Fuel Cell Electric Buses: A Systematic Literature Review
Abstract
:1. Introduction
2. The Methodology of the Total Cost of Ownership
3. Systematic Literature Review
4. Data
4.1. Acquisition Costs
4.2. Hydrogen Fuel Costs
4.3. Hydrogen Pathways
4.4. Fuel Efficiency
4.5. Maintenance Costs
4.6. Infrastructural Costs
5. TCO Estimates
5.1. Year Wise Estimate
5.2. Country Estimates
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Madden, B.; Boyd, E. Economic Case for Hydrogen Buses in Europe; Ballard Power Systems: Burnaby, BC, Canada, 2017. [Google Scholar]
- Fischer, H. Business Case for Operators of Hydrogen City Buses; Giantleap Project: Luxembourg, 2020. [Google Scholar]
- Bravo Diaz, L.; Boillot, L. Historical Analysis of Clean Hydrogen JU Fuel Cell Electric Vehicles, Buses and Refuelling Infrastructure Projects; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Danielis, R.; Scorrano, M.; Masutti, M.; Awan, A.M.; Niazi, A.M.K. The Economic Competitiveness of Hydrogen Fuel Cell-Powered Trucks: A Review of Total Cost of Ownership Estimates. Energies 2024, 17, 2509. [Google Scholar] [CrossRef]
- Kim, H.; Hartmann, N.; Zeller, M.; Luise, R.; Soylu, T. Comparative TCO Analysis of Battery Electric and Hydrogen Fuel Cell Buses for Public Transport System in Small to Midsize Cities. Energies 2021, 14, 4384. [Google Scholar] [CrossRef]
- Caputi, M.V.M.; Coccia, R.; Venturini, P.; Cedola, L.; Borello, D. Assessment of Hydrogen and LNG Buses Adoption as Sustainable Alternatives to Diesel Fuel Buses in Public Transportation: Applications to Italian Perspective. In Proceedings of the E3S Web of Conferences; EDP Sciences, Paris, France, 10 January 2022; Volume 334, p. 09002. [Google Scholar]
- Millo, F.; Rolando, L.; Piano, A.; Vinogradov, A.; Peiretti Paradisi, B. Comparison Between Different Hydrogen Fuelled Powertrains for Urban Busses. In Proceedings of the SIA Powertrain & Energy—Rouen 2022, Rouen, France, 15–16 June 2022; Volume 1, pp. 21–30. [Google Scholar]
- Muñoz, P.; Franceschini, E.A.; Levitan, D.; Rodriguez, C.R.; Humana, T.; Correa Perelmuter, G. Comparative Analysis of Cost, Emissions and Fuel Consumption of Diesel, Natural Gas, Electric and Hydrogen Urban Buses. Energy Convers. Manag. 2022, 257, 115412. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H. Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives. Sustainability 2023, 16, 259. [Google Scholar] [CrossRef]
- Zorzela, L.; Loke, Y.K.; Ioannidis, J.P.; Golder, S.; Santaguida, P.; Altman, D.G.; Moher, D.; Vohra, S.; Boon, H.; Clark, J.; et al. PRISMA Harms Checklist: Improving Harms Reporting in Systematic Reviews. BMJ 2016, 352, i157. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Baumeister, R.F.; Leary, M.R. Writing Narrative Literature Reviews. Rev. Gen. Psychol. 1997, 1, 311–320. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Di Vece, G.; Di Nunno, D.; Bilancia, M.; Verdino, V. Development of a Total Cost of Ownership Model to Compare BEVs, FCEVs and Diesel Powertrains on Bus Applications. In Proceedings of the SAE Technical Papers, Turin, Italy, 14 June 2022; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Ally, J.; Pryor, T. Life Cycle Costing of Diesel, Natural Gas, Hybrid and Hydrogen Fuel Cell Bus Systems: An Australian Case Study. Energy Policy 2016, 94, 285–294. [Google Scholar] [CrossRef]
- Kołodziejski, M.; Matuszak, Z.; Żabińska, I. Possibilities of Using Hydrogen Buses in Urban Transport. Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser. 2022, 2022, 53–64. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Santibanez Gonzalez, E.D.; Gatto, A.; Althaus, T.; Quliyev, F. Pathways to the Hydrogen Mobility Futures in German Public Transportation: A Scenario Analysis. Renew Energy 2023, 205, 384–392. [Google Scholar] [CrossRef]
- Borghetti, F.; Longo, M.; Bonera, M.; Libretti, M.; Somaschini, C.; Martinelli, V.; Medeghini, M.; Mazzoncini, R. Battery Electric Buses or Fuel Cell Electric Buses? A Decarbonization Case Study in the City of Brescia, Italy. Infrastructures 2023, 8, 178. [Google Scholar] [CrossRef]
- Sarkar, S.; He, X.; Khan, F. Techno-Economic Assessment of Future Fuels and Vehicle Technologies: Fuel Cell, Batteries, and Natural Gas Prospects in India; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Holland Innovation Network China. Deloitte China Fueling the Future of Mobility Hydrogen and Fuel Cell Solutions for Transportation. Financ. Advis. 2019, 1, 1. [Google Scholar]
- Borghetti, F.; Carra, M.; Besson, C.; Matarrese, E.; Maja, R.; Barabino, B. Evaluating Alternative Fuels for a Bus Fleet: An Italian Case. Transp. Policy 2024, 154, 1–15. [Google Scholar] [CrossRef]
Preliminary keywords | Bus* AND fuel AND cell AND hydrogen AND cost |
Final keywords | Bus* AND fuel AND cell AND hydrogen AND cost AND TCO |
Period | 1975 and July 2024 |
Authors | Year of Reference | Acquisition Cost HB (EUR) | Acquisition Cost DB (EUR) | Acquisition Cost HB/ Acquisition Cost DB |
---|---|---|---|---|
Fischer & Zenith (2020) | 2015 | 715,000 | 232,000 | 3.08 |
Ally & Pryor (2016) | 2016 | 815,789 | 309,208 | 2.64 |
Kolodziesjski et al. (2022) | 2016 | 926,918 | 347,594 | 2.67 |
Madden & Boyd (2017) | 2017 | 666,000 | 170,894 | 3.90 |
Deloitte (2020) | 2019 | 603,506 | 257,768 | 2.82 |
Madden & Boyd (2017) | 2020 | 500,000 | 170,894 | 2.93 |
Fischer & Zenith (2020) | 2020 | 585,000 | 233,000 | 2.51 |
Kim et al. (2021) | 2020 | 430,000 | 250,000 | 1.72 |
Migliarese Caputi et al. (2022) | 2020 | 625,000 | 250,000 | 2.50 |
Sadik-Zada et al. (2023) | 2021 | 625,000 | 260,000 | 2.40 |
Malek et al. (2021) | 2021 | 280,000 | 262,000 | 1.07 |
Borghetti et al. (2024) | 2022 | 670,000 | 262,000 | 2.56 |
Di Vece et al. (2022) | 2023 | 550,000 | 219,240 | 2.51 |
Sadik-Zada et al. (2023) | 2025 | 472,500 | 260,000 | 1.82 |
Madden & Boyd (2017) | 2025 | 347,766 | 170,894 | 2.03 |
Borghetti et al. (2024) | 2025 | 480,000 | 262,000 | 1.83 |
Fischer & Zenith (2020) | 2025 | 535,000 | 238,000 | 2.25 |
Madden & Boyd (2017) | 2030 | 339,766 | 170,894 | 1.99 |
Borghetti et al. (2024) | 2030 | 380,000 | 262,000 | 1.45 |
Di Vece et al. (2022) | 2030 | 330,000 | 219,240 | 1.51 |
Fischer & Zenith (2020) | 2030 | 505,000 | 244,000 | 2.07 |
Kim et al. (2021) | 2030 | 360,000 | 250,000 | 1.44 |
Sadik-Zada et al. (2023) | 2035 | 320,000 | 260,000 | 1.23 |
Global Average | 505,939 | 231,882 | 2.26 |
Authors | Year of Reference | Hydrogen Price (EUR/kg) | Diesel Price (EUR/L) |
---|---|---|---|
Fischer & Zenith (2020) | 2015 | 12.00 | |
Ally & Pryor (2016) | 2016 | 13.06 | 1.39 |
Kolodziesjski et al. (2022) | 2016 | 9.50 | |
Madden & Boyd (2017) | 2017 | 6.37 | 0.80 |
Deloitte (2020) | 2019 | 6.94 | 0.99 |
Munoz et al. (2022) | 2019 | 9.70 | |
Madden & Boyd (2017) | 2020 | 5.43 | 0.90 |
Fischer & Zenith (2020) | 2020 | 9.00 | |
Kim et al. (2021) | 2020 | 13.10 | 1.24 |
Migliarese Caputi et al. (2022) | 2020 | 7.24 | 1.85 |
Millo et al. (2022) | 2020 | 5.00 | 1.60 |
Sadik-Zada et al. (2023) | 2021 | 9.26 | 0.97 |
Malek et al. (2021) | 2021 | 6.00 | |
Borghetti et al. (2024) | 2022 | 12.50 | |
Sarker & He (2023) | 2022 | 2.40 | |
Chen & Wang (2023) | 2023 | 4.20 | 1.03 |
Di Vece et al. (2022) | 2023 | 5.35 | |
Sadik-Zada et al. (2023) | 2025 | 7.87 | 1.17 |
Madden & Boyd (2017) | 2025 | 4.20 | 1.00 |
Borghetti et al. (2024) | 2025 | 10.00 | |
Fischer & Zenith (2020) | 2025 | 6.00 | |
Madden & Boyd (2017) | 2030 | 4.00 | 1.10 |
Borghetti et al. (2024) | 2030 | 8.00 | |
Di Vece et al. (2022) | 2030 | 4.00 | |
Fischer & Zenith (2020) | 2030 | 3.00 | |
Kim et al. (2021) | 2030 | 7.60 | 1.37 |
Sadik-Zada et al. (2023) | 2035 | 5.09 | 1.56 |
Global Average | 6.68 | 1.17 |
Authors/Pathways | Year of Estimate | Hydrogen Price (EUR/kg) | Diesel Price (EUR/l) |
---|---|---|---|
Madden & Boyd (2017) | 2023 | 5.00 | 0.95 |
Alkaline Electrolysis | 2023 | 5.73 | 0.95 |
Ploymer Electrolyte Membrane | 2023 | 5.95 | 0.95 |
SMR | 2023 | 3.33 | 0.95 |
Migliarese Caputi et al. (2022) | 2020 | 7.24 | 1.85 |
Electrolysis (through FER) | 2020 | 9.20 | 1.85 |
Electrolysis (through Grid) | 2020 | 7.60 | 1.85 |
SMR with CCS | 2020 | 4.91 | 1.85 |
Chen & Wang (2023) | 2026 | 3.27 | 1.05 |
Blue | 2023 | 3.80 | 1.03 |
Blue | 2028 | 1.94 | 1.07 |
Grey | 2023 | 1.93 | 1.03 |
Grey | 2028 | 1.36 | 1.07 |
Green | 2026 | 5.30 | 1.05 |
Authors | Year of Reference | Fuel Efficiency (kg/100 km) |
---|---|---|
Fischer & Zenith (2020) | 2015 | 9.50 |
Ally & Pryor (2016) | 2016 | 10.00 |
Kolodziejski et al. (2022) | 2016 | 9.00 |
Madden & Boyd (2017) | 2017 | 8.00 |
Madden & Boyd (2017) | 2020 | 7.50 |
Fischer & Zenith (2020) | 2020 | 9.50 |
Kim et al. (2021) | 2020 | 8.00 |
Migliarese Caputi et al. (2022) | 2020 | 8.00 |
Sadik-Zada et al. (2023) | 2021 | 8.00 |
Malek et al. (2021) | 2021 | 9.00 |
Borghetti et al. (2024) | 2022 | 11.00 |
Di Vece et al. (2022) | 2023 | 6.55 |
Sadik-Zada et al. (2023) | 2025 | 8.00 |
Madden & Boyd (2017) | 2025 | 6.50 |
Borghetti et al. | 2025 | 10.00 |
Fischer & Zenith (2020) | 2025 | 9.50 |
Madden & Boyd (2017) | 2030 | 6.50 |
Borghetti et al. (2024) | 2030 | 9.00 |
Di Vece et al. (2022) | 2030 | 6.55 |
Fischer & Zenith (2020) | 2030 | 9.50 |
Kim et al. (2021) | 2030 | 8.00 |
Sadik-Zada et al. (2023) | 2035 | 8.00 |
Global Average | 7.99 |
Authors | Year of Reference | Maintenance and Wear Costs HB (EUR/km) | Maintenance and Wear Costs DB (EUR/km) |
---|---|---|---|
Ally & Pryor (2016) | 2016 | 0.62 | 0.17 |
Madden & Boyd (2017) | 2017 | 0.42 | 0.15 |
Fischer & Zenith (2020 | 2020 | 0.40 | 0.28 |
Deloitte (2020) | 2020 | 1.10 | 0.66 |
Kim et al. (2021) | 2021 | 0.11 | 0.25 |
Malek et al. (2021) | 2021 | 0.07 | |
Di Vece et al. (2022) | 2022 | 0.33 | 0.32 |
Kolodziejski et al. (2022) | 2022 | ||
Migliarese Caputi et al. (2022) | 2022 | 0.42 | 0.30 |
Sadik-Zada et al. (2023) | 2023 | 0.50 | 0.33 |
Borghetti et al. (2024) | 2023 | 0.33 | 0.19 |
Pettinau et al. (2024) | 2024 | 0.20 | 0.27 |
Global Average | 0.45 | 0.31 |
Year of Reference/Authors | TCO HB (EUR/km) | TCO DB (EUR/km) | TCO HB/ TCO DB |
---|---|---|---|
2015 | 4.12 | 2.30 | 1.79 |
Fischer & Zenith (2020) | 4.12 | 2.30 | 1.79 |
2016 | 4.89 | 1.45 | 2.39 |
Ally & Pryor (2016) | 4.89 | 1.45 | 3.37 |
Kolodziejski et al. (2022) | 1.41 | ||
2017 | 1.58 | ||
Madden & Boyd (2017) | 1.58 | ||
2019 | 2.08 | 1.07 | 1.85 |
Deloitte (2020) | 1.81 | 0.96 | 1.74 |
Munoz et al. (2022) | 2.89 | 1.40 | 2.07 |
2020 | 1.70 | 1.27 | 1.31 |
Madden & Boyd (2017) | 1.30 | ||
Fischer & Zenith (2020) | 3.65 | 2.50 | 1.46 |
Kim et al. (2021) | 1.99 | 1.17 | 1.70 |
Migliarese Caputi et al. (2022) | 1.39 | 1.07 | 1.30 |
Millo et al. (2022) | 1.26 | 1.10 | 1.15 |
2021 | 1.70 | 1.17 | 1.60 |
Sadik-Zada et al. (2023) | 1.88 | 1.17 | 1.60 |
Malek et al. (2021) | 1.35 | ||
2022 | 2.15 | 1.10 | 1.95 |
Borghetti et al. (2023) * | 2.15 | 1.10 | 1.95 |
2023 | 2.59 | 2.04 | 1.36 |
Chen et al. (2023) ** | 1.46 | ||
Di Vece et al. (2022) | 1.57 | 1.30 | 1.21 |
Heimes et al. (2023) | 4.64 | 3.53 | 1.31 |
2025 | 1.92 | 1.47 | 1.25 |
Sadik-Zada et al. (2023) | 1.63 | 1.28 | 1.28 |
Madden & Boyd (2017) | 1.10 | ||
Borghetti et al. (2023) * | 1.79 | 1.10 | 1.63 |
Fischer & Zenith (2020) | 3.46 | 2.80 | 1.24 |
2030 | 1.81 | 1.61 | 1.12 |
Madden & Boyd (2017) | 1.10 | ||
Borghetti et al. (2023) * | 1.75 | 1.10 | 1.59 |
Di Vece et al. (2022) | 1.20 | 1.36 | 0.88 |
Fischer & Zenith (2020) | 3.50 | 3.00 | 1.17 |
Kim et al. (2021) | 1.41 | 1.23 | 1.15 |
2035 | 1.41 | 1.46 | 0.97 |
Sadik-Zada et al. (2023) | 1.41 | 1.46 | 0.97 |
Sarker & He (2023) | 1.26 | ||
Global Average | 2.00 | 1.44 | 1.38 |
Country | Year of Reference | TCO HB (EUR/km) | TCO DB (EUR/km) | TCO HB/TCO DB |
---|---|---|---|---|
Argentina | 2019 | 2.89 | 1.40 | 2.07 |
Australia | 2016 | 4.89 | 1.45 | 3.37 |
China | 2019 | 1.58 | 0.66 | 2.39 |
Europe | 2.14 | 1.69 | 1.25 | |
2015 | 4.12 | 2.30 | 1.79 | |
2017 | 1.58 | |||
2019 | 1.69 | 1.10 | 1.53 | |
2020 | 1.86 | 1.45 | 1.26 | |
2023 | 1.57 | 1.30 | 1.21 | |
2025 | 3.46 | 2.80 | 1.13 | |
2030 | 1.96 | 1.90 | 1.04 | |
Germany | 1.86 | 1.47 | 1.28 | |
2020 | 1.99 | 1.17 | 1.70 | |
2021 | 1.88 | 1.17 | 1.60 | |
2023 | 4.64 | 3.53 | 1.31 | |
2025 | 1.63 | 1.28 | 1.28 | |
2030 | 1.41 | 1.23 | 1.15 | |
2035 | 1.41 | 1.46 | 0.97 | |
India | 2022 | 1.26 | ||
Italy | 1.64 | 1.09 | 1.51 | |
2020 | 1.39 | 1.07 | 1.30 | |
2022 | 2.15 | 1.10 | 1.95 | |
2025 | 1.79 | 1.10 | 1.63 | |
2030 | 1.75 | 1.10 | 1.59 | |
Poland | 1.35 | 1.41 | ||
2016 | 1.41 | |||
2021 | 1.35 | |||
USA | 2.17 | 1.11 | 1.55 | |
2019 | 2.17 | 1.11 | 1.95 | |
2023 | 1.46 | |||
Global Average | 2.00 | 1.44 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielis, R.; Scorrano, M.; Masutti, M.; Awan, A.M.; Niazi, A.M.K. Fuel Cell Electric Buses: A Systematic Literature Review. Energies 2024, 17, 5096. https://doi.org/10.3390/en17205096
Danielis R, Scorrano M, Masutti M, Awan AM, Niazi AMK. Fuel Cell Electric Buses: A Systematic Literature Review. Energies. 2024; 17(20):5096. https://doi.org/10.3390/en17205096
Chicago/Turabian StyleDanielis, Romeo, Mariangela Scorrano, Manuela Masutti, Asees Muhammad Awan, and Arsalan Muhammad Khan Niazi. 2024. "Fuel Cell Electric Buses: A Systematic Literature Review" Energies 17, no. 20: 5096. https://doi.org/10.3390/en17205096
APA StyleDanielis, R., Scorrano, M., Masutti, M., Awan, A. M., & Niazi, A. M. K. (2024). Fuel Cell Electric Buses: A Systematic Literature Review. Energies, 17(20), 5096. https://doi.org/10.3390/en17205096