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Abstract: Land use and land cover change (LUCC) significantly influences the dynamics of carbon
storage in thin terrestrial ecosystems. Investigating the interplay between land use alterations and
carbon sequestration is crucial for refining regional land use configurations, sustaining the regional
carbon balance, and augmenting regional carbon storage. Using land use data from the Pearl River
Delta Urban Agglomeration (PRDUA) from 2010 to 2020, this study employed PLUS-InVEST models
to analyze the spatiotemporal dynamics of land use and carbon storage. Projections for the years
2030, 2040, and 2050 were performed under three distinct developmental scenarios, namely, natural
development (ND), city priority development (CPD), and ecological protection development (EPD),
to forecast changes in land use and carbon storage. The geographic detector model was leveraged to
dissect the determinants of the spatial and temporal variability of carbon storage, offering pertinent
recommendations. The results showed that (1) during 2010–2020, the carbon storage in the PRDUA
showed a decreasing trend, with a total decrease of 9.52 × 106 Mg, and the spatial distribution of
carbon density in the urban agglomeration was imbalanced and showed an overall trend in increasing
from the center to the periphery. (2) Clear differences in carbon storage were observed among the
three development scenarios of the PRDUA between 2030 and 2050. Only the EPD scenario achieved
an increase in carbon storage of 1.10 × 106 Mg, and it was the scenario with the greatest potential for
carbon sequestration. (3) Among the drivers of the evolution of spatial land use patterns, population,
the normalized difference vegetation index (NDVI), and distance to the railway had the greatest
influence on LUCC. (4) The annual average temperature, annual average rainfall, and GDP exerted
a significant influence on the spatiotemporal dynamics of carbon storage in the PRDUA, and the
interactions between the 15 drivers and changes in carbon storage predominantly manifested as
nonlinear and double-factor enhancements. The results provide a theoretical basis for future spatial
planning and achieving carbon neutrality in the PRDUA.

Keywords: carbon storage; PLUS-InVEST model; LUCC; geographic detector; multi-scenario simulation

1. Introduction

Global climate change has received considerable attention in recent years, with green-
house gas (GHG) emissions, particularly CO2, being the main drivers [1]. In 2015, the
United Nations introduced the sustainable development goals (SDGs), an ambitious set of
17 goals and 167 specific targets, to address a wide array of global challenges, including
climate action [2]. Against this backdrop, the Chinese government pledged to actively
participate in global climate governance based on its proposal of a double-carbon target
at the 2020 UN General Assembly designed to reach peak carbon emissions by 2030 and
achieve carbon neutrality by 2060 [1]. Carbon storage denotes the total carbon content
of a specific region or ecosystem. Increasing carbon storage in terrestrial ecosystems can
effectively reduce atmospheric CO2 concentrations [3]. Economic development has induced
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shifts in land use patterns globally, with the diversity of societal needs and environmental
spatial heterogeneity fostering increasingly intricate interactions among ecosystem ser-
vices that impact carbon sequestration in terrestrial ecosystems and impede sustainable
regional development [4–6]. As urban construction land expands, significant areas of forest,
cropland, and grassland ecosystems with high carbon sequestration capabilities have been
encroached upon, resulting in escalating carbon stock loss within urban ecosystems [7].
Consequently, the rational optimization of land resources is essential for achieving the
objectives of land use structure and spatial optimization, enhancing land use efficiency, and
combating climate change [8,9]. The simulation of various development scenarios in policy
intervention contexts, along with the prediction of future land use and carbon storage
changes, allows for the analysis and comparison of differences in simulation results. This
provides valuable insights for the study of the ecosystem’s carbon balance and is crucial
for achieving carbon neutrality goals.

Carbon in terrestrial ecosystems mainly originates from above-and belowground
biomass, soil, and dead organic matter, and it is significantly influenced by both natural
and human-induced factors [10]. Among these factors, human activities, particularly
deforestation and the expansion of built-up areas, have the greatest impact on ecosystem
carbon storage through shifts in land use patterns and intensities [11,12]. Currently, many
scholars have conducted extensive research on carbon storage estimations, and ecosystem
carbon storage estimation methods can be broadly classified into two categories: field
sampling and modeling [13,14]. Field sampling estimates and analyzes carbon storage by
collecting samples from different land use types, landforms, and soil types. This method is
highly accurate but requires significant resources, making it challenging to reflect long-term
and large-scale changes in carbon storage [15]. Modeling estimates carbon storage by
acquiring regional land use data via remote satellite sensing to calculate carbon density
in the study area [16]. Modeling has become the principal method for calculating carbon
sinks, owing to its high efficiency and wide applicability.

The most commonly used models for estimating carbon storage include the Carnegie–
Ames–Stanford approach (CASA), Carbon and Exchange between Vegetation, Soil, and
Atmosphere (CEVSA), and the integrated valuation of ecosystem services and trade-offs
(InVEST) [17–19]. InVEST is widely used in multiscale and multi-objective carbon storage
assessment studies because of its multi-scenario analysis and time-dynamic features. It
is also used when the study area encompasses a range of geographical units, including
provinces [20], cities [21], counties [22], agricultural land [23], grasslands [24], forests [25],
wetlands [26], and other major ecosystems. The prediction of future spatial distributions
of carbon storage necessitates the application of a spatial simulation analysis based on
land use types. Many studies have been conducted in this field, and the CA-Markov [27],
FLUS [28], and CLUE-S [29] models have been developed to simulate the temporal and
spatial dynamic evolution of land use patches. However, these models have demonstrated
an insufficient ability to evolve spatiotemporal dynamics. The patch-generating land use
simulation (PLUS) model, which is based on a multiclass patch-generation strategy, cannot
effectively solve or simulate the complex evolution of multiple classes and scenarios [30].

The integration of the PLUS and InVEST models overcomes their individual limita-
tions, such as the PLUS model’s lack of carbon storage calculations and the InVEST model’s
dependence on multiyear land use data. This approach also enhances the prediction of
future land carbon storage dynamics, thereby offering valuable decision-making support
for sustainable urban development [31,32]. However, several research gaps remain in
the current literature that warrant further investigation. First, current research utilizing
the PLUS-InVEST model predominantly focuses on individual provinces or cities, which
indicates the need for a more thorough examination of spatiotemporal heterogeneity across
urban agglomerations. Second, existing studies have predominantly focused on analyzing
and forecasting the patterns of land use and land cover change (LUCC) and carbon storage
variations, while the underlying drivers of these changes are poorly understood.
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To address the identified research gaps, more thorough examinations of the spa-
tiotemporal heterogeneity within urban agglomerations and further investigations of the
underlying drivers of carbon storage are required. Therefore, this study concentrates on the
Pearl River Delta Urban Agglomeration (PRDUA), a region in China noted for its economic
vitality and land resource shortages. By integrating the PLUS and InVEST models, this
research develops three distinct scenarios—natural development (ND), city priority devel-
opment (CPD), and ecological protection development (EPD)—to simulate and analyze the
spatial and temporal dynamics of land use and carbon storage over a 30-year projection
period. Furthermore, the geographic detector model and the LEAS module of the PLUS
model were utilized to dissect the driving mechanisms behind LUCC and carbon storage
variations within the PRDUA, respectively, and their interrelationships were explored in
greater depth. The results of this study ensure a systematic and structured approach to
investigate the dynamics of LUCC and its implications for carbon storage and will provide
a basis for the construction of the future urban and ecological planning pattern of the
PRDUA and the realization of China’s “Carbon Neutral, Carbon Peak” goal.

The remainder of this paper is structured as illustrated in Figure 1.
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2. Materials and Methods
2.1. Study Area

The PRDUA is situated in the south-central region of Guangdong Province, China,
spanning latitudes 20◦13′ to 25◦31′ N and longitudes 109◦39′ E to 117◦19′ E. It encompasses
a total area of approximately 56,000 km2 and includes nine cities: Guangzhou, Shenzhen,
Foshan, Dongguan, Huizhou, Zhuhai, Zhongshan, Jiangmen, and Zhaoqing (Figure 2).
The PRDUA is recognized as one of the most economically vibrant, densely inhabited,
and industrially concentrated areas of China. It is characterized by a humid subtropical
climate with well-defined seasons, including hot, humid summers and mild, dry winters.
The region receives an average annual precipitation of 1600–2300 mm and maintains an
average annual temperature range of 21.4–22.4 ◦C. Its average population is approximately
1,000,000, with some cities having more than 3,000,000 residents.
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As of 2020, the resident population of the PRDUA reached 78.23 million, or approxi-
mately 6% of China’s total population. Its GDP exceeded RMB 8.9 trillion, or approximately
9% of China’s national GDP. With an urbanization rate of 85.9% in 2020, the PRDUA is
among the most rapidly urbanized regions in China, exceeding the national average of
26.33% [33]. Guangdong Land Spatial Planning (2021–2035) aims to evolve the PRDUA
into a world-class urban agglomeration by integrating and harmonizing diverse specialized
planning efforts into a unified land spatial planning framework. This will enhance the
land-carrying capacity of the region, which is endowed with rich ecological resources,
including the renowned Pearl River Delta water system, wetland reserves, and montane
forests. These resources store significant amounts of carbon, which is crucial for main-
taining the ecological balance and environmental integrity. However, intensive human
development in the region exerts considerable pressure on the regional carbon storage
capacity, thereby complicating the carbon cycle mechanisms of urban agglomerations. This
complexity presents significant challenges for the systematic assessment and analysis of
carbon storage in the PRDUA.
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2.2. Methods
2.2.1. PLUS Model

The research framework employs the PLUS model, which integrates the predictive
methods of Markov chains. This model is enhanced through optimization and widely used
for LUCC analysis and forecasting. It is particularly effective for examining trends in land
type, area, and distribution over different periods, making it one of the most commonly
employed tools and methodologies for simulating and analyzing land use data. The PLUS
model primarily consists of two modules: LEAS and CARS.

Furthermore, the PLUS model incorporates mechanisms such as a stochastic forest-
based transportation planning update and a random seed mechanism within planned devel-
opment areas. These enhancements emphasize the guiding role of transportation planning
and planned development zones in the urban development processes. It also addresses
a gap in existing research in which only the restrictive effects of planning are accounted
for while the driving and guiding influence of planning policies is not considered [34].
By integrating these mechanisms, the PLUS model offers a more nuanced approach to
simulating changes in land use and their implications for urban development strategies.

2.2.2. InVEST Model

The InVEST model, grounded in geographic information system (GIS) data and eco-
logical theory, is used to assess and forecast ecosystem services, such as hydrological
services, climate regulation, soil conservation, and biodiversity preservation. The InVEST
model facilitates the quantitative evaluation and impact analysis of ecosystem services. In
this study, we used the predicted land use and revised carbon density categories (above-
ground biomass, belowground biomass, soil, and dead organic matter) of the PLUS model
to estimate the capacity of the ecosystem for carbon dioxide absorption, storage, and
carbon sequestration.

Ctotal = ∑Ai·(Cabove + Cbelow + Csoil + Cdead) (1)

where Ai represents the total area of land use type i (hm2), Cabove represents the carbon
density of the aboveground biomass (Mg/hm2), Cbelow represents the carbon density of
belowground biomass (Mg/hm2), Csoil represents the carbon density of soil (Mg/hm2), and
Cdead represents the carbon density of dead matter (Mg/hm2).

2.2.3. Scenario Setting

This study utilized land use data from 2010 to 2020 as baseline datasets (hereafter
OD2010 and OD2020) to simulate the LUCC of the PRDUA for 2030, 2040, and 2050.
Initially, the LEAS module within the PLUS model was employed to obtain the development
probabilities and contributions of the driving factors to the expansion of various land use
types in the PRDUA from 2010 to 2020. Tables 1 and 2 present the neighborhood weights,
which were based on the ratios of land use type expansion to total land expansion and the
corresponding transition matrices.

Subsequently, the CARS module was used in conjunction with OD2010, OD2020, and
the previously derived development probabilities to establish the three scenarios. The
scenario settings, including the reference conditions and transition matrices, are listed in
Table 1. The resulting ND, CPD, and EPD scenarios provided LUCC projections in the
study area for 2030, 2040, and 2050. By incorporating urban planning policies relevant to
the PRDUA, such as the land space planning of Guangdong Province (2021–2035), which
stipulates that urban expansion should remain below a factor of 1.3 by 2035, we made
appropriate adjustments to the neighborhood factor parameter of construction land under
the ND, CPD, and EPD scenarios. Following this approach, we also set the neighborhood
factor parameter for other land use types. The transition matrices for the three scenarios
are listed in Table 2, where 0 indicates no conversion and 1 indicates that conversion is
permitted. The neighborhood weights for each land use type are illustrated in Table 3. The
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values ranged from 0 to 1, with higher values denoting greater probabilities of land use
conversion.

Table 1. Principles underlying scenario setting.

Scenario Principles Underlying Scenario Setting

ND
Based on OD2010 and OD2020, the PLUS model summarizes and perpetuates the pattern of change, and scenarios are
simulated based on continuous economic development and urbanization to obtain scenarios of natural development

without the intervention of special policies (e.g., certain land must be developed under policy conditions).

CPD

In this scenario, urban development is the main focus, with reference to the objective of ‘Accelerating the establishment
of the Great Bay Area on the railway and driving the synergistic development of the Guangzhou Metropolitan Area,

Shenzhen Metropolitan Area, and the Zhuhai-Zhongjiang Region’ in the land space planning of Guangdong Province
(2021–2035). Moreover, it also considers the land use development plan of the towns in the study area and allows for the

conversion of water bodies to construction land. The conversion of water bodies to construction land is allowed,
meaning that lake filling or reclamation is allowed for construction. The probability of conversion of other land to

construction land is increased by 20%.

EPD

In this scenario, the objective is ‘building a low-carbon, ecological, high-efficiency and high-quality urban and rural
planning and construction model, and optimizing the spatial pattern of the urban and rural areas’ in the integrated
urban and rural planning plan for the Pearl River Delta (2009–2020). This scenario includes implementing stringent

protection measures for key ecological areas, increasing the area of forests, reducing the rate of reduction in the area of
grassland, and limiting the rapid expansion of built-up land. Nature reserves have been added as restricted construction

areas; the probability of the conversion of forest and grassland to construction land has been reduced by 30%; the
probability of conversion of agricultural land to construction land has been reduced by 50%; and water bodies may not

be converted to other land, although other land is allowed to be converted to water bodies.

Table 2. Multiple scenario transfer matrix setting.

Land Use
Type

ND CPD EPD

a b c d e f a b c d e f a b c d e f

a 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0
b 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0
c 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0
d 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0
e 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: Letters a–f indicate agricultural land, forest, grassland, water bodies, construction land, and unused
land. A value of 1 indicates that the ground class can be converted and 0 indicates that the ground class cannot
be converted.

Table 3. Neighborhood factor parameter.

Scenario

Land Use Type
Agriculture Land Forest Grassland Water Body Construction Land Unused Land

ND 0.2248 0.1636 0.0498 0.1236 0.4379 0.0002
CPD 0.1124 0.0818 0.0249 0.0618 0.8758 0.0001
EPD 0.2248 0.3273 0.0997 0.1236 0.4379 0.0002

2.2.4. LUCC Accuracy Calibration and Verification

To ensure the reliability of the predictive scenario outputs of the model, the kappa
coefficient was employed to validate the accuracy of the LUCC data from OD2010 and
OD2020 by comparing the simulated results with actual observations. This process verified
the reliability of the LUCC data for 2010 and 2020. The kappa coefficient is based on the
following principle:

kappa =
po − pe

1 − pe
(2)

where pe represents the sum of correctly classified samples for each category divided by the
total number of samples, which is the overall classification accuracy. Let the true number
of samples for each category be a1, a2, . . ., ac and the predicted number of samples for each
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category be b1, b2, . . ., bc. Then, given the total number of samples n, the following equation
was obtained:

pe =
a1 × b1 + a2 × b2 + . . . + aC × bC

n × n
(3)

The kappa coefficients ranged from 0 to 1, with intervals of 0.2 defining the grades
of agreement. Higher values indicated greater predictive concordance [35]. The kappa
coefficient is categorized into five levels: slight (0.00–0.20), fair (0.21–0.40), moderate
(0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.00). In this study, the kappa
prediction result for land use forecasting was 0.875335 (approximately 0.88), which falls
into the almost perfect category. This suggests a high degree of consistency between the
initial data and the actual LUCC conditions, thereby ensuring data reliability.

2.2.5. Geographical Detector Model

The geographical detector model is an effective tool for identifying interactions be-
tween drivers and dependent variables and for measuring the driving force of spatial
differentiation mechanisms. The data discretization method used in this study is the geode-
tector “GD” R package (4.4.1) and is used to reveal the explanatory power of certain factors
on carbon stocks. The q-value, which represents a key indicator of the explanatory power
of factor X on the spatial variability of attribute Y, ranges from 0 to 1, with a higher value
indicating stronger explanatory power of the factor on carbon stocks from 0 to 1 and a
stronger explanatory power of the factors on carbon storage. The formula is as follows:

q = 1 −
ΣL

h=1 Nhσ2
h

Nσ2 = 1 − SSW
SST

(4)

where h = 1, . . ., L denotes the classification of variable Y or factor X; Nh and N denote
the number of layers at level h and total number of units, respectively; σ2

h represents the
variance within the Y values for class h; and σ2 denotes the overall variance of the Y
values. SSW indicates the sum of variances within each stratum and SST represents the
total variance across all classes.

2.3. Data Sources
2.3.1. Remote Sensing Dataset of LUCC

LUCC predictions in this study were based on OD2010 and OD2020, both sourced from
the unified classification system of the Chinese Academy of Sciences from the Resource
and Environmental Science and Data Center (RESDC, https://www.resdc.cn, accessed on
5 April 2023). The datasets were reclassified into primary land cover types according to the
Chinese land use classification system (GB/T21010-2007) using ArcGIS. This reclassification
encompasses six categories: agricultural land, forest, grassland, water bodies, construction
areas, and unused land. Prior to the subsequent analysis, the data were transformed into
primary classifications with a spatial resolution of 30 m.

2.3.2. Driving Factor Data

To enhance the alignment between the predicted outcomes and real-world scenarios
in the application of the PLUS model under multiple scenarios, 15 driving factors were
incorporated, and they included seven natural environmental and eight socioeconomic
factors. In this study, the selected driving factors were categorized into two main groups
for analysis: socioeconomic and natural environmental. Socioeconomic factors such as
population growth and GDP drive increased demand for residential and commercial land
use, which, in turn, influences urban planning and shifts in land use types. These changes
significantly impact land use patterns, ultimately affecting carbon storage. Moreover,
interplay is observed between these factors. For instance, population size influences GDP
growth and changes in socioeconomic factors lead to alterations in ecosystems, which in
turn result in corresponding shifts in natural environmental factors. The classification
of the data types and their sources is detailed in Table 4, with specific illustrations being

https://www.resdc.cn
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provided in Figure 3. After resampling, a grid resolution of 30 m × 30 m was achieved
using ArcMap.

Table 4. Details of the driving factor data.

Category Data Data Resource Original
Resolution (m)

Socioeconomic
Factors

Population Open Spatial Demographic Data and Research
(https://www.worldpop.org/, accessed on 5 April 2023) 100

GDP Global Change Research Data Publishing and Repository
(http://www.geodoi.ac.cn, accessed on 6 April 2023) 1000

Distance to railway

OpenStreetMap
(https://www.openstreetmap.org/, accessed on 10 April 2023) 90

Distance to expressway
Distance to trunk road

Distance to the secondary trunk road
Distance to the city center

Distance to river

Natural
Environmental

Factors

Soil National Qinghai–Tibet Plateau Scientific Data Center
(http://data.tpdc.ac.cn/, accessed on 13 April 2023) 1000

NDVI Earthdata Search
(https://search.earthdata.nasa.gov/search, accessed on 20 April 2023) 250

Annual average temperature WorldClim
(https://worldclim.org/data/index.html, accessed on 11 April 2023) 490Annual average rainfall

DEM Geospatial Data Cloud
(http://www.gscloud.cn, accessed on 6 April 2023) 30Slope

Aspect of slope
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2.3.3. Carbon Density Data

Carbon density refers to carbon storage per unit area and encompasses four car-
bon pools: aboveground carbon density, belowground carbon density, soil organic car-
bon density, and dead organic matter carbon density [36]. The carbon density coeffi-
cients used in this study were obtained from the National Ecology Science Data Center
(http://www.cnern.org.cn/) and Wang et al. [37]. To assess regional carbon density thresh-
olds from a land use type macro perspective, we also considered geographical factors,
such as climate, temperature, hydrology, and ecology. The values listed in Table 5 were
obtained by applying the correction formula proposed by Zhang et al. [38]. The carbon

https://www.worldpop.org/
http://www.geodoi.ac.cn
https://www.openstreetmap.org/
http://data.tpdc.ac.cn/
https://search.earthdata.nasa.gov/search
https://worldclim.org/data/index.html
http://www.gscloud.cn
http://www.cnern.org.cn/
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density obtained after calibration could be uniformly applied to all land use types within
the study area.

CSP = 3.3968 × MAP + 3996.1
(

R2 = 0.11
)

(5)

CBP = 6.798 × e0.0054×MAP
(

R2 = 0.70
)

(6)

CBT = 28 × MAT + 398
(

R2 = 0.477, p < 0.01
)

(7)

KBP =
C′

BP
CBP

(8)

KBT =
C′

BT
CBT

(9)

KB = KBP × KBT =
C′

BP
CBP

×
C′

BT
CBT

(10)

KS =
C′

SP
CSP

(11)

Table 5. Carbon density of each land use type in the area (t/hm2).

Land Use Type Aboveground Belowground Soil Organic Dead Organic
Matter Total

Agriculture land 31.32 2.16 86.17 1.17 120.82
Forest 49.25 17.92 171.7 7.61 246.48

Grassland 2.38 11.23 68.08 2.22 83.91
Water body 0.05 0 0 0 0.05

Construction land 0.26 2.01 61.78 0 64.05
Unused land 0.43 0 62.87 0 63.3

3. Results
3.1. Spatiotemporal Analysis of Carbon Storage in the PRDUA from 2010 to 2020
3.1.1. Analysis of LUCC in the PRDUA from 2010 to 2020

Using ArcGIS software (10.8.1), this study analyzed the land use transfer character-
istics of the PRDUA region from 2010 to 2020. The results are presented in Table 6. From
the perspective of the land use dynamic degree (hereinafter referred to as K), the PRDUA
region primarily exhibited increases in construction land and grassland but showed sig-
nificant declines in other land types, such as agricultural land, forest, water bodies, and
unused land.

Table 6. Land use area and its changes in OD2010 and OD2020.

Land Use Type 2010 2020 2010–2020 K *

Agriculture land 12,596.73 12,049.51 −547.22 −0.43%
Forest 29,428.98 29,043.33 −385.65 −0.13%

Grassland 949.3434 1031.603 82.26 0.87%
Water body 4046.033 3975.3774 −70.66 −0.18%

Construction land 7137.203 8089.844 952.64 1.33%
Unused land 38.1159 6.7446 −31.37 −8.23%

Note: * K is the annual rate of change in land use type during the study period.

Land use changes impacted 1034.90 km2 of the PRDUA region. In 2020, forests
were the most extensively distributed land cover type, covering an area of 29,043.33 km2,
representing approximately 53.59% of the total area. From 2010 to 2020, forested areas
decreased by 385.65 km2, accounting for approximately 37% of the total area reduction in the
research region. Agricultural land occupied an area of 12,596.73 km2 in 2020, representing
approximately 22.23% of the total area. Agricultural land experienced a marked decline
from 2010 to 2020, with a total reduction of 547.22 km2, accounting for approximately
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52.88% of the overall decrease, with a K value of 0.43%. Agriculture land was the land type
with the largest proportional reduction in land uses. Construction land was predominantly
concentrated in the central region of the PRDUA at lower elevations. Construction land
expanded by 952.64 km2, representing approximately 92.05% of the total increase, with
a K value of 1.33%, indicating significant expansion. The grassland area increased by
82.26 km2, with a K value of 0.87%.

3.1.2. Spatial and Temporal Evolution Characteristics of Land Use

In the PRDUA, an area of approximately 1034.90 km2 was affected by the land use
transition between 2010 and 2020, approximately 1.91% of the total study area. Construction
land, agricultural land, and forest land were the primary types of transformation during
the study period. The net increase in construction land was 952.64 km2, whereas the net
decreases in agricultural land and forest land were 547.22 km2 and 385.65 km2, respectively.

Agricultural land accounted for the largest area of transferred land, with the majority
being converted to construction (861.83 km2) and forest (312.74 km2) land, amounting to a
total of 1174.56 km2, approximately 82.59% of the total agricultural land conversion. The
largest proportion of forest land was converted to urban (473.29 km2) and agricultural
(336.84 km2) land, amounting to 810.13 km2, representing approximately 79.22% of the
total forest land conversion.

The distribution of land use types in the study area as a whole presented a circular
outward trend. Construction land was mainly distributed in the south-central part of the
study area and concentrated in Guangzhou, Shenzhen, Dongguan, Foshan, and Zhuhai, and
it showed a tendency to expand toward the respective city boundaries. Agricultural land was
distributed on the periphery of construction land and showed a trend towards significant
reduction with the conversion of construction land. Forests were distributed over the widest
area and mainly located in the northeast, northwest, and southwest of the study area, being
clustered mainly in Zhaoqing, Huizhou, and Jiangmen. Grassland, water bodies, and unused
land occupied smaller areas, and the overall change was slight and more balanced.

The results of the analysis showed that unused land and forests were significantly
affected by this expansion, with construction land being the fastest-growing type. The
transition of land use areas occurred primarily in construction, forest, and agricultural land,
whereas changes in grassland, water bodies, and unused land remained relatively stable
and balanced (Figure 4).
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3.1.3. Patterns in Carbon Storage Changes in the PRDUA from 2010 to 2020

Using the carbon storage calculation module of the InVEST model, we computed the
carbon reserves for the PRDUA region in 2010 and 2020 to determine the spatiotemporal
changes in carbon storage. The results indicated that the carbon reserves in 2010 and 2020
were 931.50 × 106 Mg and 921.98 × 106 Mg, respectively, showing an overall declining trend
with a carbon loss of 9.52 × 106 Mg, a decrease of 1.02%. The primary cause of this decrease
was rapid urbanization being pursued as a development goal and a key task during
this period, as outlined in the Pearl River Delta Region Reform and Development Plan
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(2008–2020), with an urbanization rate exceeding 85% by the end of 2020. Consequently, the
region experienced a significant industrial development, which accelerated the expansion
of construction land through a reduction in forest, grassland, and agricultural land, with a
subsequent decline in carbon storage (Figure 5).
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In terms of spatial distribution, cities in the PRDUA exhibited considerable hetero-
geneity in their carbon reserves in 2020. High-carbon reserve areas were predominantly
located in the northeastern, northwestern, and southwestern parts of the study area, mainly
in Huizhou, Zhaoqing, and Jiangmen. The areas on the periphery of the study region
have high vegetation coverage and good ecological benefits. The land use types were
primarily agricultural land and forests with lower urbanization rates where the carbon
density reached a maximum of 22.1800 Mg/hm2. Low carbon reserve areas were mainly
concentrated in the central region of the study area, particularly in Guangzhou, Shenzhen,
Foshan, and Dongguan. These cities have higher urbanization levels, intense human distur-
bance, and a higher per capita GDP, with land being primarily used for urban development.
The carbon density in these areas was as low as 0.0045 Mg/hm2.

3.2. Analysis of LUCC in the PRDUA under Multi-Scenario Simulations from 2020 to 2050

Land use change in the PRDUA was simulated for three scenarios (ND, CPD, and EPD)
using 2030, 2040, and 2050 as temporal milestones with 10-year intervals, as illustrated in
Figure 6 and Table 7. The transfers between land types under the three simulated scenarios
are shown in Figure 7.
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Table 7. Area of OD2020 and future land use under the three simulated scenarios and the change
area of each land use type under the three scenarios (10-year intervals) (km2).

Period Agriculture
Land Forest Grassland Water Body Construction

Land
Unused

Land

OD 2020 12,049.51 29,043.33 1031.60 3975.38 8089.84 6.74

ND

2030 11,609.30 28,684.91 960.25 4060.40 8876.30 5.24
2040 11,256.08 28,351.34 922.73 4122.51 9539.11 4.63
2050 10,974.11 28,040.73 914.01 4162.28 10,101.01 4.26

2020–2030 −440.21 358.42 −71.35 85.03 786.46 −1.5
2030–2040 −353.21 −333.57 −37.52 62.11 662.81 −0.61
2040–2050 −281.97 −310.6 −8.72 39.77 561.89 −0.37

CPD

2030 11,448.75 28,587.06 924.04 4028.73 9204.03 3.78
2040 10,975.14 28,163.65 857.09 4067.05 10,130.58 2.88
2050 10,603.87 27,770.5 827.74 4085.79 10,906.05 2.46

2020–2030 −600.75 −456.27 −107.57 53.36 1114.19 −2.96
2030–2040 −473.61 −423.41 −66.94 38.32 926.55 −0.9
2040–2050 −371.27 −393.15 −29.36 18.74 775.47 −0.42

EPD

2030 12,003.69 29,127.25 948.55 3975.60 8135.76 5.56
2040 11,971.08 29,157.46 918.54 3975.60 8168.20 5.52
2050 11,949.24 29,169.13 906.98 3975.63 8189.88 5.54

2020–2030 −45.81 83.92 −83.05 0.22 45.92 −1.19
2030–2040 −32.61 30.2148 −30.01 0.01 32.44 −0.04
2040–2050 −21.84 11.67 −11.56 0.03 21.68 0.01
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3.2.1. ND Scenario

Under the ND scenario, the overall trends in land area changes across the three time
periods were consistent, with significant reductions in agricultural and forested areas and
a substantial increase in construction land. Specifically, from 2020 to 2030, agricultural
land decreased by 440.21 km2 (50.51% of the total reduction), forest land decreased by
358.42 km2 (41.13% of the total reduction), and construction land expanded by 786.46 km2

(92.05% of the total increase). From 2030 to 2040, agricultural land decreased by 353.21 km2

(48.72% of the total reduction), forest land decreased by 333.57 km2 (46.02% of the total
reduction), and construction land increased by 662.81 km2 (91.43% of the total increase).
From 2040 to 2050, agricultural land decreased by 281.97 km2 (46.87% of the total reduction),
forest land decreased by 310.60 km2 (51.62% of the total reduction), and construction
land expanded by 561.8934 km2 (93.39% of the total increase). Overall, the proportion
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of agricultural land decreased over time while the proportion of forest land increased
incrementally. The expansion of construction land was primarily concentrated in the
central region, spread outward, and showed an upward trend.

3.2.2. CPD Scenario

Under the CPD scenario, the patterns of change in agricultural, forest, and construction
land were generally consistent with those under the ND scenario. From 2020 to 2030,
agriculture land decreased by 600.75 km2 (51.45% of the total reduction), forest land
decreased by 456.27 km2 (39.08% of the total reduction), and construction land expanded
by 1114.1892 km2 (95.43% of the total increase), which represented the largest expansion in
construction land among all the scenarios. From 2030 to 2040, agriculture land decreased
by 473.61 km2 (49.09% of the total reduction), forest land decreased by 423.41 km2 (43.88%
of the total reduction), and construction land increased by 926.55 km2 (96.03% of the total
increase). From 2040 to 2050, agricultural land decreased by 371.27 km2 (46.75% of the
total reduction), forest land decreased by 393.15 km2 (49.50% of the total reduction), and
construction land expanded by 775.47 km2 (97.64% of the total increase). Overall, compared
to the ND scenario, the reduction in agricultural and forest land was more pronounced
and the growth rate of construction land increased significantly, with its contribution to the
total reaching 97.64% by 2050.

3.2.3. EPD Scenario

Under the EPD scenario, agricultural land and grassland decreased while forests and
construction land generally increased. From 2020 to 2030, agricultural land decreased by
45.81 km2 (35.23% of the total reduction) and grassland decreased by 83.05 km2 (63.86%
of the total reduction). However, forest land increased by 83.92 km2 (64.53% of the total
increase) and construction land increased by 45.92 km2 (35.31% of the total increase). From
2030 to 2040, agricultural land decreased by 32.61 km2 (52.05% of the total reduction) and
grassland decreased by 30.01 km2 (47.90% of the total reduction). However, forest land
increased by 30.21 km2 (48.22% of the total increase) and construction land increased by
32.44 km2 (51.77% of the total increase). From 2040 to 2050, agricultural land decreased
by 21.84 km2 (65.40% of the total reduction) and grassland by 11.56 km2 (34.61% of the
total reduction). However, forest land increased by 11.67 km2 (34.95% of the total increase)
and construction land by 21.68 km2 (64.94% of the total increase). Compared with the
previous two scenarios, the EPD scenario led to continued decreases in agricultural land
and grassland continued to decrease, with the largest reduction occurring from 2020 to 2030
at 45.81 km2 and 83.05 km2, respectively. However, forest land showed a sharp increase,
which is in contrast to the decreases observed in the previous two scenarios. Construction
land also continued to increase, although its growth rate was significantly constrained by
the sharp increase in forest land.

3.3. Spatiotemporal Change of Carbon Storage in the PRDUA under Multi-Scenario Simulation
3.3.1. Temporal Change

The PLUS and InVEST models were used to calculate the carbon storage outcomes for
2030, 2040, and 2050 under three distinct scenarios, as detailed in Table 8. Generally, carbon
storage in the PRDUA exhibited a declining trend in both the ND and CPD scenarios, which
implies that, if the prevailing development patterns are left unchecked or a development
strategy that emphasizes urban primacy is pursued, the PRDUA would be confronted
by the daunting prospect of significant “carbon loss”. Accordingly, realizing the goal of
sustainable development and the target of “carbon neutrality” would be exceptionally
difficult. Conversely, in the EPD scenario, the decline in agricultural and grassland areas
was more moderate and complemented by a consistent increase in forest land, which
collectively contributed to a stable carbon sequestration effect, thereby maintaining carbon
storage stability within the urban agglomeration.
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Table 8. Carbon storage (×106 Mg) and ratio (%) for land use types under three scenarios in 2030,
2040, and 2050.

Period
Agriculture

Land
(Rate%)

Forest
(Rate%)

Grassland
(Rate%)

Water Body
(Rate%)

Construction
Land

(Rate%)

Unused
Land

(Rate%)
Total

OD
2010 152.19

(16.34%)
725.37

(77.87%)
7.97

(0.86%)
0.0202

(0.0022%)
45.71

(4.91%)
0.2413

(0.0259%) 931.50

2020 145.58
(15.79%)

715.86
(77.64%)

8.66
(0.94%)

0.0199
(0.0022%)

51.82
(5.62%)

0.0427
(0.0046%) 921.98

ND

2030 140.26
(15.38%)

707.03
(77.50%)

8.06
(0.88%)

0.0203
(0.0022%)

56.85
(6.23%)

0.0332
(0.0036%) 912.25

2040 136.00
(15.05%)

698.80
(77.33%)

7.74
(0.86%)

0.0206
(0.0023%)

61.10
(6.76%)

0.0293
(0.0032%) 903.69

2050 132.59
(14.80%)

691.15
(77.12%)

7.67
(0.86%)

0.0208
(0.0023%)

64.70
(7.22%)

0.0270
(0.0030%) 896.15

CPD

2030 138.32
(15.21%)

704.61
(77.46%)

7.75
(0.85%)

0.0201
(0.0022%)

58.95
(6.48%)

0.0240
(0.0026%) 909.69

2040 132.60
(14.75%)

694.18
(77.23%)

7.19
(0.80%)

0.0203
(0.0023%)

64.89
(7.22%)

0.0183
(0.0020%) 898.90

2050 128.12
(14.40%)

684.49
(76.96%)

6.95
(0.78%)

0.0204
(0.0023%)

69.85
(7.85%)

0.0156
(0.0018%) 889.44

EPD

2030 145.03
(15.71%)

717.93
(77.78%)

7.96
(0.86%)

0.0199
(0.0022%)

52.11
(5.65%)

0.0352
(0.0038%) 923.08

2040 144.63
(15.66%)

718.67
(77.83%)

7.71
(0.83%)

0.0199
(0.0022%)

52.32
(5.67%)

0.0350
(0.0038%) 923.39

2050 144.37
(15.63%)

718.96
(77.86%)

7.61
(0.82%)

0.0199
(0.0022%)

52.46
(5.68%)

0.0350
(0.0038%) 923.45

From 2020 to 2050, the PRDUA experienced a greater reduction in carbon storage in
the CPD scenario than in the ND scenario. In the ND scenario, the total carbon storage
decreased by 25.82 × 106 Mg, with phased reductions of 9.72 × 106 Mg, 8.56 × 106 Mg,
and 7.54 × 106 Mg, for 2020–2030, 2030–2040, and 2040–2050, respectively. Under the CPD
scenario, the total carbon storage decreased by 32.54 × 106 Mg, with phased reductions of
12.29 × 106 Mg, 10.79 × 106 Mg, and 9.46 × 106 Mg for 2020–2030, 2030–2040, and 2040–2050,
respectively. Both scenarios were characterized by substantial decreases in agricultural land,
forest land, and grassland; conversely, the area of land used for construction significantly
increased, whereas water bodies and unutilized land remained relatively stable. The more
pronounced intensity of land transformation under the CPD scenario contributed to the
larger magnitude of carbon storage reduction.

Over time, the rate of decrease in total carbon storage in the PRDUA decreased in both
scenarios, which may be attributed to inherent limitations on land use conversion. However,
this was not sufficient to counterbalance the carbon loss resulting from the expansion of
construction land. In the CPD scenario, the PRDUA witnessed a slight net increase in
total carbon storage, amounting to a cumulative gain of 1.48 × 106 Mg, with respective
increments of 1.10 × 106 Mg, 0.31 × 106 Mg, and 0.07 × 106 Mg across the three stages.
A peak of 923.45 × 106 Mg was reached by 2050, which was the highest in its historical
evolution. In this scenario, various land types remain stable, leading to relatively minimal
changes in carbon storage. However, the rapid contraction in the expansion of built-up
areas to protect the ecological environment suggests that prioritizing the environment may
impact the pace of economic development, potentially resulting in an imbalance between
human development and ecological conservation.

3.3.2. Spatial Evolution

The carbon storage distribution in the PRDUA under different development scenarios
from 2030 to 2050 is illustrated in Figure 8. The spatial patterns in the low-carbon storage ar-
eas were generally consistent with those observed from 2010 to 2020, with low values being
predominantly concentrated in the central and southern parts of the region and high values
being scattered in the northeast, northwest, and southwest regions. Nevertheless, under
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varying developmental constraints, the carbon storage patterns under the three scenarios
exhibited distinct differences. The pursuit of cooperative development among cities within
the urban agglomeration and the continuous expansion of built-up areas toward intercity
borders led to a significant expansion of low-carbon storage areas in the CPD scenario, with
the ND scenario exhibiting a slightly smaller range, primarily along the boundaries of eco-
nomically prosperous cities. In contrast, restrictions on urban expansion and initiatives to
promote the “Grain for Green Project” and reforestation contributed to the EPD scenario’s
high carbon storage values.
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Figure 8. Map of high and low carbon storage distribution areas and their refinement under a
multi-scenario simulation (a1, a4, a7, b1, b4, b7, c1, c4, c7 represent the same area; a2, a5, a8, b2, b5,
b8, c2, c5, c8 represent the same area; a3, a6, a9, b3, b6, b9, c3, c6, c9 represent the same area).

Next, we analyzed the spatial and temporal variations in carbon storage to delineate
the spatiotemporal dynamics of the carbon storage changes in the PRDUA over time.
Changes were categorized into three distinct classes: “increase”, “decrease”, and “no
change”. The results are presented in Figure 9. Under the ND scenario, the carbon
storage distribution within the PRDUA demonstrated a pattern characterized by small-
scale scattered increases at the periphery and widespread scattered decreases in the central
region. Over 30 years, the focus of carbon loss was on the central part of the study
area, particularly in Guangzhou and Foshan, mainly as a result of the swift expansion
of built-up areas, converting high-carbon-density agricultural land and forest land into
low-carbon-density construction land. Regions with notable increases in carbon storage
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were predominantly small and isolated, yet their overall impact was minimal. Interestingly,
localized carbon accumulation was also observed in the central zones that experienced
significant carbon loss. In the CPD scenario, the extent of the scattered decreases in the
central regions expanded outward and became relatively concentrated compared with the
ND scenario. Urban greening initiatives have contributed to an increase in carbon storage.
Under the EPD scenario, stringent forest protection and enhanced reforestation efforts
led to substantial carbon sequestration. Simultaneously, measures were implemented to
safeguard agricultural land and grasslands, thereby reducing the transition rate. In this
scenario, the areas with decreased carbon storage were significantly reduced, whereas those
with increased carbon storage expanded. As economic development progressed, cities
continued to grow, and the ecological benefits of this scenario became more pronounced in
areas where carbon neutrality had been achieved.
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3.4. Driving Mechanisms of the Spatiotemporal Variability in LUCC and Carbon Storage
3.4.1. Driving Mechanisms of the LUCC in LEAS Module of the PLUS Model

The driving mechanisms of the LUCC in LEAS module of the PLUS model calculated
the contribution value of 15 drivers of changes to land use types, including seven natu-
ral environmental factors and eight socioeconomic factors. The results are presented in
Figure 10.

The main factors affecting carbon storage were population, the normalized difference
vegetation index (NDVI), the digital elevation model (DEM), and the distance to the
railway. The impact of GDP on the six types of land use was relatively balanced, exceeding
a 6.00% contribution for each type. For agricultural, forest, and construction land, the
most significant driving factor was NDVI, with contributions reaching 10.99%, 15.02%,
and 15.27%, respectively. The three primary drivers affecting grassland were population,
distance to the city center, and DEM, with respective contributions of 18.10%, 15.37%, and
14.69%; the drivers were dominated by natural environmental factors and socioeconomic
factors. For water bodies, the two most substantial driving factors were DEM and distance
to the river, with contributions of 18.13% and 11.84%, respectively, and the drivers were
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dominated by socioeconomic factors. The three most influential factors on unused land
were distance to the railway, NDVI, and GDP, with contributions of 21.82%, 18.91%, and
13.64%, respectively.
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Figure 10. Contribution of the 15 drivers to the land use types.

Figure 11 shows the average contribution rate of each driver to the LUCC. Our findings
indicated that a significant disparity occurred in the contribution levels of the seven natural
environmental factors, whereas there was a relative balance of the impact of the eight
socioeconomic factors. The strongest influences were exerted by NDVI, DEM, distance
to trunk road, GDP, distance to a river, and population, and all were >7%. NDVI had the
most significant effect on LUCC, with a contribution of 13.76%. The aspect of slope has
the smallest effect on carbon storage, contributing only 4.09%. Future population growth,
urban expansion, road development, and ecological land pattern changes will greatly affect
the changes in agricultural, forest, and construction land areas, resulting in the evolution of
the spatiotemporal patterns of carbon storage in the PRDUA.

Figure 11. Average values of the 15 drivers for the main land types influencing LUCC.



Energies 2024, 17, 5093 18 of 23

3.4.2. Driving Mechanisms of the Change in Carbon Storage

In contrast, when the main drivers of carbon storage change are found indirectly by
identifying the factors that influence the drivers of LUCC, the geoprobe approach can be
used to further identify the factors that directly influence carbon storage. In this study,
we identified 15 independent variables, comprising 7 natural environmental factors and
8 socioeconomic factors, as drivers in 2020. These variables were used as X, with carbon
storage in the PRDUA for the same year serving as the dependent variable Y. Utilizing
the geographical detector ‘GD’ R package, we quantified the explanatory power of each
individual factor, represented by the q value, and determined the dominant interactive
factors influencing changes in carbon storage (Table 9 and Figure 12).

Table 9. Explanatory power of every factor (q value).

Category Driving Factors q-Value

Natural Environment Factors

Soil 0.0954
Slope 0.0340
DEM 0.1385
NDVI 0.0625

Aspect of slope 0.0003
Annual average rainfall 0.5383

Annual average temperature 0.5559

Socioeconomic Factors

GDP 0.1661
Population 0.0500

Distance to river 0.0984
Distance to railway 0.0184

Distance to city center 0.0401
Distance to trunk road 0.0509
Distance to expressway 0.0133

Distance to the secondary
trunk road 0.0110
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Figure 12. Dominant interactive factors of carbon storage changes in 2020 (X1 is distance to railway,
X2 is annual average rainfall, X3 is slope, X4 is soi1, X5 is distance to the secondary trunk road, X6
is annual average temperature, X7 is aspect of slope, X8 is sistance to city center, X9 is distance to
expressway, X10 is distance to trunk road, X11 is DEM, X12 is GDP, X13 is NDVI, X14 is population,
X15 is distance to river).
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The interactions between these drivers and changes in carbon storage predominantly
manifested as nonlinear and double-factor enhancements. Specifically, carbon storage vari-
ations were significantly influenced by natural environmental factors, such as DEM, annual
average rainfall, and annual average temperature. Socioeconomic factors were mainly
influenced by GDP, distance from rivers, distance to the trunk road, and population size.

The results in Table 9 indicate that the single drivers with the greatest impact on
carbon storage are the following, which all have q values greater than 0.05: annual average
temperature (0.5559), annual average rainfall (0.5383) > GDP (0.1661) > DEM (0.1385),
distance to river (0.0984) > soil (0.0954) > NDVI (0.0625) > distance to trunk road (0.0509),
population (0.0500). The five groups with a higher explanatory power for carbon storage
changes were as follows: X2∩X6 (0.75) > X1∩X2 (0.68) = X2∩X12 (0.68) > X2∩X11 (0.67) >
X2∩X4 (0.65) = X6∩X13 (0.65) (Figure 12).

4. Discussion

This study coupled the PLUS and InVEST models to explore spatiotemporal changes
in land use and carbon storage and their influencing factors in the PRDUA under multiple
scenarios in 2030–2050. Although there are some uncertainties, these results are reliable
and reasonable.

4.1. Response Relationship between Carbon Storage and Land Use Change

The LUCC is a significant driver of fluctuations in carbon storage in terrestrial ecosys-
tems. Carbon storage plays a pivotal role in the maintenance of regional carbon cycles. The
PRDUA exhibits distinctive patterns in carbon storage characterized by a configuration of
“high around the periphery, low in the center” and “high in the north, low in the south”.
This is because of the more mature urbanization in the south-central part of the PRDUA,
led by Shenzhen, Guangzhou, and Zhuhai, with urbanization levels of 99.83%, 86.18%,
and 90.61%, respectively. The northern and western parts are dominated by Huizhou and
Zhaoqing, which have large urban areas with urbanization levels of 72.61% and 50.97%,
respectively. Furthermore, the forest coverage in the Huizhou and Zhaoqing areas is 63.98%
and 72.7%, respectively [39]. The land use transfer matrix of the PRDUA from 2010 to 2020
revealed a decrease in the total carbon storage. In the three projected scenarios, carbon
storage in the ND, CPD, and EPD scenarios in 2050 was 896.15 × 106 Mg, 889.44 × 106 Mg,
and 923.45 × 106 Mg, respectively. Diversified land use changes have a significant impact
on ecosystem carbon storage. For instance, the CPD scenario resulted in a pronounced
decline in ecosystem carbon storage, whereas the EPD scenario ensured continuous de-
velopment while increasing forest land and slowing the rate of decrease in agricultural
land and grassland through sustained ecological protection measures such as afforestation,
thereby achieving an increase in carbon storage.

4.2. Characterization of Carbon Storage Dynamics under Different Scenario Simulations

This study incorporated three socioeconomic development scenarios: ND, CPD, and
EPD. The ND and CPD scenarios reflect the current urbanization trend driven by economic
growth and development. However, this approach may not be sustainable in the long
term. Therefore, this study also considers an EPD scenario that prioritizes environmental
conservation, which is a more sustainable approach. EPD scenarios are characterized by a
diverse range of features and pursue the principle of sustainable development, which is
the primary objective of urban development in the current era.

Natural protection areas were defined as the limits of land use conversion to simulate
carbon storage in the PRDUA for 2030, 2040, and 2050. The area available for restriction
was limited, and the proportion of land suitable for reforestation was relatively low because
of the maturity of urbanization in the study area. Consequently, the results of this study
indicated that the total carbon storage in the three scenarios (ND, CPD, and EPD) was
relatively similar. Even in the conservation development scenario, the increase in carbon
storage was relatively modest. However, this does not imply that conservation development
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has no merit. The total carbon storage in the ND and CPD scenarios is projected to decrease
from 2030 to 2050.

4.3. Influence of Diverse Driving Factors on Carbon Storage

The results showed that the main factors affecting carbon storage were population,
NDVI, DEM, distance to the railway, and GDP. These results are consistent with earlier
studies [40–42]. Among the drivers that have a significant impact on carbon storage, the
annual average temperature, annual average rainfall, soil, NDVI, and DEM are natural
drivers, whereas GDP, population, and distance to the railway are socioeconomic drivers.
Distance to railways is frequently overlooked and rarely incorporated into studies. The
regional population and GDP levels had a significant influence on the expansion of con-
struction land and the utilization of unused land. Although urban expansion may have
direct economic benefits, it may also affect the ecology and reduce the carbon storage
capacity of regional ecosystems. Furthermore, urban expansion is a significant contributor
to increases in carbon emissions. Consequently, there is an urgent need to balance urban
economic development with ecological preservation.

4.4. Research Limitation and Suggestions for Future Land Use Planning

This study integrates the PLUS and InVEST models to evaluate carbon storage in
future ecosystems. The assessment results provide reliable and accurate forecasts of large-
scale, long-term changes in ecosystem carbon reserves. However, it is important to note
that the assessment is primarily based on land use changes. Additionally, a key limitation
of the InVEST model is its assumption of constant carbon density over both space and
time and its inability to account for potential dynamic variations. In reality, carbon density
may fluctuate in response to natural environmental factors, which introduces uncertainty
into the model’s predictions. Moreover, given that ecological conservation is influenced by
multiple policy interventions, a more comprehensive consideration of protective measures
coupled with a quantitative analysis of the extent of these interventions would facilitate a
deeper investigation of the impact of policy-driven conservation efforts on carbon storage
in the ecological environment.

Government policies are mandatory and efficient for land use conversion, and the
introduction of relevant policies has played a guiding role in land use changes [41]. The
study area is predominantly forest and agricultural land, which are the land use types that
mainly contribute to carbon storage. The expansion of urban areas was a significant factor
in the reduction in forest and agricultural land in the PRDUA. To mitigate the adverse
effects of urban expansion, it is essential to ensure that urban construction planning is
accompanied by the active promotion of afforestation, the return of agricultural land to
forests, and the delineation of ecological protection zones. Furthermore, it is necessary to
control the rate of urban expansion, strengthen the protection of agricultural land, and
ensure regional food security. Moreover, it is necessary to minimize the occupation of
forest and water bodies and promote housing policies that will reduce population inflow
to ecological zones caused by population growth and housing constraints [43].

5. Conclusions

Based on the PLUS and InVEST models, this study analyzed the spatiotemporal
characteristics of land use and carbon storage in the PRDUA in 2010 and 2020 as the basic
research periods. Moreover, it further simulated and predicted differences in land use and
carbon storage changes in the PRDUA under three development scenarios (ND, CPD, and
EPD) from 2030 to 2050. Status quo analyses, prediction simulations, and driving effect
analyses were performed, with 2010 and 2020 acting as the basic research periods. This
study further simulated and predicted the differences in changes in land use and carbon
storage in the PRDUA under the three development scenarios from 2030 to 2050. Finally,
this study employed both direct and indirect perspectives to comprehensively analyze the
drivers of changes in carbon storage, thus providing theoretical support for the rational
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formulation of land use policies and facilitating the acceleration of carbon neutrality efforts
in the PRDUA. The main conclusions can be summarized as follows.

(1) From 2010 to 2020, agricultural and forest land in the PRDUA will decrease by
385.65 km2 and 547.22 km2, respectively, with the decrease accounting for 0.43% and
0.13% of their respective areas. Uncultivated land area will show the largest decrease
(8.23%). Construction land area will increase sharply in both total area (952.64 km2)
and magnitude (1.33%). Changes in land use will decrease carbon storage in the study
area by 9.52 × 106 Mg in 10 years at a rate of 1.02%. The spatial distribution of carbon
storage will generally increase from the central to peripheral areas.

(2) LUCC in the PRDUA from 2020 to 2050 under the three scenarios showed obvious
differences. Under the ND and CPD scenarios, agricultural land and forest land show
the greatest decreases in area, while construction land showed the greatest increases.
Under the EPD scenario, forest and construction land showed the greatest increases
while agricultural land and grassland showed the greatest decreases. In the ND, CPD,
and EPD scenarios, the land type with the largest area increase was construction land,
with increases of 2011.16 km2, 2816.20 km2, and 100.04 km2, respectively, while the
land types with the largest decrease were agriculture land, agricultural land, and
grassland, with decreases of 1075.39 km2, 1445.63 km2, and 124.62 km2, respectively.

(3) Changes in carbon storage in the PRDUA under the ND, CPD, and EPD scenarios were
−25.82 × 106 Mg, −32.54 × 106 Mg, and +1.48 × 106 Mg, respectively, while the spatial
distribution of carbon storage under the three scenarios showed similar clustering
characteristics. High carbon storage values were mainly observed in the northeast,
northwest, southwest, and city intersections, including Huizhou, Zhaoqing, and
Jiangmen. Low carbon storage values were mainly located in the middle and southern
areas, including Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai, and Zhongshan.

(4) Distance to railway, population, GDP, DEM, and NDVI were the main drivers of the
spatial differentiation of LUCC in the PRDUA. The contributions of natural environ-
mental factors (e.g., NDVI and DEM) to changes in agricultural land, forest, grassland,
water bodies, construction land, and unused land were 46.84%, 52.67%, 37.41%,
39.62%, 39.96%, and 42.4%, respectively. The interactions between the 15 drivers and
changes in carbon storage were predominantly manifested as nonlinear enhancement
and double-factor enhancement.
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