proposed
system by minimizing power losses and improving voltage profile and thus stability. The
proposed method is based on multi-objective functions and, therefore, is the best solution
for solving power system optimization problems. The proposed method is based on the
new swarm metaheuristic optimization methodology, which is used to solve multi-objective
optimization problems. The proposed algorithm is also known as multi-objective MFDO,
which is a hybrid technique that combines the benefits of “modified Fitness-Dependent
Optimizer” and “multi-objective optimization”.

SD = [SD1, SD2,. . .. . ., SDN] (72)

where search space dimension (SD) is defined for D: 1, 2, 3,. . .. . .,N. The MFDO can be
implemented once the search spaces and the number of dimensions for each space are
specified. The SD is responsible for selecting the optimal position from various positional
dimensions, ranging from SD1 to SDN. The MFDO is used for optimization problems and
is formulated as a multi-objective function with the goals of minimizing power losses,
improving voltage profiles, and enhancing stability. The decision variables include power
losses, voltage profile, locations and sizes of DG units, and stability. By employing MFDO,
optimization can be achieved while considering multiple conflicting objectives. The MFDO
incorporates additional mechanisms that enhance the algorithm’s “exploitation” and “ex-
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ploration” capabilities, resulting in improved convergence times and solution quality. There
are several modifications applied to the original FDO algorithm to create the MFDO, such
as weight adjustment, neighborhood topology, scout bee position and sizes for hives, scout
bee population and rate of movement (pace), fitness weight of scout bee and weight factor,
etc. These enhancements have enabled MFDO to achieve better convergence and solution
quality compared to the original FDO algorithm, converging more quickly and demon-
strating superior performance in locating global optima, particularly in high-dimensional
search spaces. The MFDO is a better variant of the classic Fitness-Dependent Optimizer
(FDO) algorithm. It enhances the performance, outcomes, and solution quality of the
original algorithm by modifying several of its components. One of the key advantages of
the proposed method is its ability to provide consistent responses with minimal variance.
Additionally, it allows for rapid selection by reducing the number of iterations required.
In this context, the output of the multi-objective optimization algorithm is utilized by the
MFDO as the initial scout population set, leading to faster convergence. Furthermore, the
hybridization of the Sine–Cosine Algorithm and the optimized weight factor method sig-
nificantly boosts the performance of the proposed algorithm in terms of convergence speed,
reduced computational time, and enhanced exploration and exploitation capabilities. This
improvement results in a higher quality of solutions, demonstrating the effectiveness of the
proposed approach. The proposed method integrates optimal power load flow with the
MFDO algorithm and incorporates optimized multi-objective functions, including power
losses and voltage stability factors. Optimal optimization is executed using this algorithm,
which has been implemented in MATLAB for determining the optimal sizing and location
of distributed generation (DG) units. The flowchart depicted in Figure 6 illustrates the
procedures of the proposed algorithm.

3.5. The Proposed Algorithm Procedure

The proposed algorithm MFDO procedure consists of the following steps:
Step 1: (Initialization of Population).
A random set of artificial scout bees in the search space Xi (i = 1, 2, . . . . . . . . . .n)

consists of the initializing population. A solution is represented by each scout bee position.
In an attempt to find a better hive, these bees randomly search a larger number of positions
and evaluate each one before allocating resources to the best one. The number of scout bees
is proportional to the size of the population, and each one is equipped with parameters
(PLoss, VD, SI, and DGsize) that indicate the power quality and stability of the power network.
In this scenario, every scout represents a possible solution and is randomly investigating
more positions in an attempt to find a better hive.

Step 2: (Fitness Weight of Scout Bee and Balance of Randomization).
The fitness weight is used to evaluate each scout bee position. The scout bees are

searching randomly for a better hive.
The previous position is abandoned when a better position is discovered. Thus, the

algorithm finds a new optimum solution at each position. However, it will revert to its
previous solution in search of the optimum solution if the present forward direction is
unable to produce an optimal solution. The fitness weight is used to determine the fitness
weight value; it can be expressed as follows:

f w =

∣∣∣∣ x∗i, t f itness
xi, t f itness

∣∣∣∣− w f (73)

In order to improve the FDO the balance randomization of the w f is employed for
every scout in each iteration. It is used to determine the fitness weight value. It can be
neglected if the value of fitness weight ( f w) is equal to or less than the generated weight
factor (w f ).

f w = f w − w f (74)

Step 3: (Movement of Scout Bee and Updating Position Mechanism).
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Scout bees add pace to their current position and show their moment as they search
for the best solution. The scout bee moves from its current position to the next position by
adding pace (p) in order to find a better position, as illustrated in Equation (75).

Xi
t+1 = Xi

t + pace (75)

The updating pace is proposed using lambda (λ) added in the pace equation. The
value of lambda is 0.1. The position of the scout bee is updated using the lambda, as
illustrated in Equation (76).

Xi
t+1 = Xi

t + pace + Lambda (76)

Step 4: (Modification and Hybridization).
The concept of hybridization with sine–cosine parameters and modified pace-updating,

global fitness weight, random weight factor, best solution, and conversion parameter strat-
egy are introduced in the FDO to enhance their performance.

Step 5: (Stoppage/Termination Criteria).
The positions of the new hives are updated and the fitness value of each scout bee

is calculated for every iteration. Until a termination condition is met, that is, until the
maximum number of iterations MaxIt or tmax, this procedure is repeated. The global best
solution is generated as the ultimate solution of iterations at the conclusion.

3.6. The Proposed Algorithm Parameter Settings and Convergence Criteria

The algorithm parameters such as population size, dimension, position, maximum
iterations, search space boundaries, and fitness function are configured based on the
problem. The specific parameters setting and convergence criteria are required to effectively
find optimal solutions.

1. Population Size (N): The number of individuals or number of agents (solutions) in
the population. A larger population can explore the search space more thoroughly
but requires more computational resources. The typical value ranges from 20 to 100
(depending on the problem’s complexity and dimensionality).

2. Maximum Number of Iterations (MaxIter): The maximum number of iterations or
generations for which the algorithm will run before stopping. The typical value ranges
from 100 to 1000 (depending on the problem).

3. Search Space Bounds: Set upper and lower bounds for each dimension of the search
space to ensure agents remain within feasible regions.

4. Fitness Evaluation: Evaluate the fitness of each candidate by using an objective
function. They evaluate the fitness of the population. Also, it needs to be maximized
and minimized.

f itness = evaluateFitness(population, f itnessFunction) (77)

5. Movement Update Mechanism: The movement of the variables/individuals is influ-
enced by their fitness function and the updated position of the individual current
best fitness and random factor. Update the position of each agent/candidate solution
based on objective function fitness.

NewPosition = CurrentPosition + α × (BestPosition − CurrentPosition)× Rand(Size) (78)

The various parameters involve and update the movement.

• Step Size (α): The magnitude of movement controlled by alpha. It can be varying or
constant with iteration. The step size decreases over time to find the optimal solution.
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• Randomness Factor (β): The stochastic behavior introduces in movement by β, which
is allowing search space exploration.

Xi,t+1 = Xi,t + α(F(Xt
best)− F(Xi,t)).β(rand()− 0.5) (79)

where Xt
i is donated as the current position and Xt

best is the best position, and rand()
is donated as a random number which range is [0, 1].

6. Convergence Criteria: Each scout bee’s fitness value is determined until a termination
requirement is met or a solution is found. If t ≥ T or other criteria are met, then
stop the algorithm. If t ≥ T or other criteria are met, then stop the algorithm. This
can be evaluated by the difference between the current and the optimal solution, as
presented in Equation (80). ∣∣∣ f (xi,t)− f t

optimal

∣∣∣ < ε (80)

Convergence Rate: It is evaluated by the difference between values of the objective
function at t and t − 1 iterations, as presented in Equation (81).

| f (xi,t)− f (xi,t−1)| (81)

where f (xt) is donated as the objective function at t iteration, f t
optimal is donated as the

optimal objective function, and ε is the tolerance level.
Adjust these settings and criteria to suit your specific problem and ensure that the

proposed MFDO algorithm converges effectively to a high-quality solution. The parameter
setting adjustment or tuning can help to achieve the best solution.

3.7. Steps for Implementation of the Proposed Algorithm

In this section, we describe the steps for implementation of the proposed algorithm
to solve the optimal placement of DG and its sizes in a power-distributed system. The
proposed algorithm runs through all iterations. All possible iterations are specified by
the user, and this algorithm takes into consideration both the bus voltages and the power
losses. It stores the node voltages, total power losses, and size and location pattern of DG
for iteration with all buses.

Steps:

• Define the problem: In this step, the objective functions, decision variables, and
constraints of the problems are defined. The algorithm parameters are dimension,
number of iterations, and population size. The input parameters are system data, load
data, line data, number of buses, random DG sizes and locations, power factor, and
bus voltage limits.

• Run the load flow analysis and find power losses.
• Run the MFDO algorithm by taking the fitness function.
• Set the control parameter of MFDO.
• Initialize the population: Generate an initial set of the population consisting of random

individuals (artificial scout bee) in the search space Xi(i = 1, 2, . . . . . . , n). The number
of scout bees is proportional to the size of the population, and each one is equipped
with parameters (PLoss, VD, SI, DGsize) that indicate the power network efficacy
and stability.

• A solution is represented by each scout bee position. In this scenario, every scout
represents a possible solution and is randomly investigating more positions in an
attempt to find a better hive.

• Evaluate the movement of scout bees: Scout bees add pace(p) to their current position
and show their moment as they search for the best solution. The scout bees relocate
from their current position at iteration ‘t’ to a new position by adding “pace” to find a
better position from Equation (50).



Energies 2024, 17, 5040 27 of 53

• Evaluate the fitness: Evaluate the fitness weight ( f w) of the scout bee by calculat-
ing the objective function values. A fitness weight ( f w) is used to determine the
pace. However, the pace’s momentum is entirely random. The f w can be calculated
from Equation (51). The function weight ( f w) should fall between 0 and 1. When
the values of X∗

i,t, f , and Xi,t, f are the same, then the value of f w will be 1. When
X∗

i,t, f = 0, then the value of f w will be 0. Applying the rules can help you avoid
Xi,t, f = 0. The operations outlined involve determining the optimal search agent
globally, using Equation (51) to find f w, and applying criteria from Equations (52)–(54)
to compute pace.

• If optimizing requirements are not fulfilled, then go to the next steps.
• When the new search agent is found, determine a new search agent position, and the

algorithm always checks whether the new result (cost function) dominates the old
result or not. If it is, the new position will be acknowledged and the pace will be kept
for possible future use. If it is not, on the other hand, the previously saved pace will be
utilized in place of the new one in the hopes of producing a better result unless the
search agent keeps the current position. The solution’s compatibility with the archive
will then be determined. It will see the application of the parameter updating to obtain
further variant solutions. After updating, the parameters then verify whether or not
the solution fits inside the archive. Modification indices are continuously updated by
changes to the search environment.

• Update the global best solution by ‘weight factor’ and ‘global fitness weight’ using the
updated weight factor equation.

• Update the pace equation and each scout bee position using the updated scout bee
equation and lambda parameter.

• Evaluate the scout bee and fitness using the objective function and update the “current
best” and “global best” if a better solution is found.

• Update the “current best” scout bee and fitness for each scout (if the fitness value is
better than the previous best value).

• Update the “global best” and fitness (if a scout bee with a better fitness than the
“present global best” is found).

• Apply additional mechanisms such as weight factor adjustment, neighborhood topol-
ogy, hives, a scout bee, sine–cosine, and r1, r2, r3 parameters, etc.

• Update the “pace” and fitness weight using the update Equations (61)–(64).
• Update the global best solution and global fitness weight f w*.
• Calculate the pace and fitness weight.
• Move accepted and saved.
• Termination criterion: The positions of the new hives and scout bee are updated and

the fitness function value of each scout bee is calculated until a stopping requirement
is met or the best solution is found (i.e., convergence rate, maximum no. of iterations
or tmax, are reached or the solution is good enough)

• Return the best solution found.

The proposed MFDO algorithm converges faster and better performance in terms of
finding global optima, particularly in high search spaces dimensional as compared to the
standard and improved version of FDO and other algorithms. This flow chart outlines the
basic steps of a proposed algorithm, which involves initializing the scout bee, updating
the hives and pace, evaluating each scout’s fitness, and updating the “current best” and
“global best” positions. The MFDO also involves additional mechanisms that enhance
“exploration” and “exploitation” search space capabilities. The algorithm continues to
update the positions of the new hives and the fitness value of each scout bee until a
termination criterion is met and returns a set of “Pareto-optimal solutions”.

3.8. Advantages of the Proposed Method

The proposed method has numerous advantages over the previously well-known
method and avoids the previous conventional methods (i.e., analytical-based method,
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second-order method, gradient and iterative method, and heuristic method, etc.) problems
such as premature convergence, degradation of searching performance, low processing
time, falling into local optimum under complex objective function the high memory con-
sumption and high computational complexity. The proposed method enhances the capa-
bility of metaheuristic algorithms (due to hybridization and modification which directly
affects the optimization results) so that this innovative approach contributes to increasing
the efficiency and robustness of problem-solving strategies. It provides better optimization
results for complex and large optimization problems. It has minimum parameters, which
makes it faster, simpler, and less complex. It also has a fast convergence rate, and dynamics
and can solve nonlinear problems. The existing conventional methods have faced some
limitations as discussed in the above section, i.e., computational complexity, accuracy and
efficiency, stability, low convergence speed, etc.

The proposed method is used to optimize the search process. It has an adaptive
mechanism that adjusts the search behavior based on fitness values. This means the
better fitness solution has more influence by significantly on the search process. The
proposed method has the minimum parameters that make it faster and easily customized
for specific problem types and implementation. The method has collective behavior, which
means the multiple particles/agents can work together to find a better solution. The
proposed method is a hybrid approach that can better handle multi-objective functions for
large and more complex problems and multi-modal or noisy optimization landscapes as
compared to existing methods. It also can handle high dimensional and various types of
optimization problems. The method allows it to adopt the many optimization problems
without adjustment or tuning and can reach high-quality solutions, but conventional
methods may require specific problem adjustment, modification, or tuning to obtain the
optimal solution. It has a unique mechanism that makes it easier to find a better solution
effectively. The proposed algorithm’s effectiveness is checked by comparing it with various
other algorithms including FDO, Hybrid GAIPSO, IPSO, PSO, and GA. As a result, the
proposed method’s overall performance is high.

4. Research Results

In this section, the standard IEEE 14-bus and 30-bus benchmark test systems are
utilized to integrate different types of DG units. This integration is performed to implement
and analyze the proposed method, thereby assessing its validity and effectiveness.

4.1. Case 1: Simulation Results for Case Study IEEE 14-Bus System

The 14-bus test system comprises 14 buses, 13 sectionalizing branches, a nominal
system voltage of 11 kV, a total active load of approximately 259 MW, and a total reactive
nature connected load of about 73.5 MVAR. Therefore, the power losses of the power
network before DG installation have been considered to be 13.551 MW, providing a basis
for further analysis and comparison with other scenarios. The load flow analysis results
without the integration of DG serve as the base case for the 14-bus system and are presented
in Tables 1 and 2, as well as Figures 7 and 8.

Table 1. Results of load flow for a 14-bus system without integration of DG.

Bus Node
No.

Voltage
Magnitude

(p.u.)

Phase
Angle
Degree

Connected
Load

Generation
Capacity

Injected
Reactive Power

(MVar)MW MVar MW MVar

1 1.06 0 0 0 232.481 −15.539 0
2 1.045 −4.987 21.7 12.7 40 46.853 0
3 1.014 −12.742 94.2 19 0 27.106 0
4 1.001 −10.256 47.8 −3.9 0 0 0
5 1.017 −8.765 7.6 1.6 0 0 0
6 1.07 −14.418 11.2 7.5 0 21.545 0
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Table 1. Cont.

Bus Node
No.

Voltage
Magnitude

(p.u.)

Phase
Angle
Degree

Connected
Load

Generation
Capacity

Injected
Reactive Power

(MVar)MW MVar MW MVar

7 1.05 −13.252 0 0 0 0 0
8 1.080 −13.252 0 0 0 24.51 0
9 1.034 −14.832 29.5 16.6 0 0 0

10 1.033 −15.041 9 5.8 0 0 0
11 1.047 −14.848 3.5 1.8 0 0 0
12 1.054 −15.268 6.1 1.6 0 0 0
13 1.047 −15.308 13.5 5.8 0 0 0
14 1.021 −16.065 14.9 5 0 0 0

Total 259 73.5 272.481 104.477 0

Table 2. Summary of load flow results for a 14-bus system.

Power Loss
(MW)

Max Line Loss
(MW)

Max Bus
Voltage

(p.u.)

Min Bus Voltage
(p.u.)

Voltage
Deviation

VD%

13.551 4.306 1.080 1.001 4.16
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Scenario I: Considering Type-1 DG

In this case, the DG is only capable of injecting the active power into a power system.
Therefore, different candidate buses are selected to determine the optimal placement of
these DG units based on their fitness values. The proposed MFDO method is employed to
identify the best allocation of the DG units, providing suitable locations and corresponding
sizes for type-1 DG units, as determined by the fitness function. The locations with the
lowest fitness values also indicate the most appropriate DG sizes. The backward–forward
sweep power flow method is then applied to calculate the associated power losses and
voltage levels for different DG sizes and locations. The results obtained are compared with
those derived from conventional methods for validation purposes.

It is clear that from Figure 9a, the proposed MFDO method for type-1 DG achieves
a greater reduction in power losses compared to conventional FDO methods. While the
conventional FDO method reduces losses by 50.94%, the proposed MFDO method achieves
a reduction of 50.99%. These results demonstrate the superior performance of the MFDO
method over conventional approaches. The MFDO technique proves to be more effective
than the FDO technique in determining the optimal placement and sizing of DG units
within the power system, specifically for type-1 DG. Figure 9a also illustrates the overall
power losses after DG integration. When a DG unit of 11.89 MW is placed at bus 2, the
power losses reach their lowest level. The active power losses are reduced from 13.599 MW
to 6.641 MW with the incorporation of type-1 DG.
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DG can impact the voltage stability of a power system, with acceptable voltage fluc-
tuation limits typically set between 0.95 and 1.1 per unit (p.u.). The results shown in
Figure 9b demonstrate that the integration of DG with optimal sizes and locations does
not cause voltage fluctuations to exceed these limits. All bus voltages remain within the
acceptable range of 0.95 to 1.1 p.u. Using the MFDO method, bus voltages were increased
from 1.001 p.u. to at least 1.032 p.u. without any voltage exceeding the permitted limits.

Scenario II: Considering Type-2 DG.

In this case, the DG injected both active and reactive power into the power system.
Similarly, when integrating type-2 DG with the optimal placement and sizing which are
determined using the proposed MFDO method, power losses are reduced by 62.918%, as
shown in Figure 10a. This is a greater reduction compared to the FDO method, which
achieved a loss reduction of 62.874%. The MFDO method proves to be more effective in
minimizing power losses and is also comparable to other methods used for DG allocation
and sizing. Figure 10a illustrates the total power losses calculated after DG integration. It is
evident that when a DG unit with a size of 12–0.25 j MVA is installed at bus 10, total power
losses are significantly minimized. Specifically, power losses decreased from 13.551 MW
to 5.025 MW due to the insertion of type-2 DG. Figure 10a,b compare the power losses
and voltage profiles with and without DG, based on both the conventional FDO and the
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proposed MFDO methods. Before DG units were integrated, the minimum voltage was
approximately 1.001 p.u. in the base case system, indicating that some buses had voltage
profiles outside the standard permissible limits. However, after the installation of type-2
DG with optimal sizing and placement, the voltage profile improved from 1.001 p.u. to
1.044 p.u., as shown in Figure 10b.
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After integrating type-2 DG optimized using placement and sizing techniques, we
analyzed the voltage profile of an IEEE 14-bus test system. The results, illustrated in
Figure 10b, show that the integration of DG with optimal sizes and locations maintains
voltage levels within acceptable limits, and all bus voltages remain between 0.95 and 1.1 p.u.
The MFDO method improved bus voltages from 1.001 p.u. to at least 1.044 p.u., ensuring
that no voltage levels exceeded the permitted limits.

Scenario III: Considering Type-3 DG.

In this case, the DG unit only injected active power into the network while absorbing
reactive power from external sources. Figure 11a presents the overall power losses after
calculation. It is evident that the integration of a DG unit with a capacity of 10 + 1.02 j MVA
at bus 8 significantly minimizes overall power losses, reducing them to 6.702 MW. Before
the installation of the DG units, the minimum voltage was approximately 0.995 per unit
(p.u.) in the base case system. However, following the integration of the appropriately
sized type-3 DG at optimal locations, the voltage profile improved from 1.001 to 1.018 per
unit (p.u.), as shown in Figure 11b.
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Scenario IV: Considering Type-4 DG

In a similar manner, Figure 12a displays the calculated power losses. It is evident that
integrating a DG unit with a capacity of 1.142 MVAR at bus 13 significantly minimizes
power losses, reducing them to 6.107 MW. Before the installation of the DG units, the
minimum voltage in the base case system was approximately 0.995 per unit (p.u.). However,
after incorporating the appropriately sized type-4 DG at optimal locations, the voltage
profile improved from 1.001 to 1.028 per unit (p.u.), as illustrated in Figure 12b.
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4.2. Case 2: Simulation Results for Case Study IEEE 30-Bus System

The effectiveness of the proposed method is tested and verified on the 30-bus system.
The test system comprises 30 buses, 29 sectionalizing branches, a nominal system voltage of
11 kV, a total active load of approximately 283.4 MW, and a total reactive nature-connected
load of about 126.2 MVAR. The system’s active power losses in the base case scenario
without DG is 17.559 MW, providing a basis for further analysis and comparison with other
scenarios. The load flow analysis results without the integration of DG serve as the base
case for the 30-bus system and are presented in Tables 3 and 4, as well as Figures 13 and 14.

Table 3. Results of load flow for the 30-bus system without integration of DG.

Bus Node
No.

Voltage
Magnitude

(p.u.)

Phase
Angle
Degree

Connected
Load

Generation
Capacity

Injected
Reactive Power

(MVar)MW MVar MW MVar

1 1.06 0 0 0 260.998 −17.021 0
2 1.043 −5.497 21.7 12.7 40 48.822 0
3 1.022 −8.004 2.4 1.2 0 0 0
4 1.013 −9.661 7.6 1.6 0 0 0
5 1.01 −14.381 94.2 19 0 35.975 0
6 1.012 −11.398 0 0 0 0 0
7 1.003 −13.15 22.8 10.9 0 0 0
8 1.01 −12.115 30 30 0 30.826 0
9 1.051 −14.434 0 0 0 0 0
10 1.044 −16.024 5.8 2 0 0 19
11 1.082 −14.434 0 0 0 16.119 0
12 1.057 −15.302 11.2 7.5 0 0 0
13 1.071 −15.302 0 0 0 10.423 0
14 1.042 −16.191 6.2 1.6 0 0 0
15 1.038 −16.278 8.2 2.5 0 0 0
16 1.045 −15.88 3.5 1.8 0 0 0
17 1.039 −16.188 9 5.8 0 0 0
18 1.028 −16.884 3.2 0.9 0 0 0
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Table 3. Cont.

Bus Node
No.

Voltage
Magnitude

(p.u.)

Phase
Angle
Degree

Connected
Load

Generation
Capacity

Injected
Reactive Power

(MVar)MW MVar MW MVar

19 1.025 −17.052 9.5 3.4 0 0 0
20 1.029 −16.852 2.2 0.7 0 0 0
21 1.032 −16.468 17.5 11.2 0 0 0
22 1.033 −16.455 0 0 0 0 0
23 1.027 −16.662 3.2 1.6 0 0 0
24 1.022 −16.83 8.7 6.7 0 0 4.3
25 1.019 −16.424 0 0 0 0 0
26 1.001 −16.842 3.5 2.3 0 0 0
27 1.026 −15.912 0 0 0 0 0
28 1.011 −12.057 0 0 0 0 0
29 1.006 −17.136 2.4 0.9 0 0 0
30 0.995 −18.015 10.6 1.9 0 0 0

Total 283.4 126.2 300.998 125.144 23.3

Table 4. Summary of load flow results for a 30-bus system.

Power Loss
(MW)

Max Line Loss
(MW)

Max Bus
Voltage

(p.u.)

Min Bus Voltage
(p.u.)

Voltage
Deviation

VD%

17.599 5.464 1.082 0.995 1.9
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Figure 13. Energy management evaluation on a 30-bus subsystem modeled from IEEE standard
30-bus framework.
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Scenario I: Considering Type-1 DG

In this case, the DG unit is only capable of injecting active power into the power
system. Figure 15a clearly shows that the conventional FDO method reduced losses by
46.235%, while the proposed MFDO method achieved a reduction of 46.786%. The results
obtained with the MFDO technique are superior to those of the FDO technique when
considering type-1 DG in the power system. Specifically, when DG units with sizes of
11.6631 MW at bus 10, 11.9985 MW at bus 19, 11.9921 MW at bus 24, and 11.892 MW at bus
30 are integrated, overall power losses are minimized. The power losses decreased from
17.599 MW to 9.3651 MW with the use of type-1 DG.
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The proposed method increased bus voltages significantly. Before the installation of the
DG units, the system’s minimum voltage in the base case was approximately 0.995 p.u. This
demonstrates that after integrating type-1 DG at optimal locations and with appropriate
sizing, the voltage profile improved from 0.995 per unit (p.u.) to 1.008 per unit (p.u.), as
shown in Figure 15b.

Scenario II: Considering Type-2 DG

In this case, the DG unit injected both active and reactive power into the power
system. When integrating type-2 DG with the optimal placement and sizing which are
determined using the proposed MFDO method, power losses are reduced by 64.05%, as
shown in Figure 16a. This represents a greater reduction compared to the FDO method,
which decreases losses by 63.488%. It is evident that installing DG units with capacities
of 12.0365–0.4295 j MVA at bus 18, 11.9825–0.9885 j MVA at bus 20, 11.9289–0.501 j MVA
at bus 22, and 11.4951–0.5325 j MVA at bus 30 minimizes total power losses. The power
losses decreased from 17.599 MW to 6.3265 MW due to the integration of type-2 DG into
the power system.

The results presented in Figure 16b show that after the insertion of a type-2 DG with
appropriate size at the optimal locations, the voltage profile improved from 0.995 per unit
(p.u.) to 1.011 per unit (p.u.).
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Scenario III: Considering Type-3 DG

In this case, the DG unit injected only active power into the network while absorbing
reactive power from external sources. Additionally, the proposed MFDO technique is
employed to determine the optimal sizes and appropriate locations for these DG units.

Figure 17a illustrates that integrating DG units with sizes of 11.862 + 2.5843 j MVA,
11.698 + 3.001 j MVA, 11.865 + 1.2832 j MVA, and 11.963 + 1.4835 j MVA at the appropriate
locations of bus 10, bus 17, bus 24, and bus 30, respectively, minimizes overall power
losses. Specifically, the incorporation of type-3 DG has reduced power losses to 9.3751 MW.
Before the DG units were installed, the minimum voltage in the base case system was
approximately 0.995 per unit (p.u.). However, following the installation of type-3 DG at
optimal sizes and locations, the voltage profile improved from 0.995 per unit (p.u.) to
1.004 per unit (p.u.), as shown in Figure 17b.
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Scenario IV: Considering Type-4 DG

In a similar manner, it is evident that when integrating DG units with sizes of
1.6223 MVAR at bus 10, 1.7249 MVAR at bus 15, 1.8198 MVAR at bus 22, and 1.9024 MVAR
at bus 30, the power losses become minimized, as illustrated in Figure 18a. Specifically, the
incorporation of type-4 DG has reduced power losses to 8.165 MW.
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Before the installation of these DG units, the minimum voltage in the base case system
was approximately 0.995 per unit (p.u.). However, after installing type-4 DG units at
optimal sizes and locations, the voltage profile improved from 0.995 to 1.007 per unit (p.u.),
as shown in Figure 18b.

5. Discussion

This section provides a summary of the results, compares them with conventional
methods from other authors, and discusses their interpretation in the context of previous
studies and the working hypotheses. The findings and their implications are also discussed
in this section.

5.1. Comparison of Proposed Method Results with Other Available Methods for the IEEE 14
Bus System

In this section, the IEEE 14-bus benchmark test system has been considered by inte-
grating different types of DGs to implement and analyze the proposed method, assessing
its validity and effectiveness compared to other available methods.

Scenario I: Considering Type-1 DG

In this case, the DG is capable of injecting only active power into the system. Before
the installation of DG units, the system’s minimum voltage under the base case was
approximately 1.001p.u., indicating that some buses exceeded the defined voltage limits. It
is evident that when a DG unit of 11.89 MW is placed at bus 2, overall power losses are
minimized. The active power losses decreased from 13.599 MW to 6.641 MW with the
integration of type-1 DG, as shown in Figure 9a. Furthermore, after incorporating type-1
DG with an appropriate size at optimal locations, which is optimized using the MFDO
technique, the voltage profile improved from 1.001 per unit (p.u.) to 1.032 per unit (p.u.), as
seen in Figure 9b and Table 5.

The integration of DG not only enhanced the voltage profiles of the targeted buses
but also significantly improved the profiles of other weak buses. A comparison of voltage
profiles and power losses using different methods is presented in Table 5 and Figure 19.
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Table 5. Comparison of voltage drops and power losses using type-1 DG for the IEEE 14-bus system.

Performance Parameters
Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MW)/Location - 11.86/9 12.01/10 12.32/13 14.12/14 11.89/2

Active Power Loss (MW) 13.551 10.311 9.4423 9.3827 8.1631 6.641

Power Loss Reduction - 3.24 4.1087 4.1683 5.3879 6.911

Power Loss Reduction (%) - 23.910 30.320 30.760 39.760 50.99

Minimum Voltage (P.U.) 1.001 0.925 0.986 1.011 1.024 1.032

Maximum Voltage (P.U.) 1.080 1.085 1.087 1.089 1.091 1.099
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Scenario II: Considering Type-2 DG

In this scenario, the improvements in the voltage profile and reductions in power
losses are better as compared to the previous case with type-1 DG. This is due to the ability
of this type of DG to inject reactive power, which helps enhance the node voltage profile.
Additionally, it significantly reduces the line current supplied by the grid source, leading to
minimum line losses as a result of reduced current. A comparison of the voltage profile
and power losses using different methods is provided in Table 6 and shown in Figure 20.

Table 6. Comparison of voltage drops and power losses with considering type-2 DG for the IEEE
14-bus system.

Performance Parameters
Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MVA)/Location - 11.85–0.78 j/9 12.52–0.56 j/10 12.49–0.51 j/13 14.65–0.86 j/14 12–0.25 j/10

Active Power Loss (MW) 13.551 8.8759 8.5507 8.3035 7.8555 5.025

Power Loss Reduction - 4.6751 5.0003 5.2475 5.6955 8.526

Power Loss Reduction (%) - 34.500 36.900 38.724 42.030 62.918

Minimum Voltage (P.U.) 1.001 0.936 0.989 1.001 1.002 1.044

Maximum Voltage (P.U.) 1.080 1.091 1.092 1.096 1.099 1.10
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Scenario III: Considering Type-3 DG

In this case, when comparing this scenario to the second one, it is observed that the
percentages of power loss reduction and voltage profile improvement are not much better
than those achieved with type-2 DG. This is due to the reactive power demand absorbed by
this type of DG, which helps improve the node’s voltage profile. However, when compared
to the base case, the results show that the voltage profiles of most buses have improved
and power losses have decreased. A comparison of voltage profiles and power losses using
different methods is presented in Table 7 and Figure 21.

Table 7. Comparison of voltage drops and power losses with considering type-3 DG for the IEEE
14-bus system.

Performance Parameters
Approach

Base
Case

GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MVA)/Location - 11.45 + 1.16 j/9 12.03 + 1.27 j/10 12.19 + 1.34 j/13 14.15 + 1.57 j/14 10 + 1.02 j/8

Active Power Loss (MW) 13.551 10.479 9.3217 9.2133 8.7783 6.702

Power Loss Reduction - 3.072 4.2293 4.3377 4.7727 6.849

Power Loss Reduction (%) - 22.670 31.210 32.010 35.220 50.542

Minimum Voltage (P.U.) 1.001 0.945 0.989 1.002 1.003 1.018

Maximum Voltage (P.U.) 1.080 1.081 1.082 1.084 1.088 1.091
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Scenario IV: Considering Type-4 DG

In this case, when comparing this case to the third scenario, it is determined that the
percentages of power loss reduction and voltage profile improvement are better than those
achieved with type-3 DG in the previous case. A comparison of voltage profiles and power
losses using different methods is provided in Table 8 and Figure 22.

Table 8. Comparison of voltage drops and power losses using type-4 DG for the IEEE 14-bus system.

Performance Parameters
Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MVAR)/Location - 1.843/9 1.683/10 1.568/13 1.502/14 1.142/13

Active Power Loss (MW) 13.551 10.575 9.7676 9.5833 8.2404 6.107

Power Loss Reduction - 2.976 3.7834 3.9677 5.3106 7.44

Power Loss Reduction (%) - 21.961 27.920 29.280 39.190 54.93

Minimum Voltage (P.U.) 1.001 0.915 0.936 0.952 0.957 1.028

Maximum Voltage (P.U.) 1.080 1.081 1.083 1.087 1.092 1.095
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5.2. Results Summary for the IEEE 14-Bus System

This section examines the impact of integrating different types of DG technology
on the voltage profile and power system losses and determines the optimal placement
and sizes using the proposed MFDO technique. The effects on power losses and voltage
variations in different types of DGs such as type-1, type-2, type-3, and type-4 are illustrated
in Figures 9–12, respectively. When comparing type-2 DG with other types, it is evident
that the integration of type-2 DG results in lower power system losses and greater voltage
profile improvements compared to the other types (type-1, type-3, and type-4), as shown
in the figures. Power losses are shown in Figures 23 and 24, while the voltage profile in
Figure 25 provides a better visualization of how type-2 DG achieves lower power losses
and a higher voltage profile than the other types.
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The summary of results for all scenarios is presented in Figure 24a,b. It can be observed
that the integration of type-2 DG into the power system yields better results than the other
types (such as type-1, type-3, and type-4 DG). To verify the validity of the new results
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obtained using the proposed MFDO technique, it is essential to compare them with previous
results from conventional methods. The proposed MFDO method achieved significantly
better outcomes in terms of power loss reduction, as shown in Figure 24b. Specifically,
power losses decreased by 62.874% using the FDO method and by 62.918% with the MFDO
method. Moreover, when applying the proposed optimization approach, the required DG
unit capacity is minimized.

The voltage profile comparison for different scenarios in the IEEE 14-bus test system
is presented in Table 9. Figure 25 illustrates the bus voltage comparisons when using the
conventional methods and the proposed MFDO technique to determine the optimal sizes
and placements while considering type-2 DG. The table shows that, when the proposed
MFDO technique is taken into consideration, all bus voltages have improved and are within
acceptable limits. MATLAB software 2018 is used to implement the proposed system, and
the simulation plots for the voltage profile comparison are shown in Figure 25.

Table 9. Results summary for all types DG scenarios for the IEEE 14-bus system.

Performance Parameters
Scenarios

Base Case Type-1 DG Type-2 DG Type-3 DG Type-4 DG

Active Power Loss (MW) 13.551 6.641 5.025 6.702 6.107
Minimum Voltage (P.U.) 1.001 1.032 1.044 1.018 1.028
Maximum Voltage (P.U.) 1.080 1.099 1.1 1.091 1.095

Voltage Deviation (%) 4.16 3.4 3.2 3.5 3.6
Power Loss Reduction (%) - 50.99% 62.91% 50.54% 54.93%

It is evident that the proposed approach is more effective for integrated DG power
systems in improving the voltage profile. This occurs because the current injected by the
installed DG reduces the line current drawn from the grid source, which in turn decreases
the voltage drop and helps improve both the voltage profile and stability, as shown in
Figure 26 below.
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Table 9 summarizes the power losses and bus voltages for the proposed methods.
Comparing the results of the MFDO method to conventional methods, while considering
different types of DG, is crucial for validating the proposed methodology. Table 9 shows
that the MFDO method achieves greater power loss reductions and voltage profile improve-
ments compared to conventional methods, specifically when considering type-2 DG in the
IEEE 14-bus system. This indicates that when the proposed MFDO optimization approach
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is applied, all bus voltages remain within the acceptable threshold values, power losses are
minimized, and the required DG unit capacities are smaller. As a result, this approach not
only reduces costs but also increases system efficiency.

5.3. Comparison of Proposed Method Results with Other Available Methods for the IEEE 30
Bus System

In this section, the IEEE 30-bus benchmark test system has been considered by inte-
grating different types of DGs for the implementation and analysis to check the proposed
method’s validity and effectiveness compared with other available methods.

Scenario I: Considering Type-1 DG

In this scenario, the values of voltage profile improvements and power loss reductions
are better as compared to the previous base case. The comparison of voltage profile and
power losses with different methods for the IEEE 30-bus system is shown in Table 10 and
Figure 27.

Table 10. Comparison of voltage drops and power losses using type-1 DG for the IEEE 30-bus system.

Performance Parameters
Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MW)/Location -

11.472/10
11.904/10
11.052/19
11.772/24

11.694/10
11.394/15
11.378/20
10.577/30

11.625/10
11.956/10
11.995/22
11.986/30

11.7099/19
11.9937/21
11.9960/24
11.7061/30

11.6631/10
11.9985/19
11.9921/24
11.8920/30

Active Power Loss (MW) 17.599 13.3919 12.2622 12.1851 10.6020 9.3651

Power Loss Reduction - 4.4879 5.6176 5.6947 6.2778 8.2339

Power Loss Reduction (%) - 25.1002 31.4187 31.8499 40.7040 46.786

Minimum Voltage (P.U.) 0.995 0.98 0.988 0.99 1.005 1.008

Maximum Voltage (P.U.) 1.082 1.081 1.082 1.084 1.085 1.086
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Scenario II: Considering Type-2 DG

In this scenario, the improvements in the voltage profile and reductions in power
losses are better as compared to the previous case with type-1 DG. This is due to the ability
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of this type of DG to inject reactive power, which helps enhance the node voltage profile.
Additionally, it significantly reduces the line current supplied by the grid source, leading to
minimum line losses as a result of reduced current. A comparison of the voltage profile
and power losses using different methods is provided in Table 11 and shown in Figure 28.

Table 11. Comparison of voltage drops and power losses with considering type-2 DG for the IEEE
30-bus system.

Performance
Parameters

Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid GA-IPSO
[80]

Proposed
MFDO

Optimal Sizes
(MVA)/Location -

9.038–0.088 j/10
11.112–0.715 j/18
11.748–0.589 j/22
10.008–0.487 j/30

11.88–0.79 j/10
10.88–0.32 j/18
11.56–0.89 j/20
11.53–0.38 j/30

12.02–0.52 j/10
10.86–0.30 j/19
11.91–0.83 j/22
11.95–0.52 j/30

12.01–0.48 j/19
11.94–0.50 j/21
11.91–0.06 j/24
11.36–0.58 j/30

12.0365–0.4295 j/18
11.9825–0.4985 j/20
11.9289–0.0501 j/22
11.4951–0.5325 j/30

Active Power
Loss (MW) 17.599 11.5265 11.1056 11.2099 10.2021 6.3265

Power Loss
Reduction - 6.3533 6.772 6.6699 7.6777 11.2725

Power Loss
Reduction (%) - 35.6967 37.8874 37.3041 42.9406 64.05

Minimum Voltage
(P.U.) 0.995 1.006 0.988 1.002 1.007 1.011

Maximum
Voltage (P.U.) 1.082 1.086 1.087 1.088 1.088 1.09
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Scenario III: Considering Type-3 DG

In this case, when comparing this case to the second scenario, it is found that the
percentages of power loss reduction and voltage profile improvement are not significantly
better than those achieved with type-2 DG. However, compared to the base case, the results
show that the voltage profiles of most buses have improved, and power losses have been
reduced. A comparison of voltage profiles and power losses using different methods is
provided in Table 12 and Figure 29.
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Table 12. Comparison of voltage drops and power losses with considering type-3 DG for the IEEE
30-bus system.

Performance Parameters

Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid GA-IPSO
[80]

Proposed
MFDO

Optimal Sizes
(MVA)/Location -

11.35 + 1.22 j/10
11.47 + 1.17 j/23
11.92 + 2.04 j/24

11.816 + 1.468 j/30

11.474 + 2.159 j/10
11.981 + 0.919 j/17
11.67 + 2.309 j/20

11.349 + 3 j/30

11.83 + 0.001 j/10
11.433 + 3 j/21
11.739 + 3 j/24

11.955 + 0.001 j/30

11.7872 + 2.9609 j/19
11.7548 + 3.002 j/23

12 + 1.3702 j/24
11.8303 + 1.5817 j/30

11.862 + 2.5843 j/10
11.698 + 3.001 j/17

11.865 + 1.2835 j/24
11.963 + 1.4835 j/30

Active Power Loss (MW) 17.599 12.2260 12.1060 11.9500 11.4001 9.3751

Power Loss Reduction - 5.6538 5.7738 5.9298 6.4797 8.2239

Power Loss Reduction (%) - 31.5890 32.2923 33.1648 36.2403 46.729

Minimum Voltage (P.U.) 0.995 0.97 0.98 0.988 1.001 1.004

Maximum Voltage (P.U.) 1.082 1.072 1.074 1.075 1.075 1.076
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Scenario IV: Considering Type-4 DG

In this case, when comparing this case to the third scenario, it is determined that the
percentages of power loss reductions and voltage profile improvements are better than
previous case type-3 DG. The comparison of voltage profile and power losses with different
methods is shown in Table 13 and Figure 30.

Table 13. Comparison of voltage drops and power losses using type-4 DG for the IEEE 30-bus system.

Performance Parameters
Approach

Base Case GA
[77]

PSO
[78]

IPSO
[79]

Hybrid
GA-IPSO [80]

Proposed
MFDO

Optimal Sizes
(MVAR)/Location -

3.0985/10
2.8862/18
3.6878/22
2.5876/30

3.8354/10
3.4763/18
1.9274/20
2.4873/30

2.9349/10
3.9738/19
1.9347/22
2.9454/30

1.9394/19
2.9245/21
1.9184/24
2.9247/30

1.6223/10
1.7249/15
1.8198/22
1.9024/30

Active Power Loss (MW) 17.599 13.7351 12.4463 12.6852 10.7020 8.165

Power Loss Reduction - 4.4879 5.6176 5.6947 6.2778 9.434

Power Loss Reduction (%) - 25.1002 31.4187 31.8499 40.7040 53.605

Minimum Voltage (P.U.) 0.995 0.998 1.002 1.001 1.002 1.007

Maximum Voltage (P.U.) 1.082 1.076 1.078 1.079 1.081 1.082
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5.4. Results Summary for the IEEE 30-Bus System

This section examines the impact of integrating different types of DG technology,
along with their optimal sizes and placements, on the voltage profile and power system
losses. The effects on power losses and voltage variations for various types of DGs such
as type-1, type-2, type-3, and type-4 are illustrated in Figures 15–18, respectively. When
comparing type-2 DG with other types, it is found that integrating type-2 DG results in
lower power system losses and a higher voltage profile improvement ratio compared to the
other types (type-1, type-3, and type-4), as shown in the figures. For better visualization,
the power losses are shown in Figures 31 and 32, while the voltage profile is presented in
Figure 33, demonstrating how type-2 DG achieves lower losses and a higher voltage profile
than the other types.
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using different methods for the IEEE 30-bus system.

The results summary for all scenarios is presented in Figure 32a,b. It can be observed
that the integration of type-2 DG into the power system produces better outcomes than
other types (such as type-1, type-3, and type-4 DG). To verify the validity of the new
results obtained using the proposed MFDO technique, it is important to compare them
with previous results from conventional methods. The proposed MFDO method achieved
much better reductions in power losses, as shown in Figure 32b. Specifically, power losses
decreased by 63.488% using the FDO method and by 64.051% with the proposed MFDO
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method. Additionally, the proposed optimization approach minimizes the required capacity
of DG units.
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The voltage profile comparison for different scenarios in the IEEE 30-bus test system
is presented in Table 14. Figure 33 illustrates the bus voltage comparisons when using
conventional methods and the proposed MFDO technique to determine the optimal sizes
and placements while considering type-2 DG. The table shows that, when the proposed
MFDO technique is taken into consideration, all bus voltages have improved and are within
acceptable limits. MATLAB software is used to implement the proposed system, and the
simulation plots for the voltage profile comparison are shown in Figure 33. It is evident that
the proposed approach is more effective for integrated DG power systems in improving
the voltage profile.
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Table 14. Results summary for all types of DG scenarios for the IEEE 30-bus system.

Performance Parameters

Scenarios

Base Case Type-1
DG

Type-2
DG

Type-3
DG

Type-4
DG

Active Power Loss (MW) 17.559 9.3651 6.3265 9.3751 8.165
Minimum Voltage (P.U.) 0.995 1.008 1.011 1.004 1.007
Maximum Voltage (P.U.) 1.082 1.086 1.090 1.076 1.082

Voltage Deviation (%) 1.9 1.4 1.2 1.5 1.6
Power Loss Reduction (%) - 46.78% 64.05% 46.72% 53.60%

This is because the current injected by the installed DG reduces the line current drawn
from the grid source, which in turn decreases the voltage drop and enhances both the
voltage profile and system stability, as shown in Figure 34 below.
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Table 14 summarizes the power losses and bus voltages for the proposed methods.
Comparing the results of the MFDO method to conventional methods, while considering
different types of DG, is crucial for validating the proposed methodology.

Table 14 shows that the MFDO method achieves greater power loss reductions and
voltage profile improvements compared to conventional methods, specifically when consid-
ering type-2 DG in the IEEE 30-bus system. This indicates that when the proposed MFDO
optimization approach is applied, all bus voltages remain within the acceptable threshold
values, power losses are minimized, and the required DG unit capacities are smaller. As a
result, this approach not only reduces costs but also increases system efficiency.

5.5. Convergence Evaluation

The simulation results demonstrate that the proposed MFDO can provide the desired
optimal solutions with minimal computing time as compared to conventional techniques
such as GA, PSO, IPSO, Hybrid GAIPSO, and original FDO, etc. Tables 15 and 16 show the
parameters for both the conventional and proposed MFDO algorithms, which are set as
follows: maximum iterations = 100, maximum generation (runs) = 60, and population size
(number of scout bees) = 30.

Table 15. Parameters for conventional methods.

Parameters
Conventional Other Methods Parameters

PSO IPSO Hybrid GAIPSO

C1 2 0.5 1.2
C2 2 0.5 1.2

Wmin 0.5 0.5 0.4
Wmax 0.8 0.8 0.9
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Table 15. Cont.

Parameters
Conventional Other Methods Parameters

PSO IPSO Hybrid GAIPSO

Population 100 50 50
Maximum generation (run) 1000 500 200

Number of Swarm 300 200 100
Maximum No. of iterations 400 300 150

No. of Partial Solutions 50 50 30

Table 16. Parameters for proposed methods.

Parameters
Proposed FDO and MFDO Method Parameters

FDO MFDO

Random walk (r) [−1, 1] [0, 1]
Lower Bound (Lb) −2 −2
Upper Bound (Ub) 2 2

Population size (number of scout bees) 30 10
Maximum generation (run) 100 60

Number of dimensions 9 5
Maximum no. of iterations (tmax) 100 100

Weight factor (wf) [1, 0] [0, 0.2]

The convergence characteristics and execution time of the proposed method are sig-
nificantly better than those of conventional methods. The comparison of conventional
methods and the proposed approach with multiple DG units is shown in Table 17 and
Figure 35. Figure 35 illustrates that the convergence rate of the proposed MFDO is higher
than that of the conventional FDO and other methods. This improvement in convergence
is achieved by incorporating the sinc method into the proposed approach, which updates
the f w, which affects the pace value and shrinks the range of w f .

Table 17. Comparison of execution time with conventional and proposed methods.

Various Approaches
Comparison of Execution Time with

Conventional and Proposed Methods

Total Average Time (s)

LF 108.036
GA 28.795
PSO 21.940
IPSO 19.864

Hybrid GA + IPSO 22.119
Proposed Method (MFDO) 10.021
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6. Conclusions and Recommendations

The integration of modern renewable energy sources based on distributed generation
(DG) into electrical distribution networks plays an important role in addressing power sys-
tem profile issues related to increasing load demands, poor supply quality, and unreliability.
However, the arbitrary installation of DG in power systems can lead to several adverse
effects, including voltage fluctuations, increased power losses, frequency variations, and
potential instability of the power system. Proper integration of DG with appropriate sizing
and placement offers a credible solution to various challenges in distributed networks. To
maximize the techno-economic benefits of DG, it is essential to allocate the DG units at
optimal locations and sizes. This research proposes a computational intelligence approach
based on the Modified Fitness-Dependent Optimizer (MFDO) technique to identify suitable
sizes and optimal placements for newly introduced DG within a network. The approach
utilizes an optimized multi-objective framework that includes parameters such as voltage
profile improvement, power loss minimization, and stability enhancement. The proposed
method is robust, efficient, and converges faster than conventional techniques, making
it an inspiring solution for efficient optimization. The performance and feasibility of the
proposed framework are analyzed and tested on standard 14-bus and 30-bus benchmark
test systems using MATLAB. The results indicate that, following the integration of DG with
appropriate sizes at optimal locations, the power losses in the 14-bus system are reduced
by up to 5.025 MW (reduction is in percentage approximately by up to 62.91%), and the
voltage profile improves from 1.001 per unit (p.u.) to 1.044 per unit (p.u.). Similarly, in the
30-bus system, the power losses decrease by up to 11.2725 MW (reduction is in percentage
approximately by up to 64.051%), with the voltage profile improving from 0.955 per unit
(p.u.) to 1.088 per unit (p.u.). These findings demonstrate that the proposed method
significantly enhances the performance of the power system compared to conventional
methods, resulting in substantial reductions in power losses and notable improvements in
the voltage profiles of network buses through the integration of multiple DG units with
appropriate sizes at optimal locations.

Future Recommendations

The various aspects of the work presented in this paper can be expanded for future
research, with several potential directions outlined below:

• Future studies could explore the application of this method with new objective func-
tions and nature-inspired techniques. The efficiency of the proposed method may also
be enhanced through potential modifications and new application areas.

• A new variant of the Fitness-Dependent Optimizer (FDO) could be developed or
utilized to address multi-objective problems. Researchers may also be interested in
investigating the hybridization of new versions of FDO with different parameters.
Furthermore, the performance of the hybridized version of FDO can be evaluated to
assess the influence of objective evaluation.

• The performance of the proposed method can be further improved by hybridizing
various optimization algorithms and implementing new fitness-dependent strategies
to enhance convergence and reduce simulation time.

• This research can be extended to incorporate additional objective functions relevant to
power systems in multi-objective optimization problems, such as demand response,
economic cost minimization, harmonic reduction maximization, frequency regulation
maximization, and environmental emission reduction.

• This work can be practically applied to real power systems, providing greater flexibility
in addressing real-time issues. The proposed method could be adopted by generation
companies (GENCOs) and distribution companies (DISCOs) with necessary modifica-
tions to their energy management systems. It is also advisable to investigate variability
issues in real-time power networks.
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Abbreviations

DG Distributed Generator
RES Renewable Energy Resources
PS Power System
T&D Transmission and Distribution
DN Distribution Network
LLRI Line Loss Reduction Index
LSF Loss Sensitivity Factor
OPF Optimal Power Flow
PLI Power Loss Index
PLRI Real Power Loss Reduction Index
QLI Reactive Power Reduction Index
VSI Voltage Sensitivity Indexes
CSI Combined Sensitivity Indexes
GA Genetic Algorithm
PSO Particle Swarm Optimization
IPSO Improved Particle Swarm Optimization
HGAIPSO Hybrid Genetic Algorithm Improved Particle Swarm Optimization
FDO Fitness-Dependent Optimizer
MFDO Modified Fitness-Dependent Optimizer
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