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Abstract: Accurate and fast transient stability assessment (TSA) of power systems is crucial for safe
operation. However, deep learning-based methods require long training and fail to simultaneously
extract the spatiotemporal characteristics of the transient process in power systems, limiting their
performance in prediction. This paper proposes a novel TSA method based on a spatiotemporal
graph convolutional network with graph simplification. First, based on the topology and node
information entropy of power grids, as well as the power flow of each node, the input characteristic
matrix is compressed to accelerate evaluation. Then, a high-performance TSA model combining a
graph convolutional network and a Gated Convolutional Network is constructed to extract the spatial
features of the power grid and the temporal features of the transient process. This model establishes
a mapping relationship between spatiotemporal features and their transient stability. Finally, the
focal loss function has been improved to dynamically adjust the influence of samples with different
levels of difficulty on model training, adaptively addressing the challenge of sample imbalance. This
improvement reduces misclassification rates and enhances overall accuracy. Case studies on the IEEE
39-bus system demonstrate that the proposed method is rapid, reliable, and generalizable.

Keywords: transient stability assessment; graph simplification; spatial features; temporal features;
sample imbalance

1. Introduction

With the ever-increasing penetration of renewable energy [1,2] and the application
of power electronic devices [3], the structure and operating conditions of transmission
networks become increasingly complex, posing unprecedented challenges to the stability of
traditional power systems. Changes in the network structure and power flow necessitate a
reassessment of their impacts on power system stability [4]. Particularly, as the operational
modes of traditional equipment and the distribution of power flows have been altered,
various aspects such as rotor angle stability, voltage stability, and frequency stability
are affected. Additionally, new stability issues, including electromechanical-like low-
frequency oscillation and electromagnetic wideband oscillations, are gradually emerging [5].
Although renewable energy devices connected to the grid via power electronics improve
flexibility and environmental sustainability [6], their low inertia characteristics weaken the
system’s resistance to frequency disturbances [7]. Furthermore, the rapid dynamic response
of power electronic devices, along with their complex control strategies, complicates the
analysis and control of transient stability in power systems. Consequently, there is an
urgent need for an accurate and rapid TSA method to ensure the safe and stable operation
of power systems under these evolving conditions.
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Traditional TSA methods primarily rely on energy-based direct methods [8] and time–
domain simulations [9]. However, these approaches are increasingly facing challenges
in addressing the uncertainty and complexity introduced by high-penetration renewable
energy systems [10]. In recent decades, the rapidly developing deep learning (DL) has
been generally applied to build the TSA model for the power system [11], and compared to
traditional transient stability assessment methods, DL establishes a mapping relationship
between the physical characteristics of power systems and the results of transient stability
assessment through offline training. Subsequently, the trained model is applied for online
transient stability prediction in power systems. On the one hand, the trajectories of state
and operational variables following a disturbance can directly reflect the transient stability
of the power system [12,13]. In [14], a deep belief network (DBN) is presented to precisely
model the mapping relationship between the input and the output, realizing the accuracy
evaluation. A novel evaluation of power system transient stability assessment (TSA) based
on a convolutional neural network (CNN) has been proposed, which significantly enhances
the speed of batch assessment [15]. The long short-term memory (LSTM) is employed
in [16,17] to extract features from voltage phasors at different time intervals, resulting in
a time-adaptive TSA model. Furthermore, the integration of LSTM with parallel CNN
effectively captures temporal relationships within transient processes, thereby improving
the performance of the TSA model [18]. The aforementioned methods utilize electrical
measurement data as inputs to construct power system stability assessment models based
on temporal characteristics, achieving a certain level of effectiveness in stability assess-
ment [19]. On the other hand, considering the influence of power grid topology on power
system transient stability, some graph neural network (GNN)-based methods have been
employed for TSA [20]. To mine the impact of the power grid topology, the graph convo-
lutional network (GCN) is adopted to improve the prediction performance in TSA [21].
Additionally, the graph attention network (GAT) is utilized in [22] to effectively aggregate
spatial features during transient processes, while residual structures are introduced to
prevent network degradation and enhance the accuracy of TSA.

Existing DL-based TSA models typically focus on either the temporal measurement
data of the power system or the spatial characteristics of grid topology [23]. However,
these models rarely integrate both aspects to capture the spatiotemporal features of grid
data. Incorporating both spatial and temporal features is crucial for accurately evaluating
power system stability [24,25]. By analyzing and incorporating the interactions between
these features, a comprehensive understanding of the dynamic behavior during transitions
can be achieved, leading to more reliable assessments of power system stability. During
major disturbances, such as faults and stability control actions, the transient processes of
power systems exhibit significant spatiotemporal correlations. Analyzing these correlations
provides a comprehensive understanding of the dynamic behavior during transitions,
leading to more reliable assessments of power system stability [26,27]. Furthermore, as
power systems continue to grow in scale, the challenge of prolonged model training times
has become increasingly prominent [28,29]. Under limited resource conditions, the effective
and rapid training of models on large-scale grid data remain a critical challenge that must
be addressed [30].

To overcome these limitations, we propose a spatiotemporal graph convolutional net-
work approach with graph simplification (GS-STGCN) for TSA, which improves prediction
performance and accelerates TSA evaluation. The contributions of this paper are as follows:

1. A node influence-based graph simplification method is proposed, incorporating both
the topological and electrical characteristics of the power system. This approach
introduces pruning parameters to remove less influential nodes, thereby optimizing
the model input and enhancing the training efficiency of the TSA model.

2. A spatiotemporal graph convolutional network (STGCN) is designed to simultane-
ously capture spatial and temporal features during transient processes. It combines
Gated Convolutional Network (Gated CNN) with GCN to effectively extract spa-



Energies 2024, 17, 5095 3 of 13

tiotemporal features, aiming to integrate temporal sequence data with topological
information and develop a TSA model with enhanced performance.

3. The focal loss function has been improved to adjust the impact of samples with varying
levels of difficulty on model training. This adjustment helps prevent premature
convergence caused by excessively small losses in later stages, which could otherwise
degrade assessment performance. Additionally, an adaptive class weighting factor is
introduced to reduce the need for manual parameter tuning.

The remainder of this paper is organized as follows: Section 2 introduces the GS-
STGCN methodology; Section 3 elaborates on the proposed TSA framework; and Section 4
conducts case studies on the IEEE 39-bus system; finally, Section 5 concludes the whole
paper’s work.

2. GS-STGCN Methodology
2.1. Node Influence-Based Graph Simplification Method

The expansion of the power system scale will cause the growth of input data. In
power systems, some nodes exhibit noteworthy importance and carry rich information,
exerting a substantial impact on TSA. Conversely, other nodes contribute relatively less
to model training, but they may increase training time and memory usage. Therefore, a
node influence-based graph simplification method (GS) is proposed to compress large-scale
power grid input data, thus improving the calculation speed of the TSA model.

• Influence Indicators

The K-Shell algorithm (KS) is a coarse-grained node importance assessment method
based on the entire network structure. The algorithm stratifies the network from the
periphery to the core and assigns a KS value to each node, reflecting its importance within
the network. The magnitude of the KS value effectively distinguishes core nodes from
non-core nodes. A larger KS value indicates that the node is closer to the core of the network
and possesses greater influence.

Additionally, the node information entropy is utilized to assess the amount of informa-
tion a node carries within the power system. Calculating the information entropy of a node
mainly relies on the node’s neighborhood degree information, which can be expressed as

ei = − ∑
j∈N(i)

Ij · ln Ij (1)

where N(i) is the set of neighbor nodes of node i; Ii is defined as

Ii =
ki

∑
j∈N(i)

k j
(2)

where ki is the degree of node i.
Considering the location and information entropy of the nodes in the network, the

topological entropy impact indicator is defined as

e′i = −Ki ∑
j∈N(i)

Ij · ln Ij · Kj (3)

where Ki is the KS value of node i.
In power systems, power flow is a critical indicator of a node’s output capacity and

load demand, reflecting the node’s importance within the system. The active power and
reactive power at steady-state conditions are selected to jointly assess the node’s power
flow. The power flow influence indicator can be defined as

fi = ln
(√

P2
i + Q2

i

)
(4)
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where Pi and Qi are the active power and reactive power of node i in the steady state,
respectively.

Considering both the topological entropy and power flow influence of a node within
the system, a comprehensive influence indicator can be expressed as

Si = w1 · γ
(
e′i
)
+ w2 · γ( fi) (5)

where w1 and w2 are the weights of the two impact assessment indicators; γ(·) is the MIN-
MAX normalization method. The comprehensive influence indicator of a node quantifies
the importance of each node in the power grid by considering both the system’s topological
entropy and power flow influence.

• The steps of GS

The importance of each node in the power grid is quantified using a comprehensive
influence indicator. This indicator is then used to simplify and compress the system’s graph
data structure. The steps are as follows:

Comprehensive Influence Index Calculation The comprehensive influence index is
calculated by considering both the topological entropy and the power flow influence of
each node within the system. Using Equations (1)–(5), the comprehensive influence index
for each node in the power grid is computed and ranked in ascending order, resulting in
the sorted node influence vector:

S = [S1, S2, · · ·, Sm] (6)

where m is the number of nodes.
Node Selection and Elimination Nodes and their connected transmission lines are

removed sequentially according to their order in the set S, with continuous checks to ensure
that the power grid remains connected. If the grid becomes disconnected after a pruning
operation, the removal is reversed and the process moves to the next node. This procedure
continues until the proportion of removed nodes exceeds the predefined threshold ξ, at
which point the process is terminated.

Reconstruction of the Input Feature Matrix After pruning, the topology and feature
matrix of the remaining nodes in the power grid are reconstructed, resulting in a reduced
number of nodes and corresponding feature data. The impact on the grid topology before
and after pruning is illustrated in Figure 1.
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2.2. TSA Based on Spatiotemporal Graph Convolutional Networks

TSA is a classification task that relies on spatiotemporal features. The spatial structure
of the power grid represents the spatial features, while the temporal variations in electri-
cal quantities during transient processes represent the temporal features. In this study,
GCN [21] and Gated CNN [31] are employed to capture these spatial and temporal features,
respectively, enabling the accurate extraction of transient stability characteristics.
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• Spatial Convolutional Layer

CNN and GCN are classic neural network models widely used for feature extraction.
CNN is primarily designed for data in Euclidean space, excelling at extracting features
from two-dimensional tensors. In contrast, GCN is specifically tailored for processing
graph-structured data, making it ideal for extracting spatial features from the nodes within
the power grid’s graph structure.

The power grid structure can be defined using the normalized graph Laplacian matrix
as follows:

L = E − D− 1
2 AD− 1

2 = UΛUT (7)

where E is an identity matrix, D is the diagonal degree matrix of the power grid graph
structure G; A is the adjacency matrix of G; U is the matrix of eigenvectors of L; Λ =
[λ1, λ2, . . . , λn] is the diagonal matrix of eigenvalues.

The graph convolution formula can be defined as

(X ∗ g) = U((UTg)⊗ (UTX)) (8)

where X is the input of the spatial convolutional layer; ∗ is graph convolution operator; g
is the convolution kernel; ⊗ is the Hadamard product.

Using gθ = UTg as the learnable convolution kernel, the graph convolution formula is

(X ∗ g) = UgθUTX (9)

To accelerate the computation of Equation (9), the Chebyshev polynomial is employed
to approximate the convolution kernel, which can be obtained as follows:

gθ = gθ(Λ) ≈
H−1

∑
H=0

θHTH(
∼
Λ) (10)

where
∼
Λ = 2Λ/λmax − E; λmax is the largest eigenvalue of L; θH is the vector of Cheby-

shev polynomial coefficients. TH(x) is the H-order Chebyshev polynomial and it can be
expressed as

TH(x) = 2xTH−1(x)− TH−2(x) (11)

where T0(x) = 1, T1(x) = x.
By introducing Chebyshev polynomials, the graph convolution formula is derived

as follows:

g ∗ x =
H−1

∑
H=0

θHTH(
2L

λmax
− E)x (12)

• Temporal Convolutional Layer

The temporal convolutional layer comprises two key components. First, Gated CNN
is used to capture long-term dependencies across different time steps. Second, the Gated
Linear Unit (GLU) serves as the nonlinear activation function, effectively integrating both
linear and nonlinear transformations. In the temporal convolutional layer, the input for
each node is a sequence with Ci input channels and a length of M, represented as X ∈
RM×Ci . The convolution kernel Γ ∈ Rk×Ci×2C0 is designed to perform a one-dimensional
convolution operation on X, with the output can be defined as

X′ = Γ ∗ X = p ⊗ σ(q) ∈ R(M−k+1)×C0 (13)

where p and q are the input of gates in GLU respectively; σ(·) denotes the activation
function; C0 is the number of output channels; k is the size of the convolution kernel.
Gated CNN is employed to extract temporal features of the transient process. Compared to
Recurrent Neural Network (RNN) and their derivatives, Gated CNN offers faster training
speeds and is less prone to gradient-related issues.
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• Spatiotemporal graph convolutional network

To accurately and efficiently fuse spatial and temporal features, a spatiotemporal
graph convolutional network is designed, as illustrated in Figure 2.
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In this network, the power flow data X is the input for the temporal convolutional
layer Γ0, while the adjacency matrix A of the power grid’s graph structure is the input
for the spatial convolutional layer Ψ. First, X is input into Γ0, where Gated CNN and
GLU are used to capture temporal dependencies, performing convolution operations along
the time dimension. The extracted temporal features are then combined with the spatial
features, followed by an activation operation to perform graph convolution along the
spatial dimension. Subsequently, the temporal and spatial features are further integrated
by processing them through the temporal convolutional layer Γ1, ultimately producing the
fused spatiotemporal feature Xo, defined as:

Xo = Γ1 ∗ σ(Ψ ∗ (Γ0 ∗ X)) (14)

2.3. GS-STGCN Model

To efficiently and accurately perform TSA, this paper proposes a Graph Simplification-
based spatiotemporal graph convolutional network (GS-STGCN) model, as illustrated in
Figure 3. The model includes several key components: a GS module, two STGCN layers
with a residual structure, and four fully connected layers followed by a SoftMax layer. The
GS module preprocesses electrical measurement data by removing redundant information,
enhancing computational efficiency, and allowing the model to focus on relevant features.
The STGCN layers extract spatial and temporal features from the graph data, capturing
complex patterns in power system behavior over time. The residual structure between the
STGCN layers facilitates gradient flow during backpropagation, mitigating the vanishing
gradient problem and enabling deeper architectures without sacrificing performance. The
four fully connected layers process the extracted features, allowing the model to learn
complex interactions. This architecture improves the model’s generalization and prediction
accuracy. Finally, the SoftMax layer converts the outputs into probability distributions over
stability classes, yielding the final stability assessment result. This structured approach
ensures that the GS-STGCN model effectively integrates graph simplification, feature
extraction, and classification for reliable TSA.
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3. GS-STGCN-Based TSA Model
3.1. Feature Input and Output

To enhance the accuracy of TSA, it is essential to comprehensively consider the spa-
tiotemporal distribution characteristics of transient stability data. Consequently, the input
features of the assessment model should be constructed from both temporal and spatial
perspectives. For temporal features, variations in voltage magnitudes and phase angles can
intuitively reflect the system’s response characteristics, making node voltage amplitude
and phase angle time series data suitable input features. For spatial features, the system’s
topological structure is used as an input feature to account for the impact of the power
system’s topological connections on energy transmission paths. And it captures the spa-
tial evolution patterns of transient stability data by considering the dynamic interactions
between nodes.

TSA is essentially a binary classification problem, where the labels 0 and 1 correspond
to stable and unstable samples, respectively. The criterion for stability is determined based
on the Transient Stability Index:

ITSI =
360◦−|∆δmax|
360◦+|∆δmax|

(15)

The ITSI is calculated using the maximum rotor angle difference ∆δmax between gener-
ators as its benchmark. A positive ITSI (ITSI > 0) corresponds to a stable system, which is
labeled as (1,0), indicating that the system can maintain a synchronous operation following
a disturbance. Conversely, a non-positive ITSI (ITSI ≤ 0) is associated with an unstable
system, labeled as (0,1), suggesting that the system has failed to sustain synchronization.
Fundamentally, the ITSI assesses the capacity for synchronous machine operation within
an electrical power system by determining if the rotor angle difference ∆δmax is greater
than 360◦. If ∆δmax is less than this critical threshold, it indicates that the system has a
sufficient stability margin to resist disturbances and allows for the resynchronization of
generators. In these cases, the ITSI is positive, confirming the system’s stability. In contrast,
if the angle difference ∆δmax is equal to or exceeds 360◦, it reflects an inability to maintain
synchronous operation, resulting in a ITSI that is either negative or zero, which is indicative
of system instability. Moreover, ITSI is intrinsically linked to the dynamics of power systems
as it quantifies the system’s inertial response following a significant disturbance, such as a
fault or a change in load. The ITSI value provides a quantitative measure of the system’s
resilience, which is essential for comprehending the dynamic behavior of power systems
during transient stability evaluations.
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3.2. The Adaptive Focal Loss Function

In practical power system applications, class imbalance is commonly observed, with
the number of stable samples markedly exceeding that of unstable ones. During training,
the abundance of stable samples results in more frequent parameter updates for these
samples. Consequently, these updates dominate the overall contribution to the loss function,
leading to an underfitting of the unstable samples. This imbalance increases the likelihood
of the model misclassifying unknown samples as stable.

Simultaneously, the training dataset includes both easily classified samples and dif-
ficult samples that are prone to misclassification. A large number of simple samples can
dominate the gradient update direction, causing the model’s overall learning process to
deviate and leading to ineffective learning. During iterations involving a substantial num-
ber of simple samples, the loss function may not decrease toward the desired optimization
direction or may fail to reach the optimal solution.

An effective approach is to modify the model’s loss function during training. The focal
loss (FL) function, an improvement of the traditional cross-entropy loss function (CE), is
expressed as

fL =

{
−(1 − w)pbln(1 − p) , y = 0
−w(1 − p)blnp , y = 1

(16)

where p is the predicted probability; w is the class weighting factor used to adjust the
balance between positive and negative samples—when w is closer to 1, the contribution of
negative samples to the loss function increases. b is the difficulty weighting factor, where a
larger b increases the contribution of difficult samples to the loss function.

Intuitively, the FL function addresses the class imbalance between stable and unstable
samples through w, and it tackles the imbalance between easy and difficult samples via
b. However, as the model’s recognition ability improves during training, the distinction
between easy and difficult samples evolves. Consequently, fixing the value of b may
negatively impact the later stages of training. Additionally, treating w as a hyperparam-
eter requires extensive experimentation to optimize the loss function, which can lead to
considerable computational time and resource consumption.

To address the issues mentioned above, adaptive class weighting factors and dy-
namically changing difficulty weighting factors are introduced based on the FL function,
resulting in the improved focal loss (IFL) function. The improved w and b are defined
as follows: {

a = m0
m0+m1

bc =
bs

ln(E−1+e)
(17)

where m0 and m1 represent the number of positive and negative samples, respectively; E is
the total number of training iterations; and bs is the initially set difficulty weighting factor.

3.3. Classification Performance Metrics

The evaluation results of the TSA method are presented in Table 1. Four evaluation
metrics—accuracy Acc, precision Prec, recall f1, and F1-score f1—are used to comprehen-
sively assess the performance of the different TSA models.

Acc =
TP + TN

TP + TN + FP + FN
(18)

Prec =
TP

TP + FP
(19)

Rec =
TP

FN + TP
(20)

f1 = 2 × Prec × Rec

Prec + Rec
(21)
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where TP is the number of samples predicted by the model to be positive and actually
positive; TN is the number of samples predicted to be negative and actually negative; FP is
the number of samples predicted by the model to be positive but actually negative, and FN
is the number of samples predicted by the model to be negative but actually positive.

Table 1. Average results of various indicators for five models.

Model Acc/% Prec/% Rec/% f1/%

GS-STGCN 99.51 99.98 98.92 99.46
GCN 98.62 99.77 97.05 98.49
GAT 98.87 98.91 98.65 98.78

LSTM 97.52 99.71 94.87 97.24
SVM 92.61 96.97 86.52 91.45

4. Case Study

To verify the effectiveness and applicability of the proposed method, the model is
implemented using PaddlePaddle (version 2.4) within a Python (version 3.9) environment
and applied to the IEEE 39-bus system for case analysis.

4.1. Database Generation

The Dynamic Simulation Program is used to simulate and generate transient stability
data. The load level is increased from 70% to 110% in 10% increments. The fault type is a
three-phase short circuit, with faults occurring at 20 different locations, increasing by 5%
from 0% to 95%. Fault durations vary from 2 to 18 cycles. A total of 15,000 samples are
generated, including 9500 stable samples and 5500 unstable samples. Simulation Data Link:
https://github.com/yangyuan123654/yydata (accessed on 12 October 2024).

4.2. Performance Testing and Analysis of GS-STGCN Model Evaluation

To verify the superiority of the GS-STGCN model for TSA, it is compared against the
SVM [32], GCN [21], GAT [22], and LSTM [16] models. The SVM model uses a radial basis
function (RBF) kernel, with sample feature data transformed into a one-dimensional format
to meet the kernel’s requirements. The LSTM model comprises two LSTM layers, followed
by a fully connected layer and a SoftMax output layer. The GCN model consists of two
stacked GCN layers, a fully connected layer, and a SoftMax output layer. Similarly, the
GAT model consists of two stacked GAT layers, a fully connected layer, and a SoftMax
output layer. The first GAT layer utilizes eight attention heads, while the second GAT layer
employs two attention heads, with the outputs from these heads averaged. All DL models
use the IFL loss function and the Adam optimization algorithm. The pruning parameter for
the GS-STGCN model is set to 0.3. The performance results of the five models are presented
in Table 1.

The test results indicate that, as a shallow model, the SVM is limited to capturing only
surface-level features of the data and struggles to identify deeper, more complex patterns.
Consequently, its performance is notably inferior to that of the GCN, GAT, and LSTM mod-
els. By effectively leveraging the topological information of the power grid, both the GCN
and GAT models achieve accuracies of 98.62% and 98.87%, respectively, outperforming
the LSTM model. However, the proposed GS-STGCN model surpasses the GCN, GAT,
LSTM, and SVM models across all four evaluation metrics. This superior performance can
be attributed to the GS-STGCN model’s capability to comprehensively capture the complex
topology of the power grid while simultaneously extracting temporal dynamics.

4.3. GS Performance Verification

To validate the effectiveness of the GS, it is applied independently to the STGCN,
GCN, and GAT models, with the pruning parameter set to 0.3. Transient stability prediction
is then conducted by comparing GS-STGCN with STGCN, GS-GCN with GCN, and GS-
GAT with GAT. Each model is iterated for 100 rounds, and the results are analyzed in

https://github.com/yangyuan123654/yydata
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terms of prediction accuracy and model training time. The comparison of GS effectiveness
verification results is shown in Figure 4.
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Models employing the GS exhibit faster training speeds compared to their original
counterparts. By reducing the complexity of topology and feature matrix of the power
system, GS lowers both computational and storage requirements. Notably, the GS-GCN,
GS-GAT, and GS-STGCN models improve their training speeds by 19.16%, 14.12%, and
20.08%, respectively, significantly accelerating the training process for TSA tasks. Addi-
tionally, the GS technique not only enhances task efficiency but also improves prediction
accuracy. Specifically, the GS-GCN, GS-GAT, and GS-STGCN models increase their predic-
tion accuracy by 0.16%, 0.08%, and 0.14%, respectively. This indicates that the GS technique
effectively simplifies the power grid’s topology and feature matrix by removing redundant
information. It allows the models to focus on learning and analyzing critical information,
thereby improving the precision and accuracy of the predictions.

4.4. Performance Verification of IFL Loss Function

The performance metrics of GS-STGCN on the test set, trained using the CE function,
FL function, and IFL function as loss functions, are shown in Table 2. The accuracy of the
model using the IFL function improves by 0.88% and 0.39% compared to the CE function
and the FL function, respectively. The reason for this improvement is that the IFL function
introduces an adaptive class weight factor compared to the CE function, which helps
mitigate the impact of class imbalance between positive and negative samples. Compared
to the FL function, the IFL function incorporates dynamic parameters to adjust the model’s
focus on difficult samples, leading to more effective utilization of the data during training.

Table 2. Comparison of loss function performance.

Function Acc/% Prec/% Rec/% f1/%

CE function 98.63 97.87 99.19 98.53
FL function 99.12 99.72 98.38 99.05
IFL function 99.51 99.98 98.92 99.46

4.5. Validation of the Robustness of the Model to Noise

In practical online applications, the test dataset is derived from real-time PMU data.
Given the inherent variability in PMU measurements of dynamic data, some level of error
is inevitable. To assess the robustness of the model, Gaussian white noise—characterized
by instantaneous values following a Gaussian distribution and uniform power spectral
density—is introduced to the test set to simulate the measurement errors typically en-
countered in real-world scenarios. The trained models are then evaluated using the test
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set augmented with Gaussian white noise. The accuracy of various models under noisy
conditions is displayed as Figure 5.
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It is observed that, compared to the noise-free scenario, each method’s accuracy is
somewhat impacted by the presence of noise. Nevertheless, the proposed GS-STGCN
achieves a transient stability prediction accuracy of 99.02%, outperforming the other meth-
ods. Furthermore, the accuracy of the GS-STGCN decreases by only 0.49% in the presence
of noise, which is a relatively smaller reduction compared to the accuracy losses seen in the
other methods. Therefore, the proposed TSA method based on GS-STGCN exhibits strong
robustness to noise.

5. Conclusions

In this paper, we develop a TSA method based on a spatiotemporal graph convolu-
tional network with graph simplification. First, the topology and electrical characteristics
of the power grid are integrated, and the graph data of the power grid is compressed
and input into a deep spatiotemporal graph convolutional network. By combining the
spatial features of the power grid with the temporal features of the transient process, a
high-performance TSA model is constructed. Second, the improved focal loss function is
employed as the loss function of the model. The method proposed in this paper was vali-
dated through simulation studies conducted on the IEEE 39-bus system. The experimental
conclusions are as follows:

(1) The GS method optimizes the model input by removing low-influence nodes, thereby
compressing the large-scale power grid input data. This approach effectively enhances
the training speed of the TSA model.

(2) The STGCN model can fully capture the spatiotemporal features of transient processes,
effectively reflecting the changing patterns of the system’s transient behavior and
ensuring the accuracy of the model’s evaluation.

(3) The FL function can adaptively adjust the weight factors of the loss function, al-
lowing the model to handle sample imbalance during training. This reduces the
misclassification of unstable samples while also enhancing overall accuracy.

Currently, the TSA model proposed in this paper primarily targets offline and online
analysis scenarios based on simulation analysis. It effectively shortens model training
time and improves evaluation accuracy. This advancement is particularly beneficial for
utility companies and power system operators, as it allows them to conduct more rapid
and reliable stability assessments without significant computational overhead. In future
research, greater emphasis will be placed on integrating the mechanistic knowledge of
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power systems into the model to further enhance its interpretability and convergence.
This integration will not only improve the model’s predictive capabilities but also provide
deeper insights into the underlying dynamics of power systems, which can be crucial for
operational decision making and strategic planning.
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