Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid for Direct Absorption Solar Collector
Abstract
:1. Introduction
2. Experimental Method
2.1. Preparation of Fe3O4/ATO Hybrid Nanofluid
2.2. Optical Property Measurement Method
2.3. Experimental Setup for Photothermal Conversion
3. Results and Discussion
3.1. Optical Characteristics of Fe3O4, ATO, and Fe3O4/ATO Hybrid Nanofluid
3.2. Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | Time (s) | ||
Area (m2) | |||
Absorbance | Greek symbols | ||
ATO | Antimony-doped tin oxide | Efficiency | |
Heat dissipation rate (1/s) | Wavelength (nm) | ||
Specific heat (J/kg·°C) | Interface reflectance | ||
EG | ethylene glycol | ||
Incident intensity (W/m2) | Subscript | ||
Extinction coefficient (1/m) | Ambient | ||
Optical path length (m) | AM1.5 | Am 1.5 global | |
Mass (kg) | Bottom | ||
Nanofluid | Equilibrium stage | ||
Nanoparticle | Middle | ||
Reflectance | Photothermal conversion | ||
Solar weight absorption coefficient | Top | ||
Temperature () | Receiving | ||
Transmittance |
References
- Aissa, A.; Qasem, N.A.A.; Mourad, A.; Laidoudi, H.; Younis, O.; Guedri, K.; Alazzam, A. A Review of the Enhancement of Solar Thermal Collectors Using Nanofluids and Turbulators. Appl. Therm. Eng. 2023, 220, 119663. [Google Scholar] [CrossRef]
- Miglioli, A.; Aste, N.; Del Pero, C.; Leonforte, F. Photovoltaic-Thermal Solar-Assisted Heat Pump Systems for Building Applications: Integration and Design Methods. Energy Built Environ. 2023, 4, 39–56. [Google Scholar] [CrossRef]
- Saini, P.; Ghasemi, M.; Arpagaus, C.; Bless, F.; Bertsch, S.; Zhang, X. Techno-Economic Comparative Analysis of Solar Thermal Collectors and High-Temperature Heat Pumps for Industrial Steam Generation. Energy Convers. Manag. 2023, 277, 116623. [Google Scholar] [CrossRef]
- Vahidhosseini, S.M.; Rashidi, S.; Hsu, S.H.; Yan, W.M.; Rashidi, A. Integration of Solar Thermal Collectors and Heat Pumps with Thermal Energy Storage Systems for Building Energy Demand Reduction: A Comprehensive Review. J. Energy Storage 2024, 95, 112568. [Google Scholar] [CrossRef]
- Qin, C.; Kim, J.B.; Lee, B.J. Performance Analysis of a Direct-Absorption Parabolic-Trough Solar Collector Using Plasmonic Nanofluids. Renew. Energy 2019, 143, 24–33. [Google Scholar] [CrossRef]
- Howe, M.L.; Paul, T.C.; Khan, J.A. Radiative Properties of Al2O3 Nanoparticles Enhanced Ionic Liquids (NEILs) for Direct Absorption Solar Collectors. Sol. Energy Mater. Sol. Cells 2021, 232, 111327. [Google Scholar] [CrossRef]
- Vital, C.V.P.; Farooq, S.; de Araujo, R.E.; Rativa, D.; Gómez-Malagón, L.A. Numerical Assessment of Transition Metal Nitrides Nanofluids for Improved Performance of Direct Absorption Solar Collectors. Appl. Therm. Eng. 2021, 190, 116799. [Google Scholar] [CrossRef]
- Sreekumar, S.; Joseph, A.; Kumar, C.S.S.; Thomas, S.; Sujith Kumar, C.S.; Thomas, S. Investigation on Influence of Antimony Tin Oxide/Silver Nanofluid on Direct Absorption Parabolic Solar Collector. J. Clean. Prod. 2020, 249, 119378. [Google Scholar] [CrossRef]
- Gupta, H.K.; Agrawal, G.D.; Mathur, J. An Experimental Investigation of a Low Temperature Al2O3-H2O Nanofluid Based Direct Absorption Solar Collector. Solar Energy 2015, 118, 390–396. [Google Scholar] [CrossRef]
- El-dabe, N.T.M.; Abou-zeid, M.Y.; Younis, Y.M. Magnetohydrodynamic Peristaltic Flow of Jeffry Nanofluid with Heat Transfer through a Porous Medium in a Vertical Tube. Appl. Math. Inf. Sci. 2017, 11, 1097–1103. [Google Scholar] [CrossRef]
- Abuiyada, A.; Eldabe, N.T.; Abouzeid, M.; Elshaboury, S. Significance of Heat Source and Activation Energy on MHD Peristaltic Transport of Couple Stress Hyperbolic Tangent Nanofluid through an Inclined Tapered Asymmetric Channel. Egypt. J. Chem. 2023, 66, 417–436. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A. Nanofluid-Based Direct Absorption Solar Collector. J. Renew. Sustain. Energy 2010, 2, 33102. [Google Scholar] [CrossRef]
- Kalidoss, P.; Venkatachalapathy, S.G.; Suresh, S. Photothermal Performance of Hybrid Nanofluids with Different Base Fluids for Solar Energy Applications. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–16. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Sani, E.; Żyła, G.; Lugo, L. Tailored Silver/Graphene Nanoplatelet Hybrid Nanofluids for Solar Applications. J. Mol. Liq. 2019, 296, 112007. [Google Scholar] [CrossRef]
- Huminic, G.; Vărdaru, A.; Huminic, A.; Fleacă, C.; Dumitrache, F. Broad-Band Absorption and Photo-Thermal Conversion Characteristics of RGO-Ag Hybrid Nanofluids. J. Mol. Liq. 2024, 408, 125347. [Google Scholar] [CrossRef]
- Fang, J.; Xuan, Y. Investigation of Optical Absorption and Photothermal Conversion Characteristics of Binary CuO/ZnO Nanofluids. RSC Adv. 2017, 7, 56023–56033. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, L.; Zhou, X.; Wu, X. Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids. Nanomaterials 2023, 13, 1962. [Google Scholar] [CrossRef]
- Ham, J.; Shin, Y.; Cho, H. Comparison of Thermal Performance between a Surface and a Volumetric Absorption Solar Collector Using Water and Fe3O4 Nanofluid. Energy 2022, 239, 122282. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Yan, S.; Yang, X.; Tian, R.; Zhao, X. Stability, Thermal Conductivity and Photothermal Conversion Performance of Water-Based ZnO Nanofluids. J. Therm. Sci. 2021, 30, 1581–1595. [Google Scholar] [CrossRef]
- Shin, Y.; Ham, J.; Boldoo, T.; Cho, H. Magnetic Effect on the Enhancement of Photo-Thermal Energy Conversion Efficiency of MWCNT/Fe3O4 Hybrid Nanofluid. Sol. Energy Mater. Sol. Cells 2020, 215, 110635. [Google Scholar] [CrossRef]
- Li, X.; Zeng, G.; Lei, X. The Stability, Optical Properties and Solar-Thermal Conversion Performance of SiC-MWCNTs Hybrid Nanofluids for the Direct Absorption Solar Collector (DASC) Application. Sol. Energy Mater. Sol. Cells 2020, 206, 110323. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, R.; Shang, L.; Wang, Z. Graphene Oxide/Multi-walled Carbon Nanotube—Therminol® 66 Hybrid Nanofluids for Low-to-medium Temperature Volumetric Solar Collectors. Int. J. Energy Res. 2020, 44, 7216–7228. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Liu, J.; Fang, X.; Zhang, Z. Optical Absorption Property and Photo-Thermal Conversion Performance of Graphene Oxide/Water Nanofluids with Excellent Dispersion Stability. Sol. Energy 2017, 148, 17–24. [Google Scholar] [CrossRef]
- Zuo, X.; Yang, W.; Shi, M.; Yan, H.; Guan, C.; Wu, S.; Zhang, Z.; Li, X.; Li, Z. Experimental Investigation on Photothermal Conversion Properties of Lampblack Ink Nanofluids. Sol. Energy 2021, 218, 1–10. [Google Scholar] [CrossRef]
- Ni, Z.; Cao, X.; Wang, X.; Zhou, S.; Zhang, C.; Xu, B.; Ni, Y. Facile Synthesis of Copper (I) Oxide Nanochains and the Photo-Thermal Conversion Performance of Its Nanofluids. Coatings 2021, 11, 749. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Wang, L.; Xie, H.; Yu, W. Mesoporous CuO with Full Spectrum Absorption for Photothermal Conversion in Direct Absorption Solar Collectors. Sol. Energy 2020, 201, 628–637. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Luo, B.; Wei, K.; Zeng, G. The MXene/Water Nanofluids with High Stability and Photo-Thermal Conversion for Direct Absorption Solar Collectors: A Comparative Study. Energy 2021, 227, 120483. [Google Scholar] [CrossRef]
- Tong, Y.; Ham, J.; Cho, H. Investigation of Thermo-Optical Properties and Photothermal Conversion Performance of MWCNT, Fe3O4, and ATO Nanofluid for Volumetric Absorption Solar Collector. Appl. Therm. Eng. 2024, 246, 123005. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, M.; Yan, H.; Zhou, P.; Chen, X.Y. Enhanced Solar Thermal Conversion Performance of Plasmonic Gold Dimer Nanofluids. Appl. Therm. Eng. 2020, 178, 115561. [Google Scholar] [CrossRef]
- Shang, L.; Qu, J.; Wang, Z.; Zhang, M.; Li, C. Optical Absorption Property and Photo-Thermal Conversion Performance of Ag@Al2O3 Plasmonic Nanofluids with Al2O3 Nano-Shell Fabricated by Atomic Layer Deposition. J. Mol. Liq. 2021, 326, 115388. [Google Scholar] [CrossRef]
- Joseph, A.; Sreekumar, S.; Kumar, C.S.S.; Thomas, S. Optimisation of Thermo-Optical Properties of SiO2/Ag–CuO Nanofluid for Direct Absorption Solar Collectors. J. Mol. Liq. 2019, 296, 111986. [Google Scholar] [CrossRef]
- Hazra, S.K.; Michael, M.; Nandi, T.K. Investigations on Optical and Photo-Thermal Conversion Characteristics of BN-EG and BN/CB-EG Hybrid Nanofluids for Applications in Direct Absorption Solar Collectors. Sol. Energy Mater. Sol. Cells 2021, 230, 111245. [Google Scholar] [CrossRef]
- Tong, Y.; Boldoo, T.; Ham, J.; Cho, H. Improvement of Photo-Thermal Energy Conversion Performance of MWCNT/Fe3O4 Hybrid Nanofluid Compared to Fe3O4 Nanofluid. Energy 2020, 196, 117086. [Google Scholar] [CrossRef]
- Wang, R.; Xing, L.; Ha, Y.; Zhong, P.; Wang, Z.; Cao, Y.; Li, Z. Photothermal Conversion and Thermal Management of Magnetic Plasmonic Fe3O4@ Au Nanofluids. Solar RRL 2023, 13, 2300269. [Google Scholar] [CrossRef]
- Qu, D.; Cheng, L.; Bao, Y.; Gao, Y.; Zheng, X.; Qin, G. Enhanced Optical Absorption and Solar Steam Generation of CB-ATO Hybrid Nanofluids. Renew. Energy 2022, 199, 509–516. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, W.; Yu, L.; Chen, M.; Zheng, X.; Qin, G. Tunable Optical Properties of ATO-CuO Hybrid Nanofluids and the Application as Spectral Beam Splitters. Energy 2023, 289, 129964. [Google Scholar] [CrossRef]
- Xu, Y.-Y.; Zhou, M.; Geng, H.-J.; Hao, J.-J.; Ou, Q.-Q.; Qi, S.-D.; Chen, H.-L.; Chen, X.-G. A Simplified Method for Synthesis of Fe3O4@ PAA Nanoparticles and Its Application for the Removal of Basic Dyes. Appl. Surf. Sci. 2012, 258, 3897–3902. [Google Scholar] [CrossRef]
- ASTM G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- Qu, J.; Zhang, R.; Wang, Z.; Wang, Q. Photo-Thermal Conversion Properties of Hybrid CuO-MWCNT/H2O Nanofluids for Direct Solar Thermal Energy Harvest. Appl. Therm. Eng. 2019, 147, 390–398. [Google Scholar] [CrossRef]
- Struchalin, P.G.; Yunin, V.S.; Kutsenko, K.V.; Nikolaev, O.V.; Vologzhannikova, A.A.; Shevelyova, M.P.; Gorbacheva, O.S.; Balakin, B.V. Performance of a Tubular Direct Absorption Solar Collector with a Carbon-Based Nanofluid. Int. J. Heat. Mass. Transf. 2021, 179, 121717. [Google Scholar] [CrossRef]
- Bortolato, M.; Dugaria, S.; Agresti, F.; Barison, S.; Fedele, L.; Sani, E.; Del Col, D. Investigation of a Single Wall Carbon Nanohorn-Based Nanofluid in a Full-Scale Direct Absorption Parabolic Trough Solar Collector. Energy Convers. Manag. 2017, 150, 693–703. [Google Scholar] [CrossRef]
NP | Fe3O4 | ATO |
---|---|---|
Purity | 99% | |
Color | Dark brown | Blue |
Outer diameter | 5–20 nm | |
Thermal conductivity | ||
True density | 5.1 g/cm3 | 6.8 g/cm3 |
Manufacturing method | Coprecipitation | 50% aqua solution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.; Kim, H.; Cho, H. Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid for Direct Absorption Solar Collector. Energies 2024, 17, 5059. https://doi.org/10.3390/en17205059
Ham J, Kim H, Cho H. Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid for Direct Absorption Solar Collector. Energies. 2024; 17(20):5059. https://doi.org/10.3390/en17205059
Chicago/Turabian StyleHam, Jeonggyun, Hyemin Kim, and Honghyun Cho. 2024. "Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid for Direct Absorption Solar Collector" Energies 17, no. 20: 5059. https://doi.org/10.3390/en17205059
APA StyleHam, J., Kim, H., & Cho, H. (2024). Photothermal Conversion Performance of Fe3O4/ATO Hybrid Nanofluid for Direct Absorption Solar Collector. Energies, 17(20), 5059. https://doi.org/10.3390/en17205059