Influence of Blending Ratio on Spray Characteristics of Gasoline–Hydrogenated Catalytic Biodiesel Blended Fuel
Abstract
:1. Introduction
2. Simulation Model Establishment and Verification
2.1. Bullet-Capacity Model
2.2. Gasoline and HCB Component Selection
2.3. Spray Model
2.4. Mesh Independence Verification and Mesh Density Selection
2.5. Model Verification
2.6. Simulation Condition Setting
3. Analysis and Discussion of the Results
3.1. Effect of Mixing Ratio on Spray Penetration Distance
3.2. Effect of Mixing Ratio on SMD
3.3. Effect of Mixing Ratio on Velocity Field
3.4. Effect of Mixing Ratio on Concentration Field
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Law, C.K. Fuel Options for Next-Generation Chemical Propulsion. Expert Opin. Drug Discov. 2009, 4, 823–836. [Google Scholar] [CrossRef]
- Shao, Z.; Yi, B. Developing Trend and Present Status of Hydrogen Energy and Fuel Cell Development. Bull. Chin. Acad. Sci. 2019, 34, 469–477. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. The outlook for fuels for internal combustion engines. Int. J. Engine Res. 2014, 15, 383–398. [Google Scholar] [CrossRef]
- García, M.T.; Aguilar, F.J.J.-E.; Lencero, T.S. Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode. Energy 2009, 34, 159–171. [Google Scholar] [CrossRef]
- Manente, V.; Johansson, B.; Cannella, W. Gasoline partially premixed combustion, the future of internal combustion engines. Int. J. Engine Res. 2011, 12, 194–208. [Google Scholar] [CrossRef]
- Dempsey, A.B.; Curran, S.J.; Wagner, R.M. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification. Int. J. Engine Res. 2016, 17, 897–917. [Google Scholar] [CrossRef]
- Kalghatgi, G.T.; Risberg, P.; Ångström, H.-E. Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion. In Proceedings of the SAE Technical Paper Series: SAE International, Toronto, OB, Canada, 16–19 October 2006; pp. 1–14. [Google Scholar] [CrossRef]
- Yang, R.; Yan, Y.; Sun, X.; Wang, Q.; Zhang, Y.; Fu, J.; Liu, Z. Experimental Study on Combustion and Emissions of A Gasoline Compression Ignition Engine. Chin. Intern. Combust. Engine Eng. 2022, 43, 54–60. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, Q. Research on the Oxidation and Combustion Mechanism of Gasoline/Hydrogenated Catalytic Biodiesel Blends over Low-To-Intermediate Temperature. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2022. [Google Scholar] [CrossRef]
- Zeraati-Rezaei, S.; Al-Qahtani, Y.; Xu, H. Investigation of hot-EGR and low pressure injection strategy for a Dieseline fuelled PCI engine. Fuel 2017, 207, 165–178. [Google Scholar] [CrossRef]
- Rezaei, S.Z.; Zhang, F.; Xu, H.; Ghafourian, A.; Herreros, J.M.; Shuai, S. Investigation of two-stage split-injection strategies for a Dieseline fuelled PPCI engine. Fuel 2013, 107, 299–308. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, H.; Rezaei, S.Z.; Kalghatgi, G.; Shuai, S.-J. Combustion and Emission Characteristics of a PPCI Engine Fuelled with Dieseline. In Proceedings of the SAE 2012 World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012. [Google Scholar] [CrossRef]
- Kim, D.; Bae, C. Application of double-injection strategy on gasoline compression ignition engine under low load condition. Fuel 2017, 203, 792–801. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.P.; Zhao, H.; Cai, T.F.; Fu, H.; Zhan, J.H. Research progress of synthesis of three generations biodiesel. Chem. Eng. 2013, 27, 38–41. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, W.; Luo, J.; Tian, H.; Sun, J.; Zou, Z. Recent advances in microwave-intensified transesterification for biodiesel preparation. Chem. Ind. Eng. Prog. 2022, 41, 5145–5154. (In Chinese) [Google Scholar] [CrossRef]
- Anil, N.; Rao, P.K.; Sarkar, A.; Kubavat, J.; Vadivel, S.; Manwar, N.R.; Paul, B. Advancements in sustainable biodiesel production: A comprehensive review of bio-waste derived catalysts. Energy Convers. Manag. 2024, 318, 118884. [Google Scholar] [CrossRef]
- Li, B. Optical Study on Spray Combustion and Soot Formation of Gasoline/Hydrogenated Catalytic Biodiesel Blends. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Adams, C.A.; Loeper, P.; Krieger, R.; Andrie, M.J.; Foster, D.E. Effects of biodiesel–gasoline blends on gasoline direct-injection compression ignition (GCI) combustion. Fuel 2013, 111, 784–790. [Google Scholar] [CrossRef]
- Putrasari, Y.; Lim, O. A study on combustion and emission of GCI engines fueled with gasoline-biodiesel blends. Fuel 2017, 189, 141–154. [Google Scholar] [CrossRef]
- Zhong, W.; Li, B.; He, Z.; Xuan, T.; Lu, P.; Wang, Q. Experimental study on spray and combustion of gasoline/hydrogenated catalytic biodiesel blends in a constant volume combustion chamber aimed for GCI engines. Fuel 2019, 253, 129–138. [Google Scholar] [CrossRef]
- Leng, X.; Li, M.; He, Z.; Zhang, Y.; Zhong, W.; Xuan, T.; Duan, L.; Wang, P. Combustion characteristics of engine fueled by gasoline/hydrogenated biodiesel blend. Harbin Eng. Univ. 2020, 41, 1196–1202. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, L.; He, Z.; Jia, M.; Leng, X.; Zhong, W.; Qian, Y.; Lu, X. Effect of Hydrogenation Catalyzed Biodiesel on Combustion and Emissions of GCI Engines. Chin. Intern. Combust. Engine Eng. 2020, 38, 119–125. [Google Scholar]
- Yuan, W.; Liao, J.; Li, B.; Zhong, W. Experimental Study on Spray Characteristics of Gasoline/Hydrogenated Catalytic Biodiesel under GCI Conditions. J. Chem. 2020, 2020, 4285460. [Google Scholar] [CrossRef]
- Zhong, W.; Xiang, Q.; Pachiannan, T.; Mahmoud, N.M.; Li, B.; He, Z.; Wang, Q.; Sun, J. Experimental study on in-flame soot formation and soot emission characteristics of gasoline/hydrogenated catalytic biodiesel blends. Fuel 2021, 289, 119813. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Tamilselvan, P.; Jiang, C.; He, Z.; Zhong, W.; Qian, Y.; Wang, Q.; Lu, X. Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends. Energy 2019, 187, 115931. [Google Scholar] [CrossRef]
- Xu, M.; Jiang, P.; Zhong, W.; Liu, X.; Cao, L.; Wang, Q. An optical investigation on the effects of split-injection on hydrogenated catalytic biodiesel/gasoline dual-fuel engine under cold start conditions. Appl. Therm. Eng. 2024, 236, 121707. [Google Scholar] [CrossRef]
- Li, M. A Numerical Study on Split Injection Strategies for Internal Combustion Engines Fueled with Gasoline/Hydrogenated Catalytic Biodiesel Blends. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Zhong, W.; Lai, S.; Yuan, Q.; Wang, W.; Xu, R.; He, Z.; Wang, Q. Construction and verification of reduced mechanism of gasoline/hydrogenated catalytic biodiesel blends. J. Jiangsu Univ. Nat. Sci. Ed. 2023, 44, 588–598. (In Chinese) [Google Scholar] [CrossRef]
- Zhong, W.; Mahmoud, N.M.; Wang, Q. Numerical study of spray combustion and soot emission of gasoline–biodiesel fuel under gasoline compression ignition-relevant conditions. Fuel 2022, 310, 122293. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Z.; Yuan, W.; Hou, Y. Effect of injection pressure on biodiesel spray characteristics. J. Shaoyang Univ. (Nat. Sci. Ed.) 2020, 17, 50–60. (In Chinese) [Google Scholar]
- Amsden, A.A.; O’Rourke, P.J.; Butler, T.D. KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays; NASA Sti/Recon Technical Report N.; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1989. [Google Scholar] [CrossRef]
- Zhong, W.; Tamilselvan, P.; Wang, Q.; He, Z.; Feng, H.; Yu, X. Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions. Energy 2018, 153, 349–358. [Google Scholar] [CrossRef]
Fuel | ||||||||
---|---|---|---|---|---|---|---|---|
Fuel | Density (20 °C) /(Kg/m3) | Kinematic Viscosity (20 °C /(mm2/s) | Sulfur Content /(mg/Kg) | Oxygen Content /% | Distillation Temperature (90%)/°C | Cetane Number | Low Calorific Value /(MJ/Kg) | Solidifying Point /°C |
Diesel | 839 | 5.8 | ≤10 | 0 | 355 | 49 | 38 | −5 |
HCB | 781.6 | 6.08 | ≤2 | 0 | 296 | 103 | 44 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xie, D.; Fu, J.; Huang, X. Influence of Blending Ratio on Spray Characteristics of Gasoline–Hydrogenated Catalytic Biodiesel Blended Fuel. Energies 2024, 17, 5070. https://doi.org/10.3390/en17205070
Zhou Y, Xie D, Fu J, Huang X. Influence of Blending Ratio on Spray Characteristics of Gasoline–Hydrogenated Catalytic Biodiesel Blended Fuel. Energies. 2024; 17(20):5070. https://doi.org/10.3390/en17205070
Chicago/Turabian StyleZhou, Yufei, Donghe Xie, Jun Fu, and Xueliang Huang. 2024. "Influence of Blending Ratio on Spray Characteristics of Gasoline–Hydrogenated Catalytic Biodiesel Blended Fuel" Energies 17, no. 20: 5070. https://doi.org/10.3390/en17205070
APA StyleZhou, Y., Xie, D., Fu, J., & Huang, X. (2024). Influence of Blending Ratio on Spray Characteristics of Gasoline–Hydrogenated Catalytic Biodiesel Blended Fuel. Energies, 17(20), 5070. https://doi.org/10.3390/en17205070