Application of a GIS-Based Multi-Criteria Decision-Making Approach to the Siting of Ocean Thermal Energy Conversion Power Plants: A Case Study of the Xisha Sea Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- (1)
- Seawater Temperature Data
- (2)
- Marine Geological Data
- (3)
- No-Anchoring Zone and Shipping Routes
2.3. GIS-Based Muti-Criteria Decision-Making Methods
2.4. Criteria for Site Selection
2.4.1. Exclusion Criteria
- (1)
- Areas with Submarine Geological Hazards
- (2)
- No-anchoring Zones
- (3)
- Shipping Routes
2.4.2. Evaluation Criteria
- (1)
- Temperature Difference Between Surface and Deep Seawater
- (2)
- Distance to Inhabited Islands
- (3)
- Distance to the Nearest Islands
- (4)
- Mud Content in Seabed Sediments
3. Results
3.1. Potential Marine Areas
3.2. Weighting Factors
- (1)
- Temperature Difference Between Surface and Deep Seawater
- (2)
- Distance to Inhabited Islands
- (3)
- Distance to the Nearest Islands
- (4)
- Mud Content in Seabed Sediments
3.3. Reclassification of Factors
- (1)
- Temperature Difference Between Surface and Deep Seawater
- (2)
- Distance to Inhabited Islands
- (3)
- Distance to the Nearest Islands
- (4)
- Mud Content in Seabed Sediments
3.4. Suitability Index
3.5. Suitable Site Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Tang, Z.; Qian, F. A review of recent advances and key technologies in ocean thermal energy conversion. J. Hohai Univ. (Nat. Sci.) 2019, 47, 55–64. [Google Scholar]
- Aresti, L.; Christodoulides, P.; Michailides, C.; Onoufriou, T. Reviewing the energy, environment, and economy prospects of Ocean Thermal Energy Conversion (OTEC) systems. Sustain. Energy Technol. Assess. 2023, 60, 103459. [Google Scholar] [CrossRef]
- Binger, A. Potential and Future Prospects for Ocean Thermal Energy Conversion (OTEC) in Small Islands Developing States (SIDS); Saga University Institute of Ocean Energy: Saga, Japan, 2004. [Google Scholar]
- Banerjee, S.; Musa, M.N.; Jaafar, A.B. Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int. J. Hydrogen Energy 2017, 42, 26–37. [Google Scholar] [CrossRef]
- Mitigation, C.C. IPCC special report on renewable energy sources and climate change mitigation. Renew. Energy 2011, 20, 11. [Google Scholar]
- Osorio, A.E.S.F.; Arias-Gaviria, J.; Devis-Morales, A.; Acevedo, D.; Velasquez, H.E.C.I.; Arango-Aramburo, S. Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands. Energy Policy 2016, 98, 713–724. [Google Scholar] [CrossRef]
- Vega, L.A. Ocean thermal energy conversion. In Renewable Energy Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1273–1305. [Google Scholar]
- Zhang, S.; Li, Y.; Bai, Y.; Zhong, Y.; Zhou, Q.; Wang, X.; Du, M.; Meng, J.; Xu, H. An assessment of ocean thermal energy conversion resources in the South China Sea. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–6. [Google Scholar]
- Lynn, B.; Medved, A.; Griggs, T. A comparative analysis on the impact of salinity on the heat generation of OTEC plants to determine the most plausible geographical location. PAM Rev. Energy Sci. Technol. 2018, 5, 119–130. [Google Scholar] [CrossRef]
- Garduño-Ruiz, E.P.; Silva, R.; Rodríguez-Cueto, Y.; García-Huante, A.; Olmedo-González, J.; Martínez, M.L.; Wojtarowski, A.; Martell-Dubois, R.; Cerdeira-Estrada, S. Criteria for optimal site selection for ocean thermal energy conversion (Otec) plants in Mexico. Energies 2021, 14, 2121. [Google Scholar] [CrossRef]
- Hall, K.; Kelly, S.; Henry, L. Site selection of ocean thermal energy conversion (OTEC) plants for barbados. Renew. Energy 2022, 201, 60–69. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, S.; Wang, X.; Du, M. An analysis on the potential site of ocean thermal energy conversion (OTEC) in Sansha. Mar. Sci. Bull. 2018, 37, 230–234. [Google Scholar]
- Yan, S.; Zhong, C.; Zhu, F.; Zhang, J. Evaluation of Ocean Thermal Energy Conversion (OTEC) and Site Selection Analysis of Power Station in Yongxing Island, South China Sea. Acta Energiae Solaris Sin. 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Nobre, A.; Pacheco, M.; Jorge, R.; Lopes, M.; Gato, L. Geo-spatial multi-criteria analysis for wave energy conversion system deployment. Renew. Energy 2009, 34, 97–111. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Firozjaei, H.K.; Firozjaei, M.K.; Jelokhani-Niaraki, M.; Homaee, M.; Nematollahi, O. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. Renew. Sustain. Energy Rev. 2022, 168, 112778. [Google Scholar] [CrossRef]
- Shao, M.; Zhao, Y.; Sun, J.; Han, Z.; Shao, Z. A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China. Energy 2023, 262, 125476. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Karabulut, Y.; Göçer, F. Spherical fuzzy sets based integrated DEMATEL, ANP, VIKOR approach and its application for renewable energy selection in Turkey. Appl. Soft Comput. 2024, 158, 111465. [Google Scholar] [CrossRef]
- Elkadeem, M.R.; Zainali, S.; Lu, S.M.; Younes, A.; Abido, M.A.; Amaducci, S.; Croci, M.; Zhang, J.; Landelius, T.; Stridh, B. Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis. Appl. Energy 2024, 356, 122108. [Google Scholar] [CrossRef]
- Mazzeo, D.; Matera, N.; De Luca, P.; Baglivo, C.; Congedo, P.M.; Oliveti, G. Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates. Appl. Energy 2020, 276, 115507. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group. The GEBCO_2023 Grid—A Continuous Terrain Model of the Global Oceans and Land. 2023. Available online: https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b/ (accessed on 1 August 2024).
- Hainan Provincial Chronicles Office. Hainan Provincial Annals: Natural Geography; China Statistics Press: Hainan, China, 2011. [Google Scholar]
- Hainan Provincial Bureau of Statistics Survey Office of National Bureau of Statistics in Hainan. Hainan Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Cummings, J.A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef]
- Cummings, J.A.; Smedstad, O.M. Variational data assimilation for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343. [Google Scholar]
- Helber, R.W.; Townsend, T.L.; Barron, C.N.; Dastugue, J.M.; Carnes, M.R. Validation test report for the Improved Synthetic Ocean Profile (ISOP) system, Part I: Synthetic profile methods and algorithm. Naval Res. Lab. Rep. NRL/MR/7320-13-9364 2013. Available online: https://apps.dtic.mil/sti/pdfs/ADA585251.pdf (accessed on 1 August 2024).
- Myships. Global Shipping Information Service System; Beijing. 2024. Available online: https://www.myships.com/index.html (accessed on 25 May 2024).
- Younes, A.; Kotb, K.M.; Ghazala, M.O.A.; Elkadeem, M.R. Spatial suitability analysis for site selection of refugee camps using hybrid GIS and fuzzy AHP approach: The case of Kenya. Int. J. Disaster Risk Reduct. 2022, 77, 103062. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Saaty, T.L. Group decision making and the AHP. In The Analytic Hierarchy Process: Applications and Studies; Springer: Berlin/Heidelberg, Germany, 1989; pp. 59–67. [Google Scholar]
- Saaty, T.L. The analytic hierarchy process (AHP). J. Oper. Res. Soc. 1980, 41, 1073–1076. [Google Scholar]
- Yoon, K.P.; Hwang, C.-L. Multiple Attribute Decision Making: An Introduction; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Yoon, K.; Hwang, C.L. TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)—A Multiple Attribute Decision Making, W: Multiple Attribute Decision Making–Methods and Applications, a State-of-the-at Survey; Springer: Berlin, Germany, 1981; Volume 128, p. 140. [Google Scholar]
- Langer, J.; Quist, J.; Blok, K. Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda. Renew. Sustain. Energy Rev. 2020, 130, 109960. [Google Scholar] [CrossRef]
- Kempener, R.; Neumann, F. Ocean Thermal Energy Conversion, Technology Brief. IRENA Ocean Energy Technol. Brief 2014, 1, 32. [Google Scholar]
- Han, J. Offshore Ocean in China: Marine Renewable Energy; Maritime Press: Queen Anne’s County, MD, USA, 2015. [Google Scholar]
- Chen, W.; Xing, J. Global research on submarine landslides, 2001–2020. Front. Earth Sci. 2023, 11, 982482. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhang, H.; Guo, X. Susceptibility of typical marine geological disasters: An overview. Geoenvironmental Disasters 2023, 10, 10. [Google Scholar] [CrossRef]
- Wang, Z.; Du, X.; Sun, Y.; Song, Y.; Dong, L.; Zhou, Q.; Jiang, W. Risk zonation of submarine geological hazards in the Chengdao area of the Yellow River subaqueous delta. Front. Mar. Sci. 2023, 10, 1285437. [Google Scholar] [CrossRef]
- Xiao, C.; Gulfam, R. Opinion on ocean thermal energy conversion (OTEC). Front. Energy Res. 2023, 11, 1115695. [Google Scholar] [CrossRef]
- Whitehouse, R.J.; Damgaard, J.S.; Langhorne, D.N. Sandwaves and seabed engineering; the application to submarine cables. In Proceedings of the Marine Sandwave Dynamics, International Workshop, Université de Lille, Lille, France, 23–24 March 2000; pp. 227–234. [Google Scholar]
- Fredsøe, J. Pipeline–Seabed interaction. J. Waterw. Port Coast. Ocean Eng. 2016, 142, 03116002. [Google Scholar] [CrossRef]
- Griffiths, T.; Draper, S.; White, D.; Cheng, L.; An, H.; Tong, F.; Fogliani, A. Pipeline and cable stability: Updated state of the art. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17–22 June 2018; p. V005T004A059. [Google Scholar]
- Griffiths, T.; Draper, S.; Cheng, L.; Tong, F.; Fogliani, A.; White, D.; Johnson, F.; Coles, D.; Ingham, S.; Lourie, C. Subsea Cable Stability on Rocky Seabeds: Comparison of Field Observations Against Conventional and Novel Design Methods. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17–22 June 2018; p. V005T004A043. [Google Scholar]
- Gaudin, C.; O’Loughlin, C.; Randolph, M.; Cassidy, M.; Wang, D.; Tian, Y.; Hambleton, J.; Merifield, R. Advances in offshore and onshore anchoring solutions. Aust. Geomech. 2014, 49, 59–72. [Google Scholar]
- Chen, D.; Zheng, J.; Zhang, C.; Guan, D.; Li, Y.; Wang, Y. Critical shear stress for erosion of sand-mud mixtures and pure mud. Front. Mar. Sci. 2021, 8, 713039. [Google Scholar] [CrossRef]
- Abbas, S.M.; Alhassany, H.D.S.; Vera, D.; Jurado, F. Review of enhancement for ocean thermal energy conversion system. J. Ocean Eng. Sci. 2022, 8, 533–545. [Google Scholar] [CrossRef]
- Coastal Response Research Center. Ocean Thermal Energy Conversion: Information Needs Assessment; University of New Hampshire: Durham, NH, USA, 2012. [Google Scholar]
- Hengqian, Y.; Huizan, W.; Shudao, Z.; Jun, L.; Long, W. Analysis on the temporal and spatial characteristics of the thermal energy in the Pacific Ocean and the sea area surrounding China based on SODA data. Haiyang Xuebao 2017, 39, 128–140. [Google Scholar]
- Zhao, Y.; Yuan, H.; Zhang, Z.; Gao, Q. Performance analysis and multi-objective optimization of the offshore renewable energy powered integrated energy supply system. Energy Convers. Manag. 2024, 304, 118232. [Google Scholar] [CrossRef]
- Shi, W.; Wang, C.; Shen, J. Utilization and prospect of ocean energy resource in China. Acta Energiae Solaris Sin. 2011, 32, 913–923. [Google Scholar]
Layer Name | Source | Spatial Resolution | Layer Type |
---|---|---|---|
HYCOM seawater temperature | Naval Research Laboratory, Florida State University. | 1/12° × 1/12° | raster |
Geological hazards | Guangzhou Marine Geological Survey | - | raster |
No-anchoring zone and shipping routes | Beijing Guojiaoxin Communication Technology Development Co., Ltd. | - | raster |
Mud content in seabed sediments | Guangzhou Marine Geological Survey | - | raster |
Importance Preference | Saaty Scale (aij) |
---|---|
Ai and Aj are equally important | 1 |
Ai is slightly more important than Aj | 3 |
Ai is significantly more importance than Aj | 5 |
Ai is very significantly more important than Aj | 7 |
Ai is extremely more important than Aj | 9 |
Intermediate values | 2, 4, 6, 8 |
Criteria | Weight |
---|---|
Temperature difference | 0.5579 |
Distance to inhabited islands | 0.2634 |
Distance to nearest island | 0.1219 |
Mud content | 0.0569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Li, X.; Liu, M.; Xia, C.; Guo, X.; Fang, X.; Huang, L. Application of a GIS-Based Multi-Criteria Decision-Making Approach to the Siting of Ocean Thermal Energy Conversion Power Plants: A Case Study of the Xisha Sea Area, China. Energies 2024, 17, 5097. https://doi.org/10.3390/en17205097
Tian F, Li X, Liu M, Xia C, Guo X, Fang X, Huang L. Application of a GIS-Based Multi-Criteria Decision-Making Approach to the Siting of Ocean Thermal Energy Conversion Power Plants: A Case Study of the Xisha Sea Area, China. Energies. 2024; 17(20):5097. https://doi.org/10.3390/en17205097
Chicago/Turabian StyleTian, Fei, Xuelin Li, Mengdi Liu, Changfa Xia, Xudong Guo, Xiaocheng Fang, and Lei Huang. 2024. "Application of a GIS-Based Multi-Criteria Decision-Making Approach to the Siting of Ocean Thermal Energy Conversion Power Plants: A Case Study of the Xisha Sea Area, China" Energies 17, no. 20: 5097. https://doi.org/10.3390/en17205097
APA StyleTian, F., Li, X., Liu, M., Xia, C., Guo, X., Fang, X., & Huang, L. (2024). Application of a GIS-Based Multi-Criteria Decision-Making Approach to the Siting of Ocean Thermal Energy Conversion Power Plants: A Case Study of the Xisha Sea Area, China. Energies, 17(20), 5097. https://doi.org/10.3390/en17205097