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Abstract: This paper presents a method to validate state of charge (SOC) estimations in batteries for
their use in remotely manned aerial vehicles (UAVs). The SOC estimation must provide the mission
control with a measure of the available range of the aircraft, which is critical for extended missions
such as search and rescue operations. However, the uncertainty about the initial state and depth of
discharge during the mission makes the estimation challenging. In order to assess the estimation
provided to mission control, an a posteriori re-estimation is performed. This allows for the assessment
of estimation methods. A reverse-time Kalman estimator is proposed for this task. Accurate SOC
estimations are crucial for optimizing the utilization of multiple UAVs in a collaborative manner,
ensuring the efficient use of energy resources and maximizing mission success rates. Experimental
results for LiFePO4 batteries are provided, showing the capabilities of the proposal for the assessment
of online SOC estimators.

Keywords: battery; Kalman estimator; SOC estimation; UAV

1. Introduction

State of charge (SOC) estimation is an important topic for aerial applications using
electric batteries. The state of charge (SOC) of UAV batteries is fundamental in determining
the maximum operational range and duration of a UAV. Accurate SOC estimation allows
mission planners to predict the UAV’s flight time and range, ensuring that the vehicle can
complete its mission and return safely. For instance, UAV endurance and range calculations
depend on factors such as battery capacity, motor current, aircraft size, and aerodynamic
performance, making accurate SOC estimation essential for mission success [1].

Accurate SOC predictions are crucial for the success and safety of UAV missions. In
critical operations, such as search and rescue (SAR), the UAV must reliably cover designated
areas without interruption. The misestimation of SOC can lead to UAVs failing to return or
running out of power mid-mission, potentially endangering lives and leading to mission
failure. Studies have shown that incorporating advanced SOC estimation techniques can
significantly enhance mission reliability and safety [2,3].

In search and rescue operations, UAVs play a critical role in locating and identifying
survivors over vast and often challenging terrains. Accurate SOC estimation is vital
in ensuring that UAVs can sustain long flights and maximize their coverage area, as a
UAV running out of power prematurely could result in missed opportunities to locate
survivors, highlighting the importance of precise SOC management. There are numerous
real-world scenarios where inaccurate SOC estimations could lead to mission failures or
safety risks. For instance, during the 2017 hurricanes in Puerto Rico, UAVs were deployed
for damage assessment and Search and Rescue (SAR) missions, where inaccurate SOC
estimations could have jeopardized these missions, leaving critical areas unassessed or
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missing survivors. Accurate SOC estimations are therefore essential in mitigating risks
and ensuring mission success [4]. Using multiple UAVs collaboratively can significantly
enhance mission efficiency and effectiveness. Accurate SOC estimations enable mission
planners to optimize the deployment of UAVs, ensuring that each UAV can fulfill its
designated role without risking premature battery depletion. Collaborative missions
benefit from coordinated efforts, where UAVs with sufficient SOC can take over tasks from
those with low SOC, maintaining continuous operation [2].

The estimation should provide a measure of how much energy is left in the battery to
keep the system going, similar to the fuel indicator in a vehicle [5,6]. An accurate estimation
is needed for safety concerns and also to maintain operational variables under control [7,8].
Also, some drive control methods make use of models of the available energy to improve
reliability [9]. Finally, some electronic elements can be subject to design improvements
considering a battery model [10].

Battery modeling is used to identify parameters from measurements [11]. It is well
known that Coulomb counting methods provide direct estimations that are subject to sensor
imperfections [12]. Incorporating other variables allows for more accurate estimations [13].
This is the case of the terminal voltage Vt, which is linked to the Open Circuit Voltage
(OCV), which in turn is linked to SOC via the OCV-SOC curve [14]. The Kalman state
estimator and its variants have been proposed in many research works to improve the
Coulomb counting method [15]. However, the use of terminal voltage as a proxy for SOC
has some problems. Battery aging, batch dispersion, and the flatness of the SOC-OCV
curve have been cited [16].

In addition, this paper will show other limitations. This is important, as new and
improved SOC estimation algorithms still rely on terminal voltage error for assessment [17,18].

In aerospace applications, it is important to obtain SOC estimations in a way that do not
interfere with the normal usage of the battery. This means that the techniques based on the
injection of excitation signals are not allowed. However, this factor is not a problem in cases
where the drive produces enough excitation [19]. Also, it is a desired characteristic that the
uncertainties in SOC have little effect on a mission [20]. Moreover, since available carry
weight and power are limited for small to medium aircrafts, the electronic apparatus needed
for the estimation must be small and have little consumption. For instance, oversampling
techniques [21] could provide an enhancement of the estimations at the cost of more
expensive hardware and increased power consumption.

Similar problems are faced by new methods that use additional information for SOC
estimation, namely that they require additional hardware that makes it unsuitable for some
applications such as small aircrafts [22].

All in all, battery models enable the use of sophisticate control techniques aimed
at increased energy efficiency [23] and other factors, such as robustness [24] and perfor-
mance [25]. These are of importance for reducing battery ageing [26], especially in vehicle
applications [27].

With this in mind, the procurement of SOC estimation that faces external factors is an
important research topic. These estimation procedures must be thoroughly assessed. The
proposal of this paper is a method based on reverse-time Kalman estimation that provides
a posteriori estimations to assess on-board methods. In this regard, the proposal is in line
with methods for the calibration and/or validation of electro-mechanical elements that
would bring improvement possibilities [28,29].

The motivation for this work is that the problem of assessing on-line SOC estimations
has never been solved before, as it follows on from the literature survey. Therefore, the
originality and novelty of this paper are in the fact that said assessment has finally been
solved, by means of a reverse-time Kalman filter.

The next section presents the battery model used in the development of the proposal.
Section 3 presents the reverse-time Kalman estimation that is tested in Section 4 using the
equipment shown in Figure 1.
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Figure 1. Laboratory setup.

2. Battery Model and Identification

Many different battery models have been proposed in the literature, ranging from experi-
mental to mathematical models and from electro-chemical to equivalent electric circuit [10].
Equivalent circuit models are very adequate for SOC estimation. There, the electric charge
is represented by an ideal voltage source connected to resistive–capacitive (RC) discrete ele-
ments [30]. The number of capacitors varies from one study to the other [31,32]. The proposal
moutlined here can work with any of these circuit-equivalent models. However, for the
sake of concretion, a Thevenin model with just one RC group is considered. The resulting
diagram is presented in Figure 2.
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Figure 2. Thevenin equivalent circuit model for an electric battery.

The variables considered are explained as follows:

• V0 is the Open Circuit Voltage (OCV). During the normal usage of the battery, this
quantity cannot be measured, because the load should be zero and a period of relax-
ation after the last use is needed. These conditions are not normally encountered in a
mission. The relationship V0 = f(SOC) is a non-linear static map that can be obtained
for a battery batch using laboratory tests on samples.

• Vt is the battery terminal voltage. It can be easily measured even during use.
• Vp is the voltage across the polarization capacitor. It cannot be measured. This makes

SOC estimation more difficult.
• I is the electrical current entering the battery (negative during discharge). It can be

measured during use, typically with less accuracy than voltage.

The parameters of the model are as follows:

• R0 represents the internal resistance of the battery. Its value is state-dependent.
• Rp and CP are the resistance and capacitance due to polarization in the battery.
• Cn is the nominal capacity of the battery (Ah).

During use, on-line identification can provide estimations for all parameters except
Cn. For this task, measurements of Vt and I are needed. The trajectories of Vt and I should
have enough excitation [33].
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It must be noted that parameters can suffer from fast-acting changes (hours) due to
external factors such as temperature as well as slow-acting changes (days) due to the ageing
of the battery [34].

The battery model can be obtained from the diagram of Figure 2 as follows:

dSOC(t)/dt = I(t)/Cn (1)

Vp(t)/dt = −Vp(t)/τ − I(t)/Cp (2)

Vt(t) = V0 + R0 I(t)− Vp(t), (3)

where τ = RpCp is the time-constant due to polarization.

2.1. Identification of Model Parameters

For a battery batch, values Cn and the relationship f(SOC) can be obtained from
laboratory tests in which charge/discharge periods are issued with long intermissions
to allow for de-polarization [35]. In this way, a relationship such as the one depicted
in Figure 3 is obtained. From this experimental curve, the values V0 = f(SOC) can be
obtained. It should be kept in mind that this curve is subject to uncertainties not only
from its experimental nature but also from deviations of particular batteries from sample
averages. The particular curve shown in Figure 3 is for a Lithium Phosphate (LiFePO4)
commercial battery.

0 20 40 60 80 100
2

2.5

3

3.5

4

SOC (%)

V
0  (

V
)

Figure 3. Experimental values for V0 of a LiFePO4 battery.

The rest of the model parameters can be obtained for particular batteries during
normal use using identification techniques [33]. In this way, values for τ, R0, V0, Cp and Rp
are obtained from measurements of I and Vt. These parameters can change due to external
factors such as temperature and also due to battery ageing. Periodic re-identifications can
be performed to account for such drift in values. The persistence of excitation needed by
the identification procedure can be obtained by injecting small signals of high frequency or
just by letting the normal use provide changes in I and Vt.

2.2. SOC Estimation

The proposal of this work allows for the assessment of SOC estimation techniques of
many kinds. A short review of the simpler ones is presented for concretion.

From the experimental curve V0 = f(SOC(t)), we obtain

ŜOC
V
(k) = f−1(V0(k)), (4)

which constitutes a SOC estimation based entirely on the observed Open Circuit Voltage.
This voltage should be measured for I = 0 and after a period of de-polarization. This is not
easy to obtain during the normal use of the battery onboard the aircraft on a mission.

The usual Coulomb counting method provides an estimation that depends solely on
current measurements I:

ŜOC
I
(k) = ŜOC0 +

k

∑
h=1

I(h)/Cn. (5)
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A combination of the two previous methods is obtained using the Kalman filter with
the discrete-time model arising from the equivalent circuit. The derivatives of certain
variables with respect to the SOC are also needed [35]. To this end, Equations (1) and (2) are
subjected to linearization. Also, the steady state term must be considered by extending the
state vector to x(k) = (SOC(k), Vp(k), 1)⊺; the output measurement vector is y(k) = Vt(k)
and the state space equations as follows.

x(k + 1) = Adx(k) + Bdu(k) (6)

y(k) = Cdx(k) + Ddu(k), (7)

where u(k) = I(k), and matrices Ad, Bd, Cd and Dd are given as:

Ad =

1 0 0
0 1 − Tsτ 0
0 0 1

, Bd =

 Ts/Ct
−Ts/Cp

0

, (8)

Cd =
(
λ −1 γ

)
, Dd = R0. (9)

Variable λ represents the derivative f′(ŜOC0), and γ is a coefficient computed as

γ = f(ŜOC0)− λŜOC0 (10)

The KF estimation of the state uses the usual equations:

x̂ = Ax̂ + Bu (11)

P = APA⊺ + Q (12)

K = PC/(CPC⊺ + R)⊺ (13)

x̂ = x̂ + K(y − Cx − Du)⊺ (14)

P = P − KCP (15)

where the time indices have been dropped for readability. The state covariance matrix
Q and sensor covariance matrix R have been used in the previous equations. KF model
matrices A, B, C and D are assumed to correspond to those of the model Ad, Bd, Cd and
Dd, respectively.

For the assessment of the SOC estimator, the estimated values ŜOC = x̂1 should be
compared with real values. However, the real SOC must undergo elaborate testing in a
laboratory, so this comparison of ŜOC vs. SOC is seldom encountered in the literature.
Instead, the battery terminal voltage is used as a measure of how well the estimation and
the model represent the measurements. As a result, what is really assessed is the ability of
the procedure to predict Vt.

This observation points out that terminal voltage error is not a precise evaluation
metric for SOC estimation. The ultimate reason for this is clear: the relation of voltage with
SOC is neither static nor simple (see Equations (1)–(4) representing a dynamic and non-
linear system). As a result, terminal voltage is a proxy. As with any proxy, its usefulness is
not infinite, but limited, as will be shown in the experiments later on.

The proposal aims to produce a posteriori accurate estimations of SOC for assess-
ment purposes.

3. Reverse-Time Kalman Filter

The assessment of KF SOC estimation is hindered by the fact that the real values of
SOC are seldom known. The proposal makes use of the fact that, after a mission, the battery
is completely charged. At this point, the SOC is known to be SOC(TC) = 100. The proposal
relies on using a time-reversed KF to obtain re-estimations of SOC for the times t < tC.

Figure 4 illustrates the idea of the proposed method. The curve ŜOC
d
(t) represents the
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initial estimations obtained by any means (the KF, for instance) starting with an uncertain

initial value ŜOC
d
(t0). The real SOC is unknown, but it has been included in the diagram

to make the explanations easier to follow. Now, during the period going from t0 to tD,

the battery is subject to discharging in a normal mission. It can be seen that ŜOC
d
(t) goes

down with time. From tD, a charging procedure is carried out. This concludes at time
tC when charging is completed. At this point, the uncertainty about SOC is zero. Then,

going back in time, it is possible to re-estimate the SOC (represented by the line ŜOC
i
(t)).

The re-estimations can go back to any time, including the interesting period [t0, tD]. The
discrepancy between direct KF and reverse-time KF estimations are mostly due to the

uncertainty in ŜOC
d
(t0). In this way, the ability of the direct KF method to deal with

uncertain initial states is assessed.

0
t

D
t

C
t t

SO
C
(%

)

100

0

CHARGEDISCHARGE

SOC

iSOC

dSOC

Figure 4. SOC re-estimation example.

With this idea in mind, the reverse-time KF (RTKF) is developed by using the following
reverse-time model:

x(k − 1) = A−1
i (x(k)− Biu(k)) (16)

y(k) = Cix(k) + Diu(k), (17)

where Ai = A−1
d , Bi = A−1

d Bd, Ci = Cd and Di = Dd. This new model can be used with
the usual KF Equations (11)–(15), taking A = Ai, B = Bi, C = Ci and D = Di. Also, the
temporal indices must be reversed.

4. Experimental Study

The RTKF method will be put to the test in a series of experiments where the KF is
used online during a mission starting with an uncertain SOC. The laboratory equipment is
shown in Figure 1. The elements of the experimental setup are presented in Figure 5 and
commented below.
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Figure 5. Diagram of the experimental setup for data gathering (left) and photograph of the rig for
testing battery usage (right).
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• An electronic load where the battery power is dissipated, emulating the discharge.
The load is programmable, so that discharging profiles can be setup to match those
encountered during an aircraft mission.

• Voltage, current, and temperature sensors.
• Analog-to-digital conversion system with a maximum of 16 bits.
• Scada system based on a desktop computer for data gathering.
• A programmable voltage source to carry out battery charge after tD.
• An electrical load for battery testing.

The system allows for the selection of the sampling period Ts and the precision of
measurements by controlling the number of bits in the (A/D) conversions.

Test Suite

A set of tests is performed in the experimental setup to showcase the proposal. The test
combines two discharge profiles—a charging profile, and various options for the uncertainty
of the initial estimation ŜOC0. The objective involves showing the capabilities of the usual
KF SOC estimator by comparing the normal estimations with the a posteriori ones obtained
by the RTKF. Figure 6 presents the current and voltage for trajectory T1, whereas Figure 7 is
for T2. Table 1 shows the parameters and options used on each experiment of the test suite.
The test is identified by a letter (A to F) in the first column. The initial estimation of SOC
ŜOC0 used by the KF is indicated in the second column. The sampling time is set to the
value indicated in the third column. The discharge trajectory is shown in the fourth column.
Finally, the a posteriori estimation of SOC for t = t0 is presented in the last column. This

last figure, ŜOC
i
(t0), is more robust in the face of initial estimate uncertainties, unlike the

standard KF estimation. This is also shown in Figure 8. Now, the actual conditions for the
experiments are known to some degree thanks to the use of a controlled laboratory setup.
In particular, for trajectory T1, the initial charge is SOC(t0) ≈ 70 (%), whereas for trajectory
T2 it is SOC(t0) ≈ 85 (%). Please note that, in a practical situation, the initial estimation can
be subject to large uncertainties. Regarding the sampling period, the values of Table 1 are
within the range feasible for the on-board system of a small aircraft.
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Figure 6. Current (top graph) and terminal voltage (bottom graph) for trajectory T1 used in tests A,
B, C and D.
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Figure 7. Current (top graph) and terminal voltage (bottom graph) for trajectory T2 used in tests E
and F.
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Figure 7. Current (top graph) and terminal voltage (bottom graph) for trajectory T2 used in tests E
and F.
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Figure 8. SOC estimation for standard KF and for RTKF for cases A, B, E and F.Figure 8. SOC estimation for standard KF and for RTKF for cases A, B, E and F.
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Table 1. Parameters and options of the experiment suite.

Case ŜOC0 (%) Ts (s) Trajectory ŜOC
i
(t0) (%)

(A) 45 2.0 T1 68.2
(B) 95 2.0 T1 68.2
(C) 45 0.5 T1 68.5
(D) 95 0.5 T1 68.6
(E) 99 2.0 T2 84.5
(F) 10 2.0 T2 84.4

The results shown in Figure 8 show that the standard KF is able to correct the esti-
mations in the face of uncertainty about ŜOC0. This is more apparent for the few initial
samples of each tests, where SOCd changes abruptly from the provided initial estimation
to a value more similar to that obtained with the RTKF. This is due to the use of the battery
model and specially the Vt measurement. However, as the mission advances, the differ-
ences in SOC between the direct and the reverse-time estimations do not converge to zero.
In some cases, such as (B) and (E), a sort of constant displacement is observed. This is due
to the fact that the KF is basically a correction of the Coulomb counting method based on Vt

measurements. For such a correction, the OCV curve of Figure 3 is used. The uncertainty
in said curve, due to experimental effect and batch dispersion, makes the correction biased.
This is a finding of this paper that does not have correspondence in previous work, where
SOC estimation is validated by Vt. In all cases considered, the error in terminal voltage
eV(k) = Vt(k)− y(k) takes really minuscule values on the order of mili-Volts. This clearly
indicate that assessment of SOC estimation schemes should not be based on eV alone.

The effect of sampling period on the scheme is interesting. In the experiments, a
factor of 4 is introduced from cases A and B to cases C and D. The SOC re-estimation with
Ts = 2 (s) results in 68.2 (%) for case (A), whereas for Ts = 0.5 the re-estimation yields a
value of 68.5 (%) for case (C). A similar conclusion is obtained for case (B) compared with
case (D). This is an unanticipated result, since one would fear a larger degradation in the
estimations due to a much larger sampling period. This is of importance for small aircraft
equipment having to resort to larger sampling periods.

It is worth noting that the values used for Ts are in the range of what typical hardware
can attain. For other ranges and/or applications, the conclusion might not be the same. In
this case, and due to the restrictions of weight in small aircrafts, this result can be used to
optimize hardware and/or software.

Finally, the influence of the A/D accuracy (in terms of conversion bits) is also surpris-
ingly small. Going from 16 bits to just 12 bits degrades the estimations by 0.01 (%), which
is small enough not to be considered for this kind of application.

Again, this observation can be used by hardware designers to produce cost-effective
hardware components, ensuring performance.

5. Discussion

The results show that uncertainties, due to the lack of knowledge about the initial
SOC, can be alleviated by standard Kalman estimation only up to a certain degree. The
re-estimation based on the proposal shows that the uncertainty in SOC is not completely
eliminated. Standard Kalman estimation is based on the used terminal voltage. One might
argue then that terminal voltage is not a precise indicator for SOC estimation assessment.

One might think that improved algorithm design or the introduction of additional
information could better handle initial SOC uncertainties. However, improved algorithms
still rely on terminal voltage error [17,18]. Regarding additional information, there are
some works dealing with this, but so far they require additional hardware that makes it
unsuitable for some applications, such as small aircrafts [22].
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The results obtained in terms of SOC estimation degradation with an increased sam-
pling period and reduced A/D are also interesting for future research on hardware/software
optimized for weight and energy consumption.

6. Conclusions

The reverse time Kalman estimator has provided a tool for assessing techniques
used for an online estimation of SOC in batteries. Although the paper is focused on the
application in small unmanned aircraft, the technique can be applied to other systems. As
a main conclusion, the analysis has shown that terminal voltage has limitations as a proxy
for SOC.

The technique also allows for an assessment of the effect of other factors, such as the
sampling time used for data gathering and A/D accuracy.

From the insight gained by the paper, future research directions should include other
factors that might be present in UAV missions. Also, the possibility of optimizing the
measurement hardware and software can be concluded from the results.
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