
Citation: Grigorescu, A.; Pirciog, C.S.;

Lincaru, C. Space–Time Forecasting of

Heating & Cooling Energy Needs as

an Energy Poverty Measure in

Romania. Energies 2024, 17, 5227.

https://doi.org/10.3390/

en17205227

Academic Editor: Jin-Li Hu

Received: 4 October 2024

Revised: 16 October 2024

Accepted: 19 October 2024

Published: 21 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Space–Time Forecasting of Heating & Cooling Energy Needs as
an Energy Poverty Measure in Romania
Adriana Grigorescu 1,2,3,4,* , Camelia Speranta Pirciog 4 and Cristina Lincaru 4

1 Department of Public Management, Faculty of Public Administration, National University of Political Studies
and Public Administration, Expozitiei Boulevard, 30A, 012104 Bucharest, Romania

2 Academy of Romanian Scientists, Ilfov Street 3, 050094 Bucharest, Romania
3 National Institute for Economic Research “Costin C. Kiritescu”, Romanian Academy, Casa Academiei

Române, Calea 13 Septembrie nr. 13, 050711 Bucharest, Romania
4 National Scientific Research Institute for Labor and Social Protection, Povernei Street 6,

010643 Bucharest, Romania; pirciog@incsmps.ro (C.S.P.); cristina.lincaru@yahoo.de (C.L.)
* Correspondence: adriana.grigorescu@snspa.ro; Tel.: +407-24253666

Abstract: Lack of access to basic energy services, known as energy poverty, remains felt in the country,
with seasonal changes and an economic divide. The frameworks to measure energy poverty differ
spatially and temporally, with climate change and behavioral culture being the essential influencing
factors. This paper is focused on heating and cooling energy demands, which can be defined as an
energy poverty metric for the propensity to be at risk of energy poverty caused by climate regime.
Employing sophisticated statistical space–time forecasting tools, we build a model incorporating
spatial and temporal energy consumption volatility across Romanian regions at the NUTS3 level. The
model considers climatic conditions and raw data from 45 years (1979–2023) of cooling and heating
degree days to determine local trajectories for the next nine years. Identifying high-energy-poverty-
risk areas in our research can provide valuable insights for policymakers, enabling them to develop
targeted plans for eliminating energy poverty and ensuring equitable access to heating and cooling.
The results underline the necessity of differentiated approaches in energy policies and add value
to the general understanding of energy poverty issues and conditions, considering the Romanian
climatic and socio-economic context.

Keywords: energy poverty; space–time analysis; curve fit forecast; exclusion risk; behavioral culture

1. Introduction

The present paper deals with an important problem encompassing issues of energy
access, climate change, and social–economic inequalities. Energy poverty, defined initially
as accessibility to the energy for heating a house and preparing food, is now more broad as
the inadequate access of households to necessary heating, cooling, and energy services is
a deepening worry throughout Europe, and especially in Romania. The problem grows
worse due to rising energy costs [1,2], aging infrastructure [3,4], and increased climate vari-
ability, which increase the need for heating in the winter and cooling in the summer [5–7].
Measuring and forecasting energy needs correctly is important for creating policies and
interventions that help vulnerable populations deal with energy poverty, which adversely
affects both quality of life and health.

Energy poverty is defined as a lack of ability of households to afford sufficient thermal
comfort for their homes because of high costs and low incomes. This is especially the case
in the context of the current climatic changes, since high temperatures lead to a need to
use more energy for cooling and, hence, energy consumption. In this regard, the adopted
indicator of Cooling Degree Days (CDD) is crucial in evaluating the cooling demand and
defining the areas most affected by energy poverty. The CDD is defined as the difference
between the recorded temperature and the standard temperature of 18 ◦C (65 ◦F), giving
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information about how hot it has been cumulatively [8]. Via Curve Fit Forecasting in
Geographic Information Systems (GIS) analysis, we get a clear picture of the spatial and
temporal pattern of CDD, and the impacts on households and public policies.

In the cold season, some cannot regularly use electricity, an amplified problem affecting
many low-income households, a condition known as energy poverty. Heating degree days
(HDD) is a parameter that can help us to estimate the necessity of heating households, and
determine which regions are in the high-risk zone regarding the energy poverty problem [9].
HDD sums up the number of days where the temperature drops below a specified level,
which means that heating systems must be employed. HDD is one of the most common
indicators used to analyze households’ heating necessities and determine areas that might
be subjected to energy poverty. HDD is the sum of the average daily temperature below a
base temperature, commonly around 18 ◦C (65 ◦F) as the lower limit for heating for home
thermostatic comfort [10,11]. If analysis had been performed using Curve Fit Forecast in
GIS, we would have better realized the regional and temporal demands for heating in
Romania and their effects on homes.

Essential for understanding and resolving energy poverty is determining the heating
and cooling needs of households in Romania during the harsh winters and hot summers.
Current energy poverty metrics generally target models concerned with income and expen-
ditures [12], while missing the spatial and temporal changes in energy requirements. This
work presents a new way to measure energy poverty using space–time forecasting methods
to project heating and cooling energy needs across multiple regions and timeframes in
Romania. This strategy permits a richer and more precise comprehension of energy needs,
making available a helpful resource for policymakers trying to address energy poverty [13].

The space–time forecasting model combines several elements, such as geographic
location, climate conditions, building attributes, and social and economic data, to project
energy requirements for heating and cooling in urban and rural regions. Knowing that
the climate differs among the regions, this technique permits an understanding of the
spectrum of energy needs throughout different territories, conditioned by Romania’s
diverse nature, weather conditions, and infrastructure [14,15]. In addition, the model
considers the seasonal changes in energy demand through the HDD and CDD indicators,
reflecting how extreme weather events and enduring climate trends affect household energy
use. Multiple factors drive energy demand, in addition to the weather influences of CDD
and HDD. Thermal insulation, the type of material, and the efficiency of heating or cooling
systems are important characteristics of a habitat that can be used to evaluate energy
demand. Socioeconomic factors, such as household income, their capacity to invest in
energy-efficient equipment, and consumer behavior, such as how we want or do not want
certain indoor temperatures, influence energy demand. The integration of these factors into
forecasting models enables a better understanding of the variability in energy demand. Our
study is the first on this issue, and represents an essential brick in the larger construction of
an integrated framework of energy poverty evaluation.

The study deepens our insights into how energy needs change over time and locations
by giving a more nuanced understanding of energy poverty. The findings could help to
identify the parts of the population and areas most vulnerable to energy poverty, allowing
for targeted interventions and resource allocation. In addition, this forecasting model
can act as a context for forthcoming research on energy poverty in other countries facing
similar challenges.

2. Literature Background
2.1. Energy Poverty

Energy poverty is defined as the inadequate ability of households to pay for necessary
energy services, including heating, cooling, lighting, and cooking [16,17]. It has recently
become a major global challenge. This perception is crucial, since it points out economic
challenges, the escalating nature of health perils, and social inequity. In the past few years,
energy poverty has attracted attention within research and policy communities, notably
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within the European Union (EU), which designates it as a critical socioeconomic challenge.
The International Energy Agency shows the correlation between heating degree days and
energy consumption (natural gases) in buildings for 1991–2020 [18].

Scholars and researchers have taken part in clarifying and conceptualizing energy
poverty. With the concept’s introduction, Boardman [19] pointed out the difficulty in
preserving a comfortably warm home resulting from high energy costs, marginal incomes,
and insufficient housing. In this original definition, energy poverty was chiefly defined
as a lack of appropriate heating. While the earlier literature confined its definition, recent
writings have broadened it to include cooling needs, particularly in places affected by
severe heat, and reliable access to electricity [20]. The complex nature of energy poverty
complicates measurements, requiring the evaluation of income levels, energy prices, and
housing conditions.

Energy poverty results from multiple factors, including escalating energy prices, low
family incomes, and inefficient building systems. In Europe, liberalized energy markets and
rising fuel costs have intensified the problem, especially in Eastern and Southern European
nations [21]. Due to aging housing and energy systems combined with significant income
gaps, Romania is among the EU nations most affected by energy poverty [22–24].

Energy poverty has extensive outcomes. Homes dealing with energy poverty typically
practice the “under-consumption” of energy, resulting in insufficient heating efforts in
winter or cooling choices in summer. Inefficient consumption is associated directly with
health risks, including respiratory diseases, cardiac problems, and more excellent mortality
rates in severe weather situations [25–30]. In addition, energy poverty frequently drives
social isolation, as people either scale back their social pursuits or minimize home visits to
diminish energy expenses.

Measuring energy poverty is not straightforward because of its multidimensional
properties. Years ago, expenditure-based measurements, including the “10% threshold”
(spending more than 10% of income on energy bills), saw widespread use. Nonetheless,
academics have evaluated this technique as overly simplistic, failing to fully express the
nature of energy poverty [31]. As an alternative to simpler measures, the UK’s imple-
mentation of the “Low Income High Cost” (LIHC) indicator and the “Energy Poverty
Vulnerability Index” (EPVI) proposal from Bouzarovski and Petrova [20] seek to merge
broader socioeconomic and housing elements into their assessments.

Recent research has also examined energy poverty’s geographical and temporal as-
pects [32]. Bouzarovski and Simcock [33] demonstrate that energy poverty varies across
different areas, especially between rural and urban locations. Climate change is wors-
ening the condition by boosting the incidence of extreme weather events, which further
overwhelms energy requirements for heating and cooling [34].

Many EU governments, mainly those concerned with energy poverty, have made
policy changes to boost energy efficiency and help financially vulnerable households. In
2019, the EU adopted its Clean Energy for All Europeans package, which requires member
states to create national strategies that address energy poverty, prioritizing actions such
as housing retrofitting and encouraging renewable energy [35]. Karpinska et al. [36] and
Mulder et al. [37] maintain that these interventions need to better reflect local conditions
and show an understanding of the spatial and socioeconomic challenges of energy poverty.

The available body of literature concerning energy poverty reveals its complex and
layered characteristics, which respond to economic, infrastructural, and geographical
situations [38–40]. Although substantial attempts have been made to define and quantify
energy poverty, a more sophisticated methodology is required, largely due to the impacts of
climate change and rising energy costs. Successful policy responses must improve energy
efficiency and resolve the structural inequalities that keep energy poverty alive.

2.2. Cooling Degree Days (CDD)

Several studies have shown that climate conditions correlate with energy poverty,
stressing how temperature influences energy requirements [41–43]. Locations that experi-



Energies 2024, 17, 5227 4 of 19

ence high temperatures, especially in summer, experience steadily rising cooling demands,
leading to more costly energy bills for residential customers, overloading electrical net-
works not designed for intensive use, and the implied increase in the number of blackouts.
Besides the deterioration in well-being, there are more health problems for people with
cardio-respiratory diseases. This situation creates a significantly high demand for those
households with limited income, who may already struggle to pay for essential energy
services [44]. In locations with numerous cooling degree days (CDD), Dubois and Meier [9]
pointed out that the financial weight of cooling elevates, deepening energy poverty. CDD,
a measurement that predicts energy consumption for cooling, is fundamental to realizing
how climate affects expenditures on household energy.

Besides the direct temperature effects, there is rising concern that climate change is
heightening energy poverty by raising the variability of energy requirements, especially
for cooling. According to Bouzarovski and Simcock [33], as temperatures rise worldwide
and extreme heatwaves occur more often, households become ever more susceptible to
energy poverty due to the unpredictable and heightened need for cooling. This increased
variability disproportionately affects those with limited financial resources, making it hard
to respond to shifting climate conditions without further slipping into energy poverty [45].

Even with the identification of CDD’s role in energy poverty, there is, as yet, minimal
exploration into how CDD growth trends (as a dynamic process) affect diverse regions and
demographic segments [46]. Previous studies have presented a broader view of temperature
effects or income-dependent drivers of energy poverty. However, they have not entirely
examined the geographic and temporal trends associated with CDD growth and their
relationship with energy poverty [47,48]. This gap must be addressed to comprehend
regional vulnerabilities and develop focused interventions to lessen energy poverty.

2.3. Heating Degree Days (HDD)

Previous research has routinely pointed out the relationship between energy poverty
and climatic factors, primarily related to heating demand in regions with high heating
degree days (HDD) [46]. Bouzarovski and Simcock [33] pointed out that as HDDs increase,
there is an increased need for heating, mainly in winter, which considerably affects energy
consumption in disadvantaged households. Households often identified by low-income
levels and poor housing efficiency find it hard to pay for the high energy costs they
incur [49]. The finding is that many people are under-heating their homes, leading to
a fall in quality of life and rising health threats such as respiratory and cardiovascular
diseases [50,51].

The relation between HDD and energy poverty in colder regions is significant, given
that heating requirements are a key element of household energy needs. In their study,
Healy and Clinch [50] pointed out that continued exposure to cold weather without suffi-
cient home heating creates various health problems, stressing energy poverty’s economic
and social dimensions. Due to their fragile position, they often run into more drastic
drawbacks given their inability to afford proper heating for their homes; this brings on
quick pain and lasting health consequences [52,53].

2.4. Measuring CDD, HDD and Energy Poverty

Measuring CDD, HDD, and energy poverty highlights the association between climate
and socioeconomic elements in energy consumption. Using CDD and HDD, the demand
for cooling and heating is estimated. Accurately tracking these metrics allows us to in-
terpret how much energy is used and the ties to energy poverty that families experience
in their quest for reliable heating or cooling solutions. Romania has a large area of tem-
perature, from minus 30 degrees in winter to plus 40 degrees in summer, with consistent
geographical differences.

Castaño-Rosa et al. [54] stress the role of CDD models in estimating upcoming energy
consumption amidst climate change. The research in seven nations shows that a rise in
CDDs caused by elevated temperatures will significantly increase cooling requirements
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and elevate energy poverty threats for lower-income families unable to purchase air condi-
tioners. Pérez-Fargallo et al. [55] implemented a risk assessment model to analyze energy
poverty in Chile by linking heat and cold demands to user thermal preferences. This
technique delivers a localized analysis of energy poverty risks, including heating and
cooling needs.

In Bologna’s case study [56], they applied energy performance certificates to pinpoint
areas of energy poverty and their heating demands. Their evidence shows that high
HDDs are linked with energy poverty, and that households with substandard insulation
face struggles with heating costs. Bienvenido-Huertas et al. [57] study the role of natural
ventilation in lowering cooling energy use.

Furthermore, numerous methods for assessing energy poverty utilize economic and cli-
matic indicators such as CDD and HDD [58,59]. These measures provide a complete method
that considers regional variation and climate-related energy demands. Kelly et al. [60]
asserted that an integrated indicator essential for measuring heating energy poverty is
important, and called for initiatives that advance a just transition.

Examining CDD and HDD in conjunction with energy poverty using diverse models
reveals essential connections between climatic elements and socioeconomic dynamics
for policymakers seeking to implement strategies and combat energy poverty effectively.
Singh et al. [61] had a space–time approach to trends and waves of heating.

Curve fitting in GIS offers a significant advantage in energy demand forecasting due
to its ability to integrate complex spatial and temporal data. Compared to other predictive
methods, such as simple linear regression or autoregressive integrated moving average
(ARIMA) models, GIS allows a more detailed visual representation of regional variations
and the behavior of energy demand according to geographic variables [54]. In addition,
recent studies have demonstrated that curve fitting in GIS provides more accurate results
when considering multiple layers of climatic and socioeconomic data [55]. Unlike other
methods that may omit spatial relationships, GIS allows for in-depth analyses of geographic
relationships and the uneven distribution of energy demand at the regional level [11].
This approach makes GIS a superior solution for identifying regional vulnerabilities and
developing tailored energy strategies.

There is a lack of space–time studies about energy poverty, except in China [62–64]
and for sub-Saharan African countries [65].

The present paper aims to add to current scholarship by applying the Curve Fit Fore-
cast technique through a GIS framework to study the growth trends of CDD across different
territories. By performing this analysis, the study contributes a detailed understanding of
how increasing CDDs—caused by climate change—affect energy poverty risks in varying
locations. This technique enables the more precise and local forecasting of energy needs,
providing insights that may guide policy efforts to mitigate the impact of energy poverty
in regions particularly vulnerable to climate change.

Despite mounting research that links HDD to energy poverty, there has been little
analysis of how upcoming HDD trends, especially those forecasted by advanced methods
such as GIS and Curve Fit Forecast, might affect future incidences of energy poverty. These
tools allow for more accurate analyses of the changes in heating demand through space
and time, furnishing insights into how energy needs could change under different climate
scenarios. Future HDD trends might enhance or change regionally because of climate
change, modifying the scope and strength of energy poverty in suburban and urban spaces.

This study also aims to fill an essential void in the literature by analyzing how spatial
differences in future heat degree day trends may intensify or lessen energy poverty risks.
This approach permits a more directed comprehension of where and when the most suscep-
tible households will deal with increased energy burdens, delivering critical information
for policymakers who want to lessen the negative consequences of energy poverty.

Moreover, the paper’s novelty is that the model is applied to Romania at the Nomen-
clature of Territorial Units for Statistics Level 3 (NUTS 3), revealing the regional differences
in CDD and HDD and the energy needs. This forecast can determine the financial needs for
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energy and the exposure to energy poverty, offering policy and decision-makers a regional
map for governmental interventions.

The hypotheses of the study are:

Hypothesis 1. The curve fit forecast model gives a reliable approximation of CDD and HDD;

Hypothesis 2. The CDD forecast in Romania at the NUTS3 level for 2023–2032 shows
different needs;

Hypothesis 3. The CDD forecast has an increasing trend;

Hypothesis 4. The HDD forecast in Romania at the NUTS3 level for 2023–2032 shows
different needs;

Hypothesis 5. The HDD forecast has a decreasing trend;

Hypothesis 6. Combining CDD and HDD forecasts that the exposure to energy poverty is
more homogenous.

3. Research Methodology and Data Sets

To forecast future trends in CDD and HDD, we applied the ArcGIS Curve Fit Forecast
method and identified regions with notable elevations that need warming. The interface
permits data to be tested according to different curve types (linear, parabolic, exponential,
and Gompertz). By employing the Curve Fit Forecast tool in Arc GIS Pro 3.2.2 [66], we
analyzed the CDD and HDD curves at NUTS3 for Romania. We developed a realistic
representation of two or three dimensions from data concerning space and time.

Various GIS methods were applied to generate these maps and explore the spatio-
temporal relationship. An advanced GIS method called the space–time cube (STC) converts
spatial and temporal data into a three-dimensional form, with each cell in the cube repre-
senting a unit of space and time. This method assessed and spotted patterns in the CDD
and HDD values throughout time. It played a role in uncovering anomalies within the
time series represented in the maps. Tools from ArcGIS were utilized to illustrate the data
layout in 2D maps with varying symbols.

The research framework is presented in Figure 1.
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Step 1: Selecting the Input Data

To build the space–time cube, row data must be selected. In our study, we used the
Eurostat cooling and heating degree days by NUTS 3 regions annual data [nrg_chddr2_a__
custom_12592029], from 1978 to 2023 [67].

Step 2: Create the Space–time Cube (STC) for CDD and HDD
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A space–time cube is a data model where spatial (where) and temporal (when) data
are combined and stored in one place. It makes it possible to analyze spatial and temporal
data series that reflect the phenomena’s temporal dynamics. Data from the area of interest
(Romania NUTS 3 level) and period of interest (1978–2023) were extracted to develop the
space–time cube for forecasting in Arc GIS. There must be location data in the form of
addresses or coordinates and time data in the form of dates and times. The space–time
cube accommodates these integrated spatio-temporal data. It enables them to be visualized,
modeled, and analyzed to understand trends and patterns that help develop tools and
methods to forecast future events and outcomes. Therefore, a high-quality space–time cube
must be assembled to use the ArcGIS forecast tools well.

The characteristics of the STCs for CDD and HDD are the same and presented
in (Table 1).

Table 1. Synthesis of STC characteristics for CDD and HDD.

STC Characteristics CDD HDD
1979-01-01 00:00:00 1979-01-01 00:00:00

Input feature time extent
to 2023-01-01 00:00:00 to 2023-01-01 00:00:00

Number of time steps 45 45
Time step interval 1 year 1 year
Time step alignment End End
First time step temporal bias 100.00% 100.00%

after after
1978-01-01 00:00:00 1978-01-01 00:00:00

to on or before to on or before
First time step interval

1979-01-01 00:00:00 1979-01-01 00:00:00
Last time step temporal bias 0.00% 0.00%

after after
2022-01-01 00:00:00 2022-01-01 00:00:00

to on or before to on or before
Last time step interval

2023-01-01 00:00:00 2023-01-01 00:00:00
Coordinate system Stereo 70 Stereo 70
Cube extent across space (coordinates in meters) (coordinates in meters)
Min X 134,105.0196 134,105.0196
Min Y 235,538.6121 235,538.6121
Max X 874,928.8607 874,928.8607
Max Y 753,220.1398 753,220.1398
Locations 42
% of locations with estimated
observations 0.00

- Total number 0
Total observations 1890
% of all observations that were estimated 0.00
Total number 0

Source: Research construct and results.

Step 3: Identify the Forecast Equation

The curve fit forecast model tests four types of curves to identify the best shape that
fits the row data for each location. The model considers linear, parabolic, exponential,
and Gompertz (S-shape) curves, which support the forecast values. These four types of
models are selected since they can address a wide variety of growth and decline, and a
balance between simplicity (linear and parabolic models) and complexity (exponential and
Gompertz models) is found to describe the studied phenomena’s behaviors. In addition,
these models are both statistically valid and computationally efficient, and are amenable to
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extension over extensive data drawn from an extended space–time. Our model generates
42 equations for the CDD forecast and 42 for the HDD forecast. Their analysis is not
relevant to the economy of the present study.

Step 4: Generate the 2D Maps

The ArcGIS forecast tool allows us to generate 2D and 3D maps with the results for
the forecasted values for nine years, with the distribution of the curve type, trends, and
forecast confidence. For the present study, the 2D maps for the values forecast for 2032
and curve types for CDD and HDD are relevant. The curve types are selected using the
root mean square error (RMSE) for each location; more precisely, the curve with the lowest
validation RMSE is considered for forecast, and the forecast RMSE evaluates the accuracy
of the forecasting model [66].

Step 5: Combine the CDD and HDD Results

The CDD and HDD forecast results reveal five levels of energy needs in the regions. We
set the index from 1 to 5 for both, from the lowest to the highest need, and then summarize
them to give a general perspective based on the resulting index.

4. Results
4.1. Cooling Degree Days (CDD) Forecast

The map of Figure 2 represents the forecast results for “Cooling Degree Days” (CDD)
in Romania, over a 9-year interval, visualized in 2D for the space–time cube (with data file
“CDD_CFF_AUTOd.nc”). The map is divided into Romania’s counties, highlighting the
variation in CDD values forecast for 1 January 2032.
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The legend shows “Forecast for COOLING_DEGREE_DAYS_N_SUM_ZEROS”, in-
dicating days with high heat that call for cooling measures. The forecast values span five
categories, represented by a continuum of colors, from light yellow for the lowest amounts
to dark red for the highest. The range includes 8.5 to 528.0, showing where CDD values
occur in various country regions.
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The spatial distribution of CDD values highlights that in the counties of Braila, Con-
stanta, Ialomita, Calarasi, Bucuresti, Ilfov, Giurgiu, Teleorman, Olt, and Dolj, the highest
daily cooling rates occur (272.7–528.0), indicated in dark red. Higher-than-average temper-
atures forecast cooling requirements in these places. These areas present high potential to
use photovoltaic renewable energy technologies, which are less accessible for low-income
people (i.e., CASA VERDE Program).

The CDD levels detected in the northern and central zones (Maramures, , Suceava,
Bistrita-Nasaud, Harghita, Mures, , Sibiu, Brasov, Covasna) are at their lowest. These zones
display a gentler climate with fewer hot days.

The western and eastern sides of Romania reveal moderate levels of cooling days.
The map’s differences show that cooling requirements will vary within regions. The

south and southeast locations are expected to experience a marked boost in elevated
temperatures, while the central and northern areas will continue to be comfortable. This
representation considerably aids in formulating energy policies and systems for adapting
to changing climates.

The CDD values demonstrate a clear impact from climate change, with warmer
temperatures leading in the south and southeast regions. Adopting energy-conserving
policies and cooling facilities is necessary. The map is a crucial graphic used by planners in
energy and climate areas to grasp the spatial arrangement of upcoming cooling demands.
Moreover, the South and Southeast should benefit from state intervention by investing
in cooling equipment and other building transformations to reduce the energy needs for
cooling or providing financial support to afford housing cooling.

Figure 3 presents the Curve Fit Forecast models for CDD by county in Romania.
Different counties are shaded based on how they estimate CDD values in the legend. This
map shows the various cooling degree day trends across the regions in Romania. Each
county has a climate model, as shown here, along with how CDD values evolve through
time using different mathematical approaches to estimate these trends.
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The legend shows that all four forecasting methods covered all the studied locations.
The exponential (light green) method applies to counties such as Arad, Hunedoara, Gorj,
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Sibiu, and Harghita. This model predicts a speeding up of CDD values throughout the
years. An accelerated growth demonstrates that occurrences of unseasonably warm days
are up in a limited timeframe. The forecast shows that high temperatures may soon spike
sharply in areas like Arad, Hunedoara, and others because of climate change.

The Gompertz method (yellow) is applied in the Mures, , Suceava, Brasov, and Bucharest
regions. This pattern represents a fast ascent followed by a stabilization, culminating at
a limit. Forests tend to rise quickly in Mures, Brasov, and Harghita counties before level-
ing off. This model shows regions shaped by moderate climate change and surrounding
landscape features such as altitude and vegetation.

Neamt, Bacau, Iasi, and Tulcea are forecasted using the parabolic method (Red).
Temperatures exhibit a non-consistent trend as CDD values may alter through a curving
pattern. Such trends could imply that temperature changes occur in a sophisticated pattern
of rises and declines. The model might demonstrate a high level of climate fluctuation in
the Iasi, Tulcea, Neamt, and Bacău regions.

The linear model (purple) is the lead approach in numerous regions. This model
presents a straightforward trend of either growth or reduction with time. If CDD values
increase (or fall) consistently each year, it reflects a linear tendency. This model matches the
majority of counties in Romania, showing a predictable climate evolution with minimal
fluctuations over time.

The spatial distribution of forecasting methods highlights that in many counties
nationwide, the linear method prevails and reflects a consistent and anticipated change in
the CDD numbers. Regional analysis reveals exponential and Gompertz methods to depict
a more complicated or swift temperature rise. The West and Central counties apply the
exponential approach. This may show significant increases in temperature during days
needing cooling. In several counties, east and southeast, the parabolic method shows a
more intricate model for how the temperature fluctuates through time.

The selection of varied forecasting methods reveals the range of climate types and the
complex nature of temperature evolution in both time and place. In regions that adopt more
intricate models, such as the exponential or parabolic forecast, climate forecasting may be
more variable, leading to a demand for improved prediction methods to recognize these
shifts. This map provides insight into the forecasting approaches in different regions of
the country, which is essential for analyzing local climate conditions. Forecasting methods
arranged spatially indicate the climate dynamics and complexities of various areas.

Recognizing these changes increases the importance of planning, which supports the
creation of measures to address climate change. Locations displaying a consistent upward
trajectory may call for special measures in energy frameworks and cooling solutions based
especially on renewable energy technologies.

Studying how these trends exist nationally offers indications of the unique effects that
climate change will have on different locations. Each county requires unique approaches
in energy planning and infrastructure adaptation. The map shows CDD projections and
embodies climate patterns distinctive to the regions. These patterns give authorities and
experts a better understanding of the future of climate change in Romania.

Table 2 reconfirms the CDD trends for each location and temporal aggregation. The
most important finding is the INCREASING trend of the CDD for all 42 locations; the speed
differs, and it can be analyzed using the detailed results of the model for each location.

4.2. Heating Degree Days Forecast

This legend for “Forecast for HEATING_DEGREE_DAYS_N_SUM_ZEROS” illustrates
the estimates for significant heating days (Figure 4). The percentages are organized into
five levels marked by shades of blue, from lighter to darker. HDD levels range from 1693.2
to 3275.0, indicating regional differences.
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Table 2. Trends direction for CDD.

Overall Data Trend—COOLING_DEGREE_DAYS_N_SUM_ZEROS
Trend direction Increasing
Trend statistic 5.2922
Trend p-value 0

Overall Data Trend—TEMPORAL_AGGREGATION_COUNT
Trend direction Not Significant
Trend statistic 0
Trend p-value 1

Source: Research results.

Energies 2024, 17, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. Heating degree days forecast results for 2023–2032, at NUTS3 level. Source: Research 
results, ArcGIS. 

HDD shows that counties including Maramures, Bistrita-Nasaud, and Suceava often 
face the greatest need for heating, indicated by dark blue. Above-average heating 
requirements are anticipated for these locations. In the central regions of Romania, like 
Brașov and Harghita, space heating demands are also high. 

In Romania�s western and eastern regions, heating demands remain relatively 
modest. The map shows how cooling and heating requirements will differ significantly 
among areas. Predictions show that both the southern and southeastern regions will 
endure lower temperatures, while the central and northern areas will face the lowest 
temperatures. This graphic is beneficial for guiding energy policy and creating resilient 
systems for responding to climate change. 

Figure 5 shows the curve types used to forecast the HDD, where all four types are 
used. Each county�s climate model is shown here, along with how HDD values evolve, 
using different mathematical approaches to estimate these trends. The western and most 
of the central regions use linear patterns, while the southern and eastern regions use 
parabolic patterns. 

Figure 4. Heating degree days forecast results for 2023–2032, at NUTS3 level. Source: Research
results, ArcGIS.

HDD shows that counties including Maramures, Bistrita-Nasaud, and Suceava often
face the greatest need for heating, indicated by dark blue. Above-average heating require-
ments are anticipated for these locations. In the central regions of Romania, like Bras, ov
and Harghita, space heating demands are also high.

In Romania’s western and eastern regions, heating demands remain relatively modest.
The map shows how cooling and heating requirements will differ significantly among
areas. Predictions show that both the southern and southeastern regions will endure lower
temperatures, while the central and northern areas will face the lowest temperatures. This
graphic is beneficial for guiding energy policy and creating resilient systems for responding
to climate change.

Figure 5 shows the curve types used to forecast the HDD, where all four types are
used. Each county’s climate model is shown here, along with how HDD values evolve,
using different mathematical approaches to estimate these trends. The western and most
of the central regions use linear patterns, while the southern and eastern regions use
parabolic patterns.

Table 3 presents the results for the trends identified for HDD. This decreasing trend of
HDD reconfirms the effects of climate change, specifically global warming. Considering
forecasts for both CDD and HDD, the increasing trends for cooling and the decreasing
trends for heating are beneficial for policymakers in drawing next year’s requirements for
energy consumption.
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Table 3. Trend direction for HDD.

Overall Data Trend—HEATING_DEGREE_DAYS_N_SUM_ZEROS
Trend direction Decreasing
Trend statistic −4.9401
Trend p-value 0

Overall Data Trend—TEMPORAL_AGGREGATION_COUNT
Trend direction Not Significant
Trend statistic 0
Trend p-value 1

Source: Research results.

4.3. CDD and HDD Annual Need

Five classes were identified for both based on the previous results obtained for CDD
and HDD forecasts. To create a hierarchy for the annual need for energy for cooling and
heating, we propose assigning scores from 1 to 5 (lower to higher need) and cumulating.
The cumulative score can have values from 2 to 10, generating nine levels of manual need.
Table 4 presents the cumulative scores for the 42 studied locations.

Only three classes were obtained, 5, 6, and 7, placed in the middle of the scale, so
a street-liter hierarchy is proposed. The first aspect to be highlighted is that no location
has low or high energy needs; most locations can be described as average. Even so, five
regions, Calarasi, Giurgiu, Ialomita, Braila, and Timis, , require close attention, even more so
knowing that, except Timis, they are less developed and lower-income regions [68]. There
are six regions in the green area: Tulcea, Vrancea, Covasna, Mures, Sibiu and Bacau. These
have the best CDD and HDD scores and mainly above-average income.
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Table 4. Cumulative classes for CDD and HDD.

Id_Loc
_Short

NUTS
Code Nume CDD HDD CDD

and HDD
Id_Loc
_Short

NUTS
Code Nume CDD HDD CDD

and HDD
1 RO111 Bihor 3 3 6 22 RO224 Galaţi 4 2 6
2 RO112 Bistriţa-Năsăud 1 5 6 23 RO225 Tulcea 4 1 5
3 RO113 Cluj 2 4 6 24 RO226 Vrancea 3 2 5
4 RO114 Maramureş 1 5 6 25 RO311 Argeş 2 4 6
5 RO115 Satu Mare 3 3 6 26 RO312 Călăraşi 5 2 7
6 RO116 Sălaj 2 4 6 27 RO313 Dâmboviţa 3 3 6
7 RO121 Alba 2 4 6 28 RO314 Giurgiu 5 2 7
8 RO122 Braşov 1 5 6 29 RO315 Ialomiţa 5 2 7
9 RO123 Covasna 1 4 5 30 RO316 Prahova 3 3 6

10 RO124 Harghita 1 5 6 31 RO317 Teleorman 5 1 6
11 RO125 Mureş 1 4 5 32 RO321 Bucureşti 5 1 6
12 RO126 Sibiu 1 4 5 33 RO322 Ilfov 5 1 6
13 RO211 Bacău 2 3 5 34 RO411 Dolj 5 1 6
14 RO212 Botoşani 3 3 6 35 RO412 Gorj 3 3 6
15 RO213 Iaşi 3 3 6 36 RO413 Mehedinţi 4 2 6
16 RO214 Neamţ 2 4 6 37 RO414 Olt 5 1 6
17 RO215 Suceava 1 5 6 38 RO415 Vâlcea 3 3 6
18 RO216 Vaslui 3 3 6 39 RO421 Arad 3 3 6
19 RO221 Brăila 5 2 7 40 RO422 Caraş-Severin 3 3 6
20 RO222 Buzău 4 2 6 41 RO423 Hunedoara 2 4 6
21 RO223 Constanţa 5 1 6 42 RO424 Timiş 4 3 7

Source: Research results.

5. Discussion

As a synthesis of the study’s findings, we can start with the confirmation of all
hypotheses. The curve fit forecast model gives a reliable approximation of CDD and HDD
(H1); both CDD and HDD trends were confirmed with a 99% confidence rate. The curve
with the lowest Validation RMSE has been selected for each location and used for the
forecast. A forecast RMSE is calculated to evaluate the accuracy of the forecasting model.
The RMSE is the indicator used for model validation and forecast accuracy. However, there
is no universal threshold for acceptable RMSE values because it depends on the specific
context, the scale of the data, and the application. The values of VRMSE and FRMSE are
between 12.50 and 34.57 for CDD and 187.39 and 230.95 for HDD, and they are in the range
of a confident model.

The CDD forecast in Romania at the NUTS3 level for 2024–2032 shows different needs
(H2), as presented in Figure 2. The southern area is the most vulnerable region and has
the greatest need for cooling energy. Then, levels 4, 3, and 2 show a “U” shape in western
and eastern areas. Finally, regions from the central and northern areas have lower cooling
needs. No matter the type of curve used for CDD forecasting, all regions registered an
increasing trend (H3).

Similarly, H4 is also confirmed by the HDD forecast in Romania at the NUTS3 level
for 2024–2032, which shows different needs. This time, the regions with the highest needs
are placed in the northern and central areas in a “T” shape, flanked on the east and west
by regions with grades-3 and -4 needs. The southern and southeastern regions need less
heating. The HDD forecast shows a decreasing trend, which confirms H5.

The summary of the CDD and HDD forecast grades confirms that the exposure to
energy poverty is more homogenous in Romania’s NUTS3 regions, but many areas showed
average grades. However, the regions’ technical solutions significantly differ due to the
natural resources and local infrastructure.
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Moreover, the increasing trends for CDD and the decreasing trends for HDD reconfirm
that climate change drives global warming. Like climate differences, the energy poverty
perspective also appears on the map, including probable risky regions. This is shown by
the increase in the number of cooling demand days in many regions, which shows that
pressure on households to maintain their thermal comfort is rising. On the other hand,
the need for heating decreases, but it still represents an issue for households as regards
providing a proper temperature. The eradication of energy poverty requires actions to
enhance energy usage efficiency, protect low-income households, and retrofit the energy
system for climate change [69].

6. Conclusions

The proposed forecast model used to identify trends and estimate the need for energy
offers a nine-year time window to implement the best technical solutions to diminish the
risk of energy poverty. The outcomes of the space–time cube visualization in 2D maps
enable policy- and decision-makers to recognize and depict variations and patterns in
CDD and HDD values. From 1978 to 2023, investigations examined the shift in cooling
and heating necessities influenced by climate change. The study identifies the regions
with a high need for cooling or heating technology investment and offers five levels of
intervention priority.

There is not a complete absence of cooling or heating demand, but rather a reduced
demand in areas with low values of CDD or HDD. Low CDD or HDD values mean that
temperatures outside the thermal comfort limits are not likely, but it does not mean that
there is no reason to use cooling or heating equipment. Additionally, just because there
is low demand does not mean there should not be some investment in energy-efficient
equipment in these areas, just that these areas are not the first priority. With low CDD
and HDD values everywhere, energy-efficient technologies such as heat pump systems or
passive cooling solutions can contribute to energy poverty reduction and assure energy-
efficient mitigation in the face of climate change [55]. Moreover, such investments help
decrease consumption intensity during the most extreme climate events, which may become
more frequent [11]. This shows that, although the CDD and HDD values may be low in
certain regions, there is no lack of heating and cooling needs.

Finally, the analysis of the CDD forecast shows a considerable enhancement in the
number of days when cooling demand is required, especially in southern and eastern
Romanian counties. The results show that regions with an exponential or parabolic CDD
growth trend are more at risk of energy poverty. However, these areas will also see
disproportionate increases in energy expenditures, hardening the downside risk for low-
income households [53]. The HDD analysis highlighted the decreasing trends for all regions,
which is favorable as regards energy needs.

A question to be discussed is whether the model using the standard temperature
for a comfortable environment in the household of 18 ◦C (65 ◦F) reflects the reality for
Romania. There are no scientific studies, but press investigations noted that more than 94%
of Romanians prefer to have a temperature of 20 ◦C and above in their bedrooms. We can
estimate that an average comfortable household temperature degree is between 20 ◦C and
24 ◦C, depending on the presence of small children or elderly persons among the tenants.
A recalibration of the model following the behavioral data has to be considered.

The vulnerability of households to energy poverty comes from the pronounced in-
creases in CDD, which will require additional cooling resources, without forgetting the
heating need, even if the HDD shows a decreasing trend. The energy cost significantly in-
fluences the affordability of energy for cooling and heating. The energy cost calculation per
CDD and HDD (if it differs) combined with the forecast maps will provide estimations of
the financial efforts to be made. Overlapping the energy cost effort for cooling and heating
with the income map will provide a comprehensive view of regional energy poverty. These
studies are necessary because they highlight that such vulnerability is even more acute in
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densely populated urban regions, where the need for thermal comfort is higher (Dubois
and Meier [9]), while rural areas face no-income and low-income issues.

The rise in the CDD forecast stresses the need for energy efficiency measures, such as
bolstering insulation and modernizing cooling technologies while building a supply of re-
newable energy sources [70]. A more profound transformation to prevent energy poverty is
the development of renewable energy sources such as solar, hydro, wind, biomass, etc. [71].
Again, overlapping the CDD and HDD forecast maps with the natural resources, consid-
ering the geographic variety of Romanian regions, will provide the decision-makers and
investors valuable insights into where (location) and on what (type of renewable energy) to
concentrate their efforts.

The key measures to address energy shortages are pursuing energy efficiency, promot-
ing renewable energy, and offering financial subsidies and fiscal incentives. One central
strategy concerns the energy efficiency of buildings, developed through thermal insu-
lation, the improvement of heating and cooling equipment, or the implementation of a
digital energy management system that can significantly reduce energy consumption [56].
Investments in renewable sources like solar, hydro, thermal, and wind energy reduce
dependence and the supply fluctuation of conventional energy sources [6]. The investment
decision should consider at least the energy demand forecast and the local resources. At
the same time, governments should subsidize vulnerable households to ensure access
to energy-efficient technologies and diminish shortages’ impacts on the most vulnerable
groups [55]. Fiscal incentives can be offered to the ones (householders, companies, and real
estate developers) that rehabilitate or build new habitats using advanced energy-saving
technologies. These combined measures can reduce the incidence of energy poverty and
stabilize energy demand.

Space–time analyses were performed on the CDD and HDD series to construct the map,
and the results show no large or significant anomalies except for CDD in the eastern and
central areas. Climate stability implies more continued temperature behavior. Nevertheless,
climate stability does not totally eliminate the risk of energy poverty, as other factors, such
as income and infrastructure, are essential [33]. The results demonstrate that adaptation
interventions are needed to curb the financial risk to vulnerable households in areas that
identify more anomalies in the time series.

Synthetically, the findings of the study are:

- Regional differences in cooling and heating energy needs at the NUTS 3 level;
- Five levels of intervention priority as a base for strategy design;
- The expected values for the next nine years of CDD and HDD, identifying the hottest

and the coldest regions;
- Evolution curves and trends identification, offering information about the simplicity

or complexity of the phenomenon, the direction, and the speed of evolution at the
regional level;

- By combining cooling and heating energy needs, the discrepancies are diminished,
and the regions are grouped into three categories;

- A base to be combined with other influence factors (income, energy price, natural
resources, technologies, etc.) for multifactorial analysis.

The identified trends and potential anomalies are caused by climate change, espe-
cially global warming. The IPCC [72] states that integrated policies will be needed to
simultaneously address climate change adaptation and energy poverty.

The study’s limits relate to the reference temperature of 18 ◦C (65 ◦F) generally used by
data set providers. The approximation of the curves used to generate the forecasts is limited
to the four types (linear, parabolic, exponential, and Gompertz), which are considered the
most appropriate. The model is based on historical CDD and HDD data. Consequently,
unexpected extreme climate conditions can significantly influence forecast accuracy. Our
model is designed to predict energy demand over nine years, and we may not be able to
capture the long-term impact of climate change. The limitation of the forecast period to
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nine years (2024–2032) was practically reduced to eight due to the gap between the row
data series (up to 2023) and processing data and model design.

The present model relies mostly on climatic and geographical variables. However,
socioeconomic variables, such as demographic growth, technological changes, or changes
in energy consumption behavior, that can significantly affect long-term energy demand are
not fully integrated. The model’s validation was based on limited data, and an increased
validation on a bigger sample of climate and temporal data would produce even better
results (RMSE).

The study’s main contribution and novelty regard the forecast of the CDD and HDD
in the NUTS3 region and the visualization of the map results. These findings are critical for
building a real-world-based framework to evaluate the risk of energy poverty. The obtained
maps are left to be overlayed with costs, resources, energy infrastructure, regional develop-
ment, income, household expenditure, etc., representing further research developments.
The multicriterial space–time studies based on combining the CDD and HDD forecasting
maps with other influencing factors will provide better support for governmental strategies,
policies, and interventions. The study can be extended to the European regional NUTS 3
level to identify the needs and to offer insights into the energy strategy of the EU. Moreover,
the model can be applied to other regions or to factors influencing energy poverty.

Author Contributions: Conceptualization, A.G., C.S.P. and C.L.; methodology, C.L. and C.S.P.;
software, C.L.; validation, A.G., C.S.P. and C.L.; formal analysis, C.L., C.S.P. and A.G.; investiga-
tion, C.L.; resources, C.S.P.; data curation, C.L.; writing—original draft preparation, A.G. and C.L.;
writing—review and editing, A.G. and C.S.P.; visualization, C.L.; supervision, A.G.; project adminis-
tration, A.G.; funding acquisition, C.S.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Romanian Ministry of Research, Innovation, and Digital-
ization, Program NUCLEU, 2022–2026, PN 22_10_0105.

Data Availability Statement: Data used are from public sources mentioned in the main text.

Acknowledgments: This work was supported by a grant from the Romanian Ministry of Research,
Innovation, and Digitalization, Program NUCLEU, 2022–2026, Spatio-temporal forecasting of local
labour markets through GIS modelling [P5]/Previziuni spatio-temporale pentru pietele muncii locale
prin modelare în GIS [P5] PN 22_10_0105.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price

crisis on households. Nat. Energy 2023, 8, 304–316. [CrossRef]
2. May, N.; Neuhoff, K. Financing power: Impacts of energy policies in changing regulatory environments. Energy J. 2021, 42,

131–152. [CrossRef]
3. Shabalov, M.Y.; Zhukovskiy, Y.L.; Buldysko, A.D.; Gil, B.; Starshaia, V.V. The influence of technological changes in energy

efficiency on the infrastructure deterioration in the energy sector. Energy Rep. 2021, 7, 2664–2680. [CrossRef]
4. Atkinson, C.F.; Curnin, S.; Murphy-Gregory, H. Resilient and sustainable energy infrastructure. Soc. Sci. Protoc. 2022, 5, 1–13.

[CrossRef]
5. Taseska, V.; Markovska, N.; Callaway, J.M. Evaluation of climate change impacts on energy demand. Energy 2012, 48, 88–95.

[CrossRef]
6. Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [CrossRef]
7. Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy demands of buildings in the framework of climate

change: An investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [CrossRef]
8. US Energy Information Administration. Units and Calculators Explained, Retrieved at Degree-Days-U.S. Energy Information

Administration (EIA). 2023. Available online: https://www.eia.gov/energyexplained/units-and-calculators/degree-days.php
(accessed on 10 July 2024).

9. Dubois, U.; Meier, H. Energy affordability and energy inequality in Europe: Implications for policymaking. Energy Res. Soc. Sci.
2016, 18, 21–35. [CrossRef]
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