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Abstract: With the fast expansion of intermittent renewable energy sources in the upcoming smart
grids, simple and accurate day-ahead systems for residual load forecasts are urgently needed. Ma-
chine learning strategies can facilitate towards drastic cost minimizations in terms of operating-
reserves avoidance to compensate the mismatches between the actual and forecasted values. In this
study, a multi-input/multi-output model is developed based on artificial neural networks to map the
relationship between different predictor inputs, including time indices, weather variables, human
activity parameters, and energy price indicators, and target outputs such as wind and photovoltaic
generation. While the information flows in only one direction (from the predictor nodes through
the hidden layers to the target node), benchmark training algorithms are employed and assessed
under different case studies. The model is evaluated under both parametric and non-parametric
formulations, namely neural networks and Gaussian process regression. Essential improvements are
achieved by enhancing the number of embedded predictors, while superior performance is observed
by using Bayesian regularization mechanisms. In terms of mean-error indices and determination
coefficient, this opens the pathway towards minimization via Bayesian inference-based approaches
in the presence of increased and highly stochastic renewable inputs.

Keywords: intermittent renewable energy sources; smart grids; machine learning strategies; artificial
neural networks; residual load forecasting; Bayesian regularization

1. Introduction

The global load demand has seen a rapid increase as a result of global population and
domestic appliance increase during the last decades. The continuous utilization of fossil
fuels to satisfy these needs causes climate change worldwide. The introduction of polluting
emissions including carbon oxides (COx), nitrogen oxides (NOx), sulfur oxides (SOx),
gaseous hydrocarbons (CxHy), soot, ash, droplets of tars, and other organic compounds,
affects the ozone layer integrity, the greenhouse intensification, and human health [1]. A
layer with lower ozone concentration is unable to absorb most of the sun’s ultraviolet (UV)
radiation, allowing a large portion to reach the Earth. Due to the innumerable building
installations that the planet lists today, large amounts of solar energy are absorbed and
stored in the form of heat, whereas the residual fraction that could be otherwise reflected
back to the clear sky is now constantly restricted by the greenhouse effect. As a result, both
global warming and energy crisis based on fuel-price uncertainty and reserve availability,
constitute increasing concerns for modern societies.

In order to reduce the dependency on imported fuels, renewable energy sources (RES)
offer a pathway to mitigate the environmental footprint towards sustainability. Between
such resources, wind is more accessible and fairly cheaper [2] while solar energy is dis-
tributed over a wide geographical region providing a long-term stable cost with minimum
maintenance requirements [3]. However, the increasing employment of RES to replace
conventional generation brings a lot of stability challenges. The current transformation of
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passive networks to bi-directional smart grids promises novel mechanisms to guarantee
self-healing from disturbances, active consumer participation in real-time operation, the
accommodation of all generation and storage options, and assets optimization, without
deteriorating the power quality provision. On the other hand, the intermittency and un-
certainty of RES impose power quality violations translated in voltage and frequency
deviations from nominal values, non-unity power factor, and sinusoidal waveforms with
higher harmonics and transients. Hence, it is crucial for the independent transmission
system operators (TSOs) to plan ahead the optimal generation scheduling of conventional
plants considering the residual, net-load demand.

To account for the mismatches between actual and forecasted values, each TSO must
also plan ahead adequate operating reserves, which are generally classified into four
categories. In normal conditions, regulating and following reserves can take place to
automatically or manually adjust the production to consumption according to the optimal
economic dispatch. In case of an event, the ramping reserves offer secondary and tertiary
control to return the frequency back to its nominal levels or replace primary and secondary
reserves, respectively. Similar control is provided by the contingency reserves, which can
also serve in primary services to stabilize the frequency [4]. According to the required
reliability and accepted risk, these reserves add considerable costs to the total generation
and/or transmission and distribution of power. It should be noted that in increasing the
share of RES in the generation mix, the ability to provide the needed flexibility is reduced,
since RES cannot contribute in reserve provision but inherently impose its increase. It is
therefore important for efficient tools to be employed and to accurately forecast the residual
load in upcoming smart grids.

1.1. Literature Survey

The vast majority of the literature on load forecasting concentrates on residential
consumption and small-area RES generation [5–7]. Relating to wind power, most studies
focus on wind speed and direction forecast, stating that they are the only parameters that
affect the output power. For the prognostication of wind speed and produced power,
the study in [8] proposed a radial basis function neural network using the data from a
wind farm near the central Taiwan area. In [9], a generalized regression neural network
is proposed to predict the wind speed for the western region of India. The accuracy in
wind-speed estimation of the outlier correction algorithm, wavelet, and extreme learning
machine was compared in [10], whereas another study [11] presented a novel method based
on Weibull and Gaussian probability distribution. Utilizing the past values of measured
wind speed and various input parameters including longitude, latitude, daily horizontal
solar irradiance, air temperature, relative humidity, elevation, and atmospheric pressure,
a few assessments have been made on time-series predictions [2]. Among them, a sup-
port vector machine was proposed by [12] to predict the mean 10-min time series data of
wind speed. Targeting smaller regions, several studies assess the performance of different
models for short-term PV generation forecasting. A neuro-fuzzy method was proposed
by [13] to investigate solar radiation taking into account the mean sea level, dry-bulb
temperature, wet-bulb temperature, and relative humidity. The dry-bulb temperature and
relative humidity were found to be the most dominant factors for radiation prediction. The
study in [3] concluded that to effectively predict the hourly solar radiation using machine
learning algorithms, the minimum parameter inputs needed are the daily sunshine dura-
tion, precipitation, relative humidity, air pressure, and daily minimum/mean/maximum
temperatures. Considering the solar energy availability and the absence of measuring
stations in some regions, a mechanism based on a group method of data handling was
developed by [14]. The proposed formulation made use of particle swarm optimization,
genetic algorithm, and ant colony to optimize the artificial intelligence models towards
accurate PV forecasts. Finally, the authors in [15] demonstrated a hybrid model named
Ensemble Long Short-Term Memory-Feed Forward Neural Network, indicating that it can
increase the PV forecasting accuracy in both 15 min- and 1 h-ahead horizons.
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Apart from a few studies dealing with load forecasting in small-scale buildings and
micro-grids in the short term, most studies investigating the load demand utilize temper-
ature as the only input that affects the overall profile [16]. In this way, long short-term
memory networks have to be combined with convolutional neural networks in order to
estimate the correlation and minimize the forecast error against the actual load [17]. This
could be extremely computational-intensive in the case of residual load forecasting where
several inputs with vast historical data have to take place. In addition, aiming at the
minimization of the expected error over probability distributions, these frameworks appear
versatile and difficult to retrieve temporal and spatial correlations within the entangled
functions and dependent variables.

1.2. Objective and Contribution

In this study, a multi-input/multi-output model is utilised to effectively forecast
the day-ahead residual load, taking into account a large set of different weather, activity,
and cost factors. Utilizing these factors as predictors, the mapping of their relationship
with the targets, namely load demand, PV, and wind power production, is performed
by making use of a deep feed-forward neural network. In order to identify both the
spatial and seasonal correlations between different consumers, several predictors are
used to estimate the load repetition, seasonal, weather, energy price, and overall activity
impacts. Moreover, the forecast model accounts for a wide variety of predictors for the
simultaneous determination of the power output generated by PV parks and wind farms.
Based on actual data, the proposed model is assessed over three case studies varying
the input parameters, and its performance is compared under a wide variety of fitness
algorithms used to update the weights and bias towards nonlinear regression. The aim
is to develop a comprehensive forecast model able to observe day-ahead residual load
with high accuracy based on realistic and publicly available input parameters. The model
could form a benchmark framework for comparisons under different conditions, regions,
scales, and training algorithms. Although deep reinforcement learning [18] and hierarchical
reinforcement learning [19] are both capable of solving complex decision-making tasks,
the burden of increased dimensionality and time-intensive training becomes superior in
forecasting tasks. The main reasons rely on deteriorating uncertainty due to increasing
renewable sources and weather-dependent electric devices. Consequently, the stochastic
behavior related to people’s daily habits and fluctuating generation is proposed to be
conducted with the aid of Gaussian process regression.

In modern power systems, each independent producer provides the day-ahead gener-
ation to the associate system operator. Consequently, the aggregators of PV and small wind
parks are accountable to distribution system operators, whereas bigger wind farms must
inform the transmission system operators about their actual hourly power output. Between
the transmission and distribution system operators, a bi-directional communication exists
in order to identify the residual load for the optimum unit commitment and economic
power dispatch of the conventional, thermal generating units, which may be connected to
either distribution or transmission networks. In addition, all information with respect to
the load demand derives from individual load forecasts by the distribution system operator.
In this regard, it is highly important to predict the load with high accuracy, especially
in the case of prosumer (producer and consumer), demand response, and demand-side
management customers. As a result, the day-ahead residual load forecasting constitutes
a critical tool for transmission system operators, since the overall production and con-
sumption is predicted consolidating the transmission and distribution losses in relation to
exogenous factors, such as temperature, wind speed, and time. Furthermore, the privacy
and personal information pertaining different stakeholders (e.g., consumers, prosumers,
RES producers, conventional producers, distribution system owners, transmission system
owners, aggregators, distribution system operators, transmission system operators, etc.) is
retained. To this end, historical data possess a vital role and thus, their right choice and
overall management becomes a key requirement for the forecasting accuracy.
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The rest of the paper is organised as follows. In Section 2, the mathematical framework
relating to the load demand and wind and PV power generation is presented. The multi-
input/multi-output (MIMO) model for residual load forecasting is explained in Section 3,
while the extensive experimental evaluation and overall comparisons are included in
Section 4. The conclusions are drawn in Section 5.

2. Mathematical Framework

To define the least required predictor inputs, the formulation of load, wind power,
and PV power is taken into account. Both targets depend on uncertain weather conditions,
while load relates also some other parameters which are discussed in the following sections.

2.1. Load Profile

Load demand varies based on a periodic hourly, daily, weekly, monthly, seasonal, and
annual basis. This expresses the load fraction according to the human activity and energy
requirements to satisfy its overall needs. Consequently, the load curve demonstrates a
decreasing trend when most people sleep and constantly increases when they wake up and
start working. Peak demand coincides with weather (especially temperature) extremities
and when people return from their work and residential buildings are occupied again [20].
Apart from the electricity needed for heating, cooling, and cooking, a further share, which is
important, refers to the lighting load. The last also depends on weather conditions (mainly
on sunlight) and the time. As a result, cloud-coverage may form a different input to the
load-forecasting task.

With the fast expansion of rooftop PV systems engaged with net-metering or net-billing
schemes, residential load forecasting became a serious challenge. The relationship between
domestic load and PV generation for self-producers acquired a complex relation that differs
considerably by hour and season. To capture their correlation, humidity and wind speed
are needed to appropriately define how the actual temperature feels and, together with
the previous day, previous week and previous year load, to estimate the extent of load
increases or decreases. Historical load serves in adding the respective knowledge for grid
extensions, load additions and upgrades, increase in tourism, and so on. Human habits can
be distinguished by date into weekdays, weekends, and holidays.

All the aforementioned parameters regard the satisfaction of humans’ electricity needs
without their participation. Considering the demand response, fuel and electricity price can
contribute to the reshaping of the load profile [21]. Indeed, during periods with increased
cost of oil per barrel, demand has seen drastic reductions. Similarly, the electricity price can
affect the time-of-use in some households, which either participate in demand response
programs or not. For a random facility k, the electricity requirements (Pk) can be calculated
via Equation (1), where ηi and Pi represent the overall efficiency and input needs of the
ith domestic appliance to convert electricity into useful work at a specific time t, such as
sound, light, heat, rotation, etc.

Pk(t) = ∑
i

ηiPi(t) (1)

The electricity-to-work efficiency varies from device to device. Apart from the time
of use, weather-dependent devices offer a varying efficiency, difficult to estimate in most
cases. Towards this realization, the total electricity demand (Pload) is planned based on
Equation (2) for each time-interval (usually hourly). The nominal frequency (50 or 60 Hz)
is retained considering the following (Equation (3)) power balance condition:

Pload(t) =
K

∑
k=1

Pk(t) (2)

PRL(t) =
N

∑
j=1

Uj(t)Pj(t) = Pload(t)− Pwind(t)− Ppv(t) (3)
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Uj indicates the status of conventional generator j, while Pj represents its actual power
output. Hence, the residual load (PRL) must always be equal to the total generation from all
(N) thermal units and accounts for the total load demand excluding the contribution of RES,
namely wind power Pwind and solar PV power Ppv, at each time interval. Typical examples
are depicted in Figure 1, where the contribution of RES transforms the conventional load
demand in the summer of consecutive years to the “duck curve”.
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Figure 1. Daily configurations of summer demand in the presence of RES.

As can be seen, the midday solar saturation and evening ramp, also known as the
“belly” and “neck” of the duck, constitute challenging tasks that require extremely fast
ramp rates from the conventional generating units. In addition, increasing the contribution
of RES, the spinning reserve capability is decreased, deteriorating the system stability and
reliability [22]. To ameliorate for the security-constraint problem of optimal unit commit-
ment and allow for a smoother transition towards carbon-free and environmentally friendly
energy resources, electricity storage solutions are continuously assessed in a wide variety
of applications. In this way, the current thermal resources can be replaced with future
low-carbon alternatives which will be quite ‘dispatchable’. However, this solution adds
considerable uncertainty and cost, while the residual load for the conventional generators
may fluctuate even more stochastically. Figure 2 illustrates three typical paradigms without
storage, in the presence of storage, and with prosumer participation.
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2.2. Wind Generation

Wind turbines can convert the kinetic energy from wind to electrical energy with the
aid of rotor blades based on the following equation.

Pw =
1
2
· ρair · A · v3

w (4)

Pw constitutes the wind power as a function of the air density (ρair), the spanned area
by the rotor blades (A), and the wind velocity (vw). However, a turbine cannot extract 100%
of the kinetic energy from wind according to the Betz limit (cp~59.26%). In this way, the
maximum power output from a wind turbine can be obtained via Equation (5).

Pw =
1
2
· cP · ρair · A · v3

w (5)

According to the type and scale of the wind turbine, most manufacturers define the
kinetic energy converted into electricity as a function of the rated power Pr and wind speed
vr with respect to the cut-in vi and cut-out speed vo speed. In this regard, the following
formulation can be used:

Pw(t) =


Pr, vr ≤ vw ≤ vo

Pr
vw(t)−vi

vr−vi
, vi < vw < vr

0, vw ≤ vi or vw > vo

(6)

The wind velocity vw,ref is measured at weather stations with a pre-defined height
hw,ref (e.g., 10 m), which may be significantly lower than the actual height hw of a wind
turbine (~100 m). At the desired height, these measurements can be corrected to represent
the actual velocity vw based on Equation (7), combining the roughness of the terrain ho.

vw = vw,re f ·
ln
(

hw
ho

)
ln
( hw,re f

ho

) (7)

Together with wind direction, these parameters are the most important to estimate the
actual power output from wind turbines, while pitch regulation, gear selection, and yaw
angle control are performed in order to keep cp near its maximum value considering the tip
speed ratio (TSR or λ) as follows:

λ =
ω · r
vw

, (8)

where r is the radius of the circular disc formed by the blades and ω defines the rotational
speed. Figure 3 demonstrates a simulation of a wind turbine and a simple diagram for the
determination of wind direction in degrees. Identifying the parameters A, hw, r, cp and the
variables ρair, λ, vw, required to estimate the wind power generation, the necessary data
collection can take place as will be explained in the model description section.

Wind power forecasting plays a pivotal role in the efficient integration of renewable
energy into the grid. However, several uncertain parameters pose significant challenges
to accurate predictions. One of the foremost factors contributing to uncertainty is the
variability in wind speed, which is inherently unpredictable and subject to rapid changes.
Additionally, the performance and characteristics of wind turbines introduce uncertainties,
encompassing factors such as degradation over time and variations in equipment specifi-
cations. Meteorological conditions, including temperature, air density, and atmospheric
pressure, further compound the intricacies of wind power forecasting. Accurate prediction
of wind direction is paramount, as changes in this parameter can markedly impact the
performance of wind turbines. Furthermore, the local topography, including hills, valleys,
and other geographical features, plays a crucial role in influencing wind patterns, adding
another layer of complexity to forecasting models.
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Addressing the uncertainties associated with seasonal and diurnal variations is equally
imperative for reliable wind power forecasting. Wind patterns exhibit cyclic variations
over the course of a day and are subject to seasonal shifts, necessitating robust modeling
approaches. Moreover, the quality and availability of data, both historical and real-time,
introduce uncertainties into forecasting models. Data gaps, inaccuracies, and limitations in
measurement technologies must be carefully considered. Climate change effects on wind
resources represent an emerging concern, with potential long-term impacts on forecasting
accuracy. The integration of wind power into the grid is also contingent on understanding
and mitigating uncertainties related to transmission and grid constraints. Finally, the param-
eters within the forecasting models themselves, such as algorithm selection, time horizons,
and updating frequencies, contribute to the overall uncertainty in wind power forecasting.

2.3. PV Generation

Electric power can be provided directly from solar PV panels considering the pho-
tovoltaic conversion efficiency (ηpv), the global solar irradiation (GA), and the ambient
temperature (Ta). According to the type of the PV arrays employed, some technical param-
eters are also needed to estimate the actual power output. These refer to the solar radiation
under standard conditions (GSC), the temperature under standard conditions (TSC), and the
PV temperature coefficient (CT). Hence, a nominal output (PSC) under 25 ◦C and 1 kW/m2,
which are usually taken into account by manufacturers during testing and validation, is
given and the actual PV generation (Ppv) is estimated as:

PPV = PSC · ηPV ·
GA
GSC
· [1 + (Ta − TSC) · CT ] (9)

Tilted PV modules show an angular loss due to the fact that the irradiation is not
always perpendicular to the PV surface during the day and the year. Therefore, two tilt-
angle corrections can be made via two-axis tracking systems, namely the module tilt angle
from vertical axis a and the tilt angle from horizontal axis β. During daylight (from sunrise
to sunset), β can vary from 0◦ to 180◦, tracking the sun’s direction from east to west. During
the year, and according to the season, a ranges between 0◦ and 90◦ to increase the solar
absorption towards maximum conversion efficiency [23]. Figure 4 illustrates a paradigm of
a PV module with a two-axes tracking system.

GA can vary depending on the cloud cover prevailing at a given time. Thus, a clearness
index indicating the fraction of solar radiation transmitted through the atmosphere to strike
the earth’s surface can be used. Utilizing a dimensionless number between 0 and 1, it can
range between a minimum of 0.25 and the maximum of 0.75, to define a mostly cloudy
and a mostly sunny day, respectively. A similar effect can be observed with dust and other
atmospheric particulate matter (PM) which is able to reduce the solar energy provision



Energies 2024, 17, 5219 8 of 28

by ~17–25% with roughly equal contributions from ambient PM and PM deposited on
photovoltaic surfaces [24].
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Finally, the impact of temperature on a PV panel must be considered. The controversial
effect of decreased generation during higher solar irradiance can be explained by engaging
the ambient temperature information. According to Equation (9), every 1 ◦C above the stan-
dard temperature of 25 ◦C can decrease the photovoltaic efficiency by 0.3–0.5% (assuming
that the temperature coefficient sits between −0.3 and −0.5%/◦C).

Accurate forecasting of solar photovoltaic power output is essential for the effective
integration of renewable energy into the grid. However, numerous uncertain parameters
contribute to the complexity of predicting solar PV generation. Central among these is
the variability in solar irradiance, influenced by dynamic atmospheric conditions, cloud
cover, and diurnal cycles [25,26]. Addressing this uncertainty is paramount for reliable
predictions, as fluctuations in irradiance directly impact the energy yield of solar panels.
Additionally, the effects of temperature on PV panel performance introduce a layer of
unpredictability, requiring sophisticated modelling to capture temperature-related effi-
ciency changes accurately. Beyond these meteorological factors, considerations of panel
soiling and degradation over time become integral, affecting the long-term reliability of PV
systems. The challenge extends further to encompass shadowing and obstructions, as well
as the optimal orientation and tilt angles of solar panels, which collectively influence the
spatial and temporal distribution of sunlight exposure.

Inverter efficiency represents another critical parameter introducing uncertainty into
solar PV power predictions. Accurate conversion of direct current (DC) to alternating
current (AC) is pivotal for maximizing energy output, and fluctuations in inverter efficiency
must be meticulously considered. Moreover, the impact of weather-related factors, such
as atmospheric pressure, humidity, and wind speed, on PV performance necessitates a
comprehensive approach to forecasting. The quality and availability of data, spanning
historical solar irradiance records to real-time measurements, constitute additional sources
of uncertainty that researchers must contend with in the development of robust forecasting
models. As we strive for greater reliance on solar energy, understanding and mitigating
these uncertain parameters are fundamental to advancing the precision and reliability of
solar PV power predictions.

3. Model Description

In this section, the proposed model for day-ahead residual load forecasting is described.
The input parameters used as predictors are explained in detail along with the mapping
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process for the relationship between the input predictors and output targets. The generic
input factors are classified in five major categories. Constant values such as the Boltzmann
constant, Betz limit, water density, and various test conditions are excluded from the
studied predictor list. The input parameters including wind turbine heights, fixed tilt
angles of PV surface, device efficiency, and so on are also excluded. Although they possess
diverse values for each independent system, in total evaluation they occur as constants or
target (output) independent variables. The third class regards the controllable variables
like tilted PV arrays with tracking systems, pitch and yaw angle, gear ratio, etc. These
variables vary towards optimum power output, and thus they are also excluded from the
predictor matrix. Following are the non-controllable variables, which are strictly correlated
with output target values. These relate the ambient temperature, humidity, cloud coverage,
wind speed, energy prices, and past knowledge with respect to the considered targets.
Together with the last category, which accommodates the time indices (hour, day, month,
season, and year), all uncontrollable variables are used as predictors for the proposed
forecasting model.

Aiming at the effective forecast of residual load, the impact of weather is taken into
account for the determination of power generation from RES (wind and PV). Wind output
is strictly correlated with wind speed, wind direction, and air density. To guarantee that the
wind blows perpendicular to the turbine blades, the gear selection process takes place and is
not required to be included as a predictor input. On the other hand, the air density formed
by controllable and uncontrollable weather variables is indirectly included together with
wind speed. Analysing the origin of density, one can simply conclude that it depends on
altitude, which forms a parameter, and temperature and humidity which are uncontrollable
variables and must be taken into account. On the contrary, PV offers periodically equivalent
outputs due to the sun’s position during identical daily, monthly, and seasonal intervals.

With respect to the load demand, the human activity in terms of day type in combi-
nation with past load observations, the weather impact, seasonality, and energy price are
considered as important predictors for a proper day-ahead prognostication. Consequently,
the required predictors, for which historical data must be obtained, are day type, tempera-
ture, humidity, wind speed, cloud coverage index, fuel price, electricity price, previous-day
load, previous-week load, and previous-year load. These are related to the output targets f
load demand, wind, and solar PV output and are grouped by hour of day, day of the year,
the month, the season, and the year. It is worth noting that, apart from the knowledge
of the previous load, the rest of the inputs constitute forecasted values for the day-ahead
representation. Table 1 lists the selected predictors and targets by category.

Table 1. Predictors and targets required for training the proposed model.

Predictors Targets

Indices Variables Residual Load

Hours Temperature
LoadDays Humidity

Day type Wind speed
WindMonths Cloud coverage

Seasons Energy price
PVYears Previous load

Hours and days form important predictors in predicting the PV output. In normal
cases, the cloud coverage index may help the model to increase the accuracy; more en-
hanced configurations must involve the temperature, humidity, and years. Apart from
the weather impact, the input indicating the year under assessment provides the infor-
mation of PV installations added from year to year (translated as capacity increments).
To forecast the fluctuating load in enhanced systems, all time indices are needed (hours,
days, day types, months, seasons, and years) along with the weather impact predictors of
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temperature, humidity, and cloud coverage. In addition, the load trend can be explained
via the previous load knowledge, and overall customer behavior is affected by the varying
energy prices. The last target, wind power, is time-independent and is affected only by
wind speed and air density, which can be defined equivalently by the ambient temperature
and relative humidity.

Neural networks are often preferred for load forecasting due to their ability to model
complex, nonlinear relationships between input variables and the target output, which is
particularly useful in capturing the intricate dynamics of energy demand. They can effec-
tively learn from historical data and identify patterns that traditional statistical methods
might miss. Additionally, neural networks are highly flexible and can be adapted to differ-
ent forecasting horizons (short-, medium-, or long-term) and can handle large amounts of
data, improving the accuracy and robustness of predictions. Their capability to generalize
well across varying conditions makes them ideal for dealing with the uncertainties and fluc-
tuations in load forecasting. The developed model exploits a feed-forward neural network
with a varying number of hidden layers. The layers vary from one to five according to the
number of input predictors under assessment. In more detail, a number (K) of predictors
x are imported in the feed-forward network along with the target y to form the dataset
xi, yi|i = 1, . . . , n. The model is trained using the largest share (70%) of the historical data
for training, while the rest is equally distributed for validation (15%) and testing (15%). The
multi-input/multi-output model is employed as follows [27]. Considering six neurons for
the first hidden layer (h11–h16), Equations (10) and (11) can be employed to extract the first
output h21.

h11 = σ

(
K

∑
k=1

wkxk + b11

)
(10)

h21 = σ

(
6

∑
k=1

wkh1k + b21

)
(11)

This is repeated through the neural configuration [6, 8, 9, 8, 6] for the respective five
hidden layers, estimating the outputs of h21–h28, h31–h39, h41–h48, h51–h56 and the final
target of y (Equations (12)–(16)).

h38 = σ

(
6

∑
k=1

wkh2k + b38

)
(12)

h49 = σ

(
8

∑
k=1

wkh3k + b49

)
(13)

h58 = σ

(
9

∑
k=1

wkh4k + b58

)
(14)

h66 = σ

(
8

∑
k=1

wkh5k + b66

)
(15)

y =
6

∑
k=1

wkh6k + by (16)

The sigmoid activation function is expressed via σ(.), hi is the output of each hidden
layer, wk constitutes the weights, and bi represents the bias operator. A temporal optimal
observation y at each iteration k is assumed as target data, and the scope is to effectively re-
duce the error between this target outcome and the progressively obtained pattern solution.
To this end, different algorithms can be used to update the weight matrix and bias between
consecutive iterations (e.g., k and k + 1). For example, performing simulations in MATLAB
R2022-MathWorks, the available training algorithms (and their respective function) for
nonlinear regression are: Levenberg Marquardt (trainlm), BFGS Quasi-Newton (trainbfg),
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resilient backpropagation (trainrp), scaled conjugate Gradient (trainscg), conjugate gradient
with Powell/Beale restarts (traincgb), Fletcher-Power conjugate gradient (traincgf), Polak-
Ribiere conjugate gradient (traincgp), one-step secant (trainoss), Bayesian regularization
(trainbr), gradient descent (traingd), gradient descent with momentum backpropagation
(traingdm), gradient descent adaptive learning rate backpropagation (traingda), gradient
descent with momentum, and adaptive learning backpropagation (traingdx).

In this way, the neural is separately used to make use of an algorithm at a time and to
observe the targets of load, PV, and wind power, while the residual load is estimated by
the model based on Equation (3). Figure 5 depicts the proposed multi-input/multi-output
model. Time series data with hourly resolution are used as input predictors. To distinguish
the targets, all data are separated by hours, days, day types, months, seasons, and years,
each one forming an individual input. Hence, the inputs of temperature, humidity, wind
speed, cloud coverage, energy price, and previous load constitute Mx1 vectors, where M
equals to 26,280 (assuming 3 years, 365 days/year, and 24 h/day).
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Utilizing one of the aforementioned training algorithms each time, a neural network
with different inputs is employed for every target. Based on this model, the prediction
is performed using 24 h forecasted values recording the output. Once the day-ahead
forecast of load demand, PV, and wind output is completed, the residual load is estimated
and the performance metrics are recorded. The procedure is repeated for the 13 training
algorithms. To account for the imposed uncertainty between the actual and predicted
residual load, nonparametric models can take place. Gaussian process regression (GPR)
is expected to be favored for load forecasting because of its ability to provide not only
accurate predictions but also a measure of uncertainty in those predictions, which is crucial
for managing energy systems. It also performs well with small- to medium-sized datasets,
as it does not require large amounts of data to achieve high accuracy. GPR models are
nonparametric, probabilistic models that rely on kernel functions. Considering a training
set {(xi, yi); i = 1, 2, . . . , n} where xi ∈ Rd and yi ∈ Rd are drawn from an unknown
distribution, the goal of a GPR model is to predict the response variable ynew, given the new
input vector xnew, and the information from the training data. A linear regression model is
expressed as:

y = xT β + ε, (17)

where ε ∼ N
(
0, σ2). The error variance σ2 and the coefficients β are typically estimated

from the data. A GPR model explains the response by introducing latent variables,
f (xi), i− 1, 2, . . . , n, derived from a Gaussian process, along with explicit basis functions, h.
The covariance function of these latent variables reflects the smoothness of the response, while
the basis functions map the inputs x to a p-dimensional feature space. Gaussian process is a
collection of random variables, such that any finite subset has a joint Gaussian distribution.
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Therefore, if we define { f (x), x ∈ Rd} as a Gaussian process, then for given observations
x1, x2, . . . , xn, the random variables f (x1), f (x2), . . . , f (xn) follow a joint Gaussian distribu-
tion. To comprehensively specify it, the mean value is defined via the function m(x), whereas
the covariance is demonstrated by k(x, x′). Specifically, if { f (x), x ∈ Rd} forms a GP, then
E( f (x) = m(x) and Cov[ f (x), f (x′)] = E[{ f (x)−m(x)}{ f (x′)−m(x′)}] = k(x, x′).

Consider the model h(x)T β + f (x) where f (x) ∼ GP(0, k(x, x′)). This represents a
GPR framework, where the response variable can be modelled as:

P(y| f , X) ∼ N(yi|h(xi)
T β + f (xi), σ2) (18)

For each observation xi, the joint distribution of latent variables f (x1), f (x2), . . . , f (xn)
is presented in vector form as P( f |X) ∼ N( f |0, K(X, X)), where K(X, X) is written
as follows:

K(X, X) =


k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

· · · k(x1, xn)
k(x2, xn)

...
. . .

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (19)

The covariance function k(x, x′) is typically parameterized by a set of kernel param-
eters or hyperparameters, denoted by θ. Sometimes, k(x, x′|θ) is used to explicitly show
this dependence on θ. Exploiting a fitness function available in MATLAB R2022, known as
‘fitrgp’, the kernel values of β, σ2 and θ can be estimated during the training of the GPR
model. Hence, the covariance (or kernel) function expresses how the response (or target) yi
at one point xi is affected by responses (yj) at other points xj which possess similar predictor
values. The characteristic length, σl, is utilized to define a magnitude apart from which the
input values are treated as uncorrelated to the response output.

During the evaluation of the demonstrated MIMO using GPR, two categories of kernel
functions have been tested. The first category pertains to the exponential, the squared
exponential, the Matern 3/2, the Matern 5/2, and the rational quadratic kernel functions
which concern same length-scale for each predictor. The other category accommodates the
built-in functions which consider a separate length scale for each predictor. These kernels
are referred to as automatic relevance determination (ARD) alternatives. The mathematical
expressions of the kernel functions used are listed in Table 2. The Euclidian distance
between xi and xj is noted by r, while θ expresses the vector of θ1 = logσl and θ2 = logσ,
which forces both σl and σ to be always a positive number.

Table 2. Mathematical formulation of the assessed kernel functions.

Kernel Function Formulation Euclidian Distance

Exponential k
(

xi, xj

∣∣∣θ) = σ2exp
(
− r

σl

)

r =

√(
xi − xj

)T(
xi − xj

)Squared Exponential k
(

xi, xj

∣∣∣θ) = σ2exp
(
− r2

2σl

)
Matern 3/2 k

(
xi, xj

∣∣∣θ) = σ2
(

1 +
√

3r
σl

)
exp
(
−
√

3r
σl

)
Matern 5/2 k

(
xi, xj

∣∣∣θ) = σ2
(

1 +
√

5r
σl

+
√

5r2

3σl
2

)
exp
(
−
√

5r
σl

)
Rational Quadratic * k

(
xi, xj

∣∣∣θ) = σ2
(

1 + r2

2aσl
2

)−a

ARD Exponential k
(

xi, xj

∣∣∣θ) = σ2exp(−r)

r =

√√√√ d
∑

m=1

(
xim − xjm

)2

σ2

ARD Squared Exponential k
(

xi, xj

∣∣∣θ) = σ2exp
(
− r2

2

)
ARD Matern 3/2 k

(
xi, xj

∣∣∣θ) = σ2
(

1 +
√

3r
)

exp
(
−
√

3r
)

ARD Matern 5/2 k
(

xi, xj

∣∣∣θ) = σ2
(

1 +
√

5r + 5
3 r2
)

exp
(
−
√

5r
)

ARD Rational Quadratic * k
(

xi, xj

∣∣∣θ) = σ2
(

1 + r2

2a

)−a

* α represents a positive scale-mixture parameter.
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4. Experimental Evaluation

Considering different algorithms for training purposes and a deep neural network
with five hidden layers, the proposed MIMO model is assessed under three case studies
based on real historical data from 2018 to 2022. A second experiment takes place to compare
the ANN with GPR under the exploitation of different kernel types. The assessed system
regards the isolated power system of the island of Cyprus. As the third-largest and third-
most-populous island in the Mediterranean, Cyprus constitutes a representative islanded
system within Europe, lying between 34◦ and 36◦ N latitudes and 32◦ and 35◦ E longitudes.
The ~1.1 million inhabitants are distributed, by ranking, in the cities of Nicosia (Capital),
Limassol, Larnaca, and Paphos, composing a density of about 123.4/km2. Up to the end of
the 2020s, the island’s electricity needs were satisfied mostly by making use of imported
conventional fuels (heavy fuel oil and diesel) via three power plants at a rate close to
85% [28]. The rest was supplied by domestic renewable energy sources, including biomass,
wind, and solar PV systems. However, biomass has been excluded from the forecasting
task since it constitutes a storable energy carrier with predictable and simply controllable
potential. The actual data pertaining to the PV and wind power generated across the real
load demand and weather conditions were obtained from the Cyprus energy regulatory
authority (CERA). To avoid any distortion, extreme values have been identified using a
simple outlier detection method and replaced by their mean consecutive values. Then,
a cross-validation process took place considering the capacity expansions per month, in
order to maintain data integrity, accuracy, and reliability throughout the historical data.

4.1. Input Profile

To justify the selection of the most relevant input features, both the Pearson method
and mutual information are employed. The Pearson method is used to estimate the
correlation coefficients and the mutual dependency between the input features and wind
power output. Considering the input variables xi, the output Yi, and their respective mean
values x and Y, the correlation coefficient r ∈ [−1,+1] is defined as [29]:

r =
∑ (xi − x)

(
Yi −Y

)√
∑(xi − x)2(Yi −Y

)2
(20)

By treating the predictor/target pairs as random variables X and Y, their mutual
dependencies can be quantified using Equation (21) [30]. This approach considers the
number of respective states, Sn and Sm, along with their joint probability P(xn, Ym) and
marginal probabilities P(xn) and P(Ym). The mutual information I ∈ [0,+∞) is then
computed as follows:

I(X; Y) =
Sn

∑
n=1

Sm

∑
m=1

P(xn, Ym)log
P(xn, Ym)

P(xn)P(Ym)
(21)

Among the input features, the predictors that demonstrate the highest correlation
(r ≥ 0.20) and dependency (I ≥ 0.25) with their respective target were included in the first
case study. As previously mentioned, the factors involved in estimating load and gener-
ation are distinguished into constants, parameters, controllable variables, uncontrollable
variables, and indices. Assuming that PRL = Pload − Pwind − Ppv, and expressing each
component of the right side of the equation in terms of the uncontrollable variables, the
necessary elements for which we need historical data collection can appear. In this way, the
uncontrollable variables of temperature, humidity, and fuel cost (cf) are consolidated as:

Pload = f
(

T, H, c f

)
(22)

If information from past load facts (indicated with apostrophes such as: P′load for
the previous day load, P′′load for the previous week load, and P′′′load for the previous year
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load) are taken into account, (17) can be rewritten as presented below. The mathematical
representation of load parameters is respectively indicated as P′load(t) = Pload(t− 24),
P′′load(t) = Pload(t− 168) and P′′′load = Pload(t− 8760). In Equation (18), c′el defines the
electricity cost, while D determines the day type. Thus, weekdays are indicated with the
value “1”, weekends with “2”, and holidays with “3”. While cf follows the trend of changing
crude-oil costs, c′el is employed based on peak and off-peak hours during weekdays and
weekends, according to Table 3.

Pload = f
(

T, H, c f , c′el , P′load, P′′load, P′′′load, D
)

(23)

Table 3. Monthly residential and commercial use tariff in cent per unit kWh.

Periods
October–May June–September

Weekdays Weekends/Holidays Weekdays Weekends/Holidays

Peak 11.95 11.62 16.74 11.76
Off-peak 10.92 10.57 11.59 11.39

In terms of PVs, the indices alone occur adequate at the first step, since the sun’s
position is exactly the same comparing identical time intervals within different years.
However, to account for the imposed inefficiencies, the variable temperature, humidity,
and cloud-coverage index (C) are included to form Equation (24).

Ppv = f (T, H, C) (24)

Finally, understanding the dependency of wind power on vw and ρair (which in turn
depends on the altitude parameter and uncontrollable temperature and humidity), the
following condition can be fulfilled.

Pwind = f (vw, T, H) (25)

To gain an overview of the system loading, the hourly distribution of MW-power for
the annual load and generation is provided in Figure 6. The minimum and maximum
needs, the respective contribution of intermittent renewable sources, and their statistical
mean, min/max and standard deviation, can be observed in Figure 7.

The annual load demand demonstrates a mean of 544 MW, whereas 25 MW and
22 MW are provided by wind farms and PV parks, respectively. During the same year, the
temperature showed a big variation between −2.1 ◦C and 44.5 ◦C. Its monthly fluctuation
can be seen in Figure 8, where the monthly minimum and maximum values are depicted.
The average humidity for the respective months is also depicted.

To discuss the correlation of weather conditions with demand and RES production, two
monthly histograms are used to represent the cloud coverage and average temperature by
month. For this purpose, Figure 9a describes each month in terms of cloudiness. Figure 9b
lists the monthly staggered temperature change by counting and distinguishing the days
into categories of temperatures below 5 ◦C (very cold days), within 6 ◦C and 15 ◦C (cold
days), between 16 ◦C and 25 ◦C (normal days), in the range of 26 ◦C and 32 ◦C (hot days),
and above 32 ◦C (very hot days).

An inversely proportional relation, between load demand and temperature, is illus-
trated during the winter months. Their relationship becomes proportional during the hotter
months in summer, at the beginning of autumn, and at the end of spring. The peak demand
coincides with intervals with the highest daily temperature, while in winter, the peak hours
are shifted when people return from their work and the ambient temperatures are quite
low. As can be seen from Figure 10, higher temperatures during winter allow people to
get out and enjoy their holidays and weekends. This results in decreased load demand
during daylight.
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The opposite happens during the same hours in summer, where the higher tempera-
tures, in combination with low humidity, force people to stay home and consume energy for
their cooling needs. The respective temperature impact on PV generation shows a slightly
negative effect. As can be observed, high temperatures impose efficiency degradation for
PVs favoring their contribution during spring and autumn rather than summer. However,
due to the enhanced duration between the sunrise and sunset in summer, the total energy
PV provision balances these disturbances. Solar radiation possesses the most significant
impact on PV generation, and this can be also observed by the cloud coverage index applied
during partly cloudy and mostly cloudy days.
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As regards the wind farms, a more complex dependency exists between wind power
and air density, which is strictly correlated with temperature and humidity [31]. Hence,
wind power depends mostly on wind speed. Figure 11 illustrates the seasonal power
generation using PVs against the cloud coverage, while the stochastic contribution of wind
is presented in Figure 12.

4.2. Results and Discussion

To discuss the results and how they could be interpreted from the perspective of future
studies, 3 case studies and 13 training algorithms are taken into account. The difference
between them lies in the different number of predictors used in each case. The aim is
to identify whether an algorithm functions better with fewer input predictors (due to a
probable difficulty in acquiring historical data) and which one occurs advantageous in
terms of best performance. The forecasting accuracy of the imposed algorithms is calculated
in terms of the mean absolute error (MAE), the root mean square error (RMSE), the mean
absolute percentage error (MAPE), the mean absolute range normalized error (MARNE),
and the determination coefficient R-squared (R2) between the actual (Pa) and predicted (Pp)
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residual load. Denoting with Pa the average residual load for τ time steps, the error metrics
are calculated via Equations (26)–(30).

MAE =
1
τ

τ

∑
t=1

∣∣Pa(t)− Pp(t)
∣∣ (26)

RMSE =
1
τ

√
τ

∑
t=1

(
Pa(t)− Pp(t)

)2 (27)

MAPE =
1
τ

τ

∑
t=1

∣∣∣∣Pa(t)− Pp(t)
Pa(t)

∣∣∣∣ (28)

MARNE =
1
τ

τ

∑
t=1

∣∣Pa(t)− Pp(t)
∣∣

max
t

Pa(t)
× 100 (29)

R2 = 1− ∑τ
t=1
(

Pa(t)− Pp(t)
)2

∑τ
t=1
(

Pa(t)− Pa
)2 (30)

Regarding the parameter settings, for simulation purposes the learning rate was set to
0.01 as the initial momentum update. The decrease and increase factor remained at 0.1 and
2.5, respectively, while the maximum momentum was set at 20.1010. The number of neurons
varies for each implementation based on the configuration [n1 (n1 + 2) (n1 + 3) (n1 + 2) n1],
where n1 accounts for the number of input predictors at each case. Finally, the performance
goal was set to 10−6 with a maximum number of epochs training 1000 and 200 validation
failures. The first case study makes use of minimum inputs considering the hour of the day
t; the day of the year d; and the temperature for the load target, the hour of the day for the
PV generation, and the wind speed solely for the target of wind power production. The
inputs in this case are formulated as follows:

X1 =


t, d
t

vw

(31)

The respective results obtained by the employed algorithms are listed in Table 4.

Table 4. Performance indices pertaining case study 1.

Algorithm MAE RMSE MAPE MARNE R2

trainlm 52.0579 0.70639 0.11098 5.51395 0.763704
trainbfg 65.4909 0.8779 0.1403 6.9368 0.635
trainrp 64.4048 0.8660 0.1356 6.8217 0.6449
trainscg 67.0164 0.8934 0.1417 7.0984 0.6220
traincgb 56.2291 0.7758 0.1206 5.9558 0.7295
traincgf 96.4177 1 0.2083 10.2125 0.2499
traincgp 57.8913 0.7751 0.1253 6.1318 0.7155
trainoss 57.3835 0.7708 0.1245 6.078 0.7186
trainbr 51.2384 0.7052 0.1098 5.4272 0.7645
traingd 379.0277 4.9587 0.8204 40.1465 −10.6439

traingdm 198.1535 2.5655 0.4310 20.9884 −2.1168
traingda 87.2362 1.1631 0.1960 9.2400 0.3594
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Based on the obtained results, the Bayesian regularization algorithm outperforms
the alternatives in terms of MAE, RMSE, MAPE, MARNE, and R2 performance indices.
Following is the Levenberg–Marquardt backpropagation algorithm, which offers quite
high accuracy with minor deviations from the first. The gradient descent approach fails
in fitting the target with high accuracy, providing a slight improvement with momentum
backpropagation and adaptive learning. During the second case, the assessed algorithms
utilize a normal number of inputs widely achievable. Thus, for the load target, the month
of the year (m), the season of the year (s), the year (y), the temperature, the humidity, and
the day type (D) have been also considered as predictor inputs. The RES targets accounted
for the day, month, season, year, and cloud coverage for PV output, and temperature for
the respective wind output. In this way, the predictor in the underlying study transformed
into the following:

X2 =


t, d, m, s, y, T, H, D

t, d, m, s, y, C
vw, T

(32)

Apart from the traincgb, trainoss, and all gradient-descent based algorithms, the rest
of the alternatives showed improved performance. Although the Levenberg–Marquardt
algorithm provided a minor improvement, Bayesian regularization training demonstrated
a proven accuracy, increasing the performance difference by its competitors. The respective
results are tabulated in Table 5.

Table 5. Performance indices pertaining to case study 2.

Algorithm MAE RMSE MAPE MARNE R2

trainlm 52.7104 0.7166 0.1135 5.5831 0.7568
trainbfg 59.5057 0.7976 0.1280 6.3028 0.6988
trainrp 51.3698 0.6995 0.1115 5.4413 0.7683
trainscg 53.6320 0.731115629 0.1157 5.6807 0.7469
traincgb 56.6209 0.7618 0.1221 5.9973 0.7251
traincgf 66.2414 0.8969 0.1422 7.0163 0.6191
traincgp 56.7489 0.7782 0.1209 6.0108 0.7132
trainoss 58.2981 0.7871 0.1245 6.1749 0.7066
trainbr 46.2131 0.6349 0.099 4.8949 0.8091
traingd 573.3197 6.7253 1.3112 60.7259 −20.4185

traingdm 357.1059 4.2111 0.8105 37.8246 −7.3976
traingda 93.1269 1.2261 0.1963 9.8640 0.2882
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Finally, the accuracy of the proposed MIMO model is examined by assessing the
respective algorithms using an enhanced number of input predictors. These consolidate
the current fuel price and past knowledge in load target considering also the electricity,
the previous day load (P′load), the previous week load (P′′load), and the previous year load
(P′′′load). Accordingly, the weather variables of temperature and humidity are simultaneously
included as predictors for both PV and wind power targets. This converts (32) as follows:

X3 =


t, d, m, s, y, T, H, D, c f , c′el , P′load, P′′load, P′′′load

t, d, m, s, y, C, T, H
vw, T, H

(33)

As expected, the Levenberg–Marquardt and Bayesian regularization training algo-
rithms achieve superior performance against the others in terms of MAE, MAPE, MARNE,
and R2 indices, slightly favouring Bayesian regularization (trainbr). The Fletcher–Power
conjugate gradient (traincgf) appears advantageous when comparing the RMSE perfor-
mance. Figure 13 depicts the regression diagrams for the trainbr algorithm and enhanced
predictor inputs. Testing and validation ranges show a narrower band compared to the
training range. This stems from the fact that the selected training rate was 70% in contrast
to the 15% of the test and validation cases, a combination selected after comparing three
training–testing–validation alternatives, namely 50-25-25, 60-20-20, and 70-15-15.
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It is worth noting that in the third case where enhanced inputs were taken into account
for training purposes, all algorithms showed considerable improvements against the first
and second case studies. The obtained results relating to the algorithms assessed in the
third case study are shown in Table 6. To display the contrast with trainbr, the forecasted
residual load demand for a representative week in the worst case (in winter) is presented
in Figure 14 against the actual residual load. In order to provide a direct comparison
between the best candidate and potential competitors, the respective best output can be
observed in Figure 15. The quantification of uncertainty due to the variability in renewable
energy was estimated in terms of MAE, RMSE, and MARNE. PV generation presented an
annual variation of ±0.72, ±0.2, and ±0.35, respectively. The corresponding errors for the
generated wind are evaluated at ±1.6, ±0.04, and ±3.7.

Table 6. Performance indices pertaining case study 3.

Algorithm MAE RMSE MAPE MARNE R2

trainlm 31.8937 0.4545 0.0687 3.3782 0.9022
trainbfg 36.9099 0.5238 0.079 3.9095 0.8701
trainrp 38.5916 0.5429 0.0833 4.0876 0.8604
trainscg 37.9135 0.5412 0.0809 4.0158 0.8613
traincgb 35.2977 0.501 0.0758 3.7387 0.8812
traincgf 35.098 0.4493 0.0752 3.7176 0.882
traincgp 35.1019 0.4983 0.0755 3.718 0.8824
trainoss 37.3 0.5275 0.0799 3.9508 0.8682
trainbr 31.6578 0.4556 0.0681 3.3532 0.9017
traingd 244.8243 3.1092 0.5686 25.9317 −3.5779

traingdm 84.4704 1.1370 0.1809 8.9471 0.3878
traingda 49.9334 0.6833 0.1078 5.2889 0.7789
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Repeating the experiments with varying hidden layers, the obtained results were
similar, leading to identical performance indices. Consequently, there is no need of high-
level abstraction because of the noncomplex relation between inputs and outputs. In this
way, the same results can be achieved with traditional neural networks conserving vast
computational efforts.

Applying GPR, the obtained results appear promising, offering increased performance.
The accuracy has been drastically improved in the expense of computational effort. In
contrast to parametric formulations which give only point estimations, GPR provides a
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probabilistic framework with uncertainty estimates for prediction. In this way, it is able
to capture complex relationships in data, enhancing flexibility. Figure 16 demonstrates a
typical example of the estimated mean function over the observed data points.
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Since computational speed is crucial for day-ahead forecasting, the performance, in
terms of time, of each algorithm must be taken into account. Defining the times each
algorithm visits the dataset to update weights as epochs, the following Table 7 lists this
feature for the examined case studies.

Although GPR can be adequately applied for time-series forecasting, it appears very
computationally expensive when dealing with large datasets. This can be mainly derived
from the required inversion of the covariance matrix. As a result, the increasing number
of predictors complicates the fitting task and adds considerable efforts that can become
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extremely time-intensive. Since the day-ahead prognosis requires low execution times
that do not exceed a few minutes, the simulation experiments were limited to the forecast
of wind power generation which imposes the fewest input predictors. The remaining
inputs can be predicted by making use of neural-based models, and the underline target
of residual load can be evaluated with the aid of a parallel configuration of the MIMO
depicted in Figure 17.

Table 7. Epochs and average execution times (AET-bold values) pertaining the examined algorithms.

trainlm trainbfg trainrp trainscg traincgb traincgf traincgp trainoss trainbr traingd traingdm traingda traingdx

Case 1 22 188 62 47 64 26 75 16 54 6 6 38 30

Case 2 34 863 82 24 14 59 19 49 163 6 6 39 121

Case 3 18 1000 50 31 32 71 36 13 162 6 72 35 36

AET (s) 14 102 5 4 13 5 4 11 87 0 0 0 1
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In order to gain a broad overview of the performance between kernels with the
same and a separate length scale for each predictor, Figure 18 illustrates the wind power
prediction over the actual generation. The depicted outcome refers to a specific day in 2021
which was characterized by extreme weather conditions and strongly fluctuating wind
speeds with continuous changes in its direction. At first glance, it can be concluded that all
kernels give similar predictions that contain several inaccuracies. The contrasts arise from
the calculation of the performance indices, where the ARD exponential appears superior
followed by ARD Matern 3/2. Their overall achievements are summarised in Table 8. The
obtained results regard case study 3, where wind speed, relative humidity, and temperature
constitute the only predictor inputs for prognosis.
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Table 8. Kernel performance indices pertaining the parallel ANN-GPR in case study 3.

Algorithm MAE RMSE MAPE MARNE R2

Exponential 3.0133 0.0180 1.1259 3.6771 0.9395
ARD exponential 2.8838 0.0175 1.1029 3.5191 0.9429

Squared exponential 4.5092 0.0249 4.1842 5.5026 0.8846
ARD squared exponential 3.2132 0.0195 1.1350 3.9211 0.9292

Matern 3/2 3.9574 0.0219 3.5578 4.8292 0.9105
ARD Matern 3/2 3.0244 0.0184 1.1317 3.6907 0.9370

Matern 5/2 4.3099 0.0237 4.2216 5.2594 0.8955
ARD Matern 5/2 3.0976 0.0189 1.1422 3.7800 0.9339

Rational quadratic 4.4132 0.0244 4.1132 5.3854 0.8896
ARD rational quadratic 3.1616 0.0192 1.1540 3.8582 0.9313

5. Conclusions

The required operating reserves to balance the mismatches between actual and fore-
casted power add considerable costs to the total electricity generation in the presence
of renewable sources. Efficient and adequate tools are needed in order to enhance the
forecasting accuracy of residual-load prognosis in the upcoming smart grids. In this study,
a multi-input/multi-output model is proposed to improve system security and reliability.
Specifically, based on a feed-forward deep neural network employed to map the rela-
tionship between multiple inputs and output targets, the model is assessed by utilizing
13 different training algorithms. The assessment was performed with simulations based
on annual, actual data relating to the islanded system of Cyprus under three case studies.
This constitutes a benchmark framework for the testing and validation of future novel
forecast models by making use of minimum, normal, and enhanced predictors and mul-
tiple highly variable targets. Apart from the historical data size, the added predictive
information facilitates decreasing the error between the actual and predicted targets. For
example, the forecasted demand based on the weather impact (such as temperature and
humidity) appears inadequate to observe the share due to the increasing load from one year
to another. This characteristic is retrieved by making use the previous load information,
which provides the trend of increasing load because of either new electrical installations
or prolonged tourism accommodation. The same occurs in renewable contribution where
more predictors correlated with weather conditions allow for better output prognosis.

Varying the number of input predictors, the Levenberg–Marquardt and Bayesian
regularization algorithms outperform their competitors in forecasting in terms of the mean
absolute error, the root mean square error, the mean absolute percentage error, the mean
absolute range normalized error, and the determination coefficient. With enhanced input
predictors during the third case study, the Bayesian regularization mechanism achieved
a superior mean absolute error < 31 MW and 0.9017 determination coefficient. Showing
vigorous improvement between the underlying studies, this puts it in the first place of
choice for load forecasts in the presence of strongly variable wind and PV contributions.
Increasing the hidden layers to compare the outcome in deep learning, the obtained results
showed similar behaviour without improving the overall performance indices. On the
contrary, the execution times increased, disadvantaging their application in day-ahead
forecasting tasks. This achievement reveals the importance of using optimization towards
minimizing the fitting error during the training process. Therefore, for future directions to
research, it is indicated to involve Gaussian process-based Bayesian optimization to further
improve the performance indices in systems with increased stochastic inputs such that
of renewable energy sources. A wide variety of kernel functions can be used, combining
proper Bayesian inference strategies to minimize the fitness loss and optimally define the
involved hyperparameters. In each case, the best-fit kernel choice can be engaged with a
different target, leading to improved performance metrics with respect to residual load
forecasts. Apart from the training–testing–validation optimum combination, a further
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aspect can also take into account the optimal neural size (or network configuration) in
parallel configurations of multi-input/multi-output artificial models.
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article; further inquiries can be directed to the corresponding author.
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Abbreviations

Pa Actual residual load (MW)
ρair Air density (kg/m3)
Ta Ambient temperature (◦C)
A Area spanned by the turbine blades (m2)
wij Assigned weight of the hidden layer i and neuron j
Pa Average actual residual load (MW)
cp Betz limit (%)
C Cloud coverage index (0.25, 0.5, 0.75)
d Daily intervals
D Day type (1=weekday, 2=weekend, 3=holiday)
R2 Determination coefficient
ηi Efficiency of ith device (%)
cel Electricity price (€/kWh)
T Forecasted temperature (◦C)
c f Fuel price (€/bbl)
GA Global solar irradiation (W/m2)
t Hourly intervals
Pload Load demand (MW)
MAE Mean absolute error
MAPE Mean absolute percentage error (%)
MARNE Mean absolute range normalized error
m Monthly intervals
xi Neural network input predictor
yi Neural network output target
PSC Nominal PV output under standard conditions (kW)
N Number of conventional generating units
K Number of selected neurons
hij Output of the hidden layer i and neuron j
Pk Overall power needs for a random facility k (kW)
ηpv Photonic-to-electric power efficiency (%)
Pi Power input of the device (W)
Pj Power output of jth generating unit (MW)
Pp Predicted residual load (MW)
TSC PV panel temperature under standard conditions (◦C)
Ppv PV power output (MW)
CT PV temperature coefficient (%)
r Radius of the disc shaped by the blades (m)
H Relative humidity (%)
PRL Residual load (MW)
RMSE Root mean squared error
s Seasonal intervals
GSC Solar radiation under standard conditions (W/m2)
Uj State of the jth generator (0,1)
τ Time steps
λ Tip speed ratio
hw Turbine actual height (m)
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ω Turbine rotational speed (rpm)
Pwind Wind power output (MW)
vw Wind speed (m/s3)
Pw Wind turbine power output (kW)
Pr Wind turbine rated power (kW)
y Yearly intervals
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