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Abstract: The growing adoption of electric vehicles (EVs) and advancements in dynamic wireless charg-
ing (DWC) technology have strengthened the interdependence between power distribution networks
(PDNs) and electrified transportation networks (ETNs), leading to the emergence of coupled power and
transportation energy systems (CPTESs). This development introduces new challenges, particularly
as DWC technology shifts EV charging demand from residential plug-in charging to charging-while-
driving during commuting hours, causing simultaneous congestion in both ETNs and PDNs during
peak times. The present work addresses this issue by developing a collaborative optimization framework
for CPTESs that incorporates integrated demand responses (IDRs) and EVs battery state-of-charge (SOC).
In the ETN, a multiperiod traffic assignment model with time-shiftable traffic demands (MTA-TSTD) is
established to optimize travelers’ routes and departure times while capturing traffic flow distribution.
Meanwhile, effective path generation models with EVs battery SOC are proposed to optimize charging
energy during driving and construct the effective path sets for MTA-TSTD. In the PDN, a multiperiod
optimal power flow model with time-shiftable power demands (MOPF-TSPD) is formulated to schedule
local generators and flexible power demands while calculating the power flow distribution. To enhance
temporal and spatial coordination in CPTESs, a distributed coordinated operation model considering
IDRs is proposed, aiming to optimize energy consumption, alleviate congestion, and ensure system
safety. Finally, an adaptive effective path generation algorithm and an ETN–PDN interaction algo-
rithm are devised to efficiently solve these models. Numerical results on two test systems validate the
effectiveness of the proposed models and algorithms.

Keywords: electric vehicles; dynamic wireless charging; power-traffic network; demand response;
flexible demands; mileage limitation; state of charge

1. Introduction

In recent years, the global pollution problem has intensified due to the increasing
consumption of fossil fuels [1]. Traditional power systems, which predominantly rely
on these fuels, are among the major energy consumers. However, integrating innovative
technologies, such as renewable energy generation [2,3], can help reduce this dependency.
Furthermore, the transportation sector represents another significant contributor to pollu-
tion. Electric vehicles (EVs) have emerged as a promising alternative to gasoline vehicles
(GVs), offering a viable solution for decarbonizing transportation and addressing climate
change. According to [4], global EV sales reached nearly 14 million in 2023, accounting
for 18% of all cars sold, and are expected to exceed 40 million by 2030. In line with this
trend, public charging infrastructures have seen significant expansion and are expected to
account for one-third of the total electricity used for EV charging, approximately 170 TWh,
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by 2030 [5]. The growing adoption of EVs and the expansion of related charging infras-
tructures have enhanced the interconnection between electrified transportation network
(ETNs) and power distribution network (PDNs) [6]. On the one hand, some factors such
as road topology, congestion, and traffic control measures within the ETN will impact EV
drivers’ travel decisions (including charging decisions and route choices). These decisions
significantly affect the spatial and temporal distribution of charging loads, which further
influences the safety and economy of PDNs. On the other hand, the location of charging
infrastructures and marginal electricity prices (which reflect the operating conditions of
PDNs) will affect EV drivers’ charging decisions and route choices, thereby impacting
traffic flow distribution and the efficiency of ETNs [7].

Furthermore, recent rapid advancement in dynamic wireless charging (DWC) tech-
nology [8,9] makes it possible for EVs to charge while in motion. Leveraging this unique
charging method, numerous DWC projects have been implemented globally, with notable
examples in the UK, Germany, and South Korea [10]. This technological breakthrough
further enhances the spatial and temporal dynamics of EV charging operations, which
promotes a deeper integration between ETN and PDN. However, the convenience of DWC
may lead to EV drivers to charge their batteries while driving home, shifting the peak
charging demand to the afternoon commuting hours (16:00–19:00), rather than the evening
period (19:00–22:00), as seen with the traditional plug-in charging mode. In this scenario,
the heavy traffic demand in ETN during the evening rush hour, combined with tremendous
EV charging demand in PDN, could potentially lead to simultaneous congestion in both
the ETN and PDN [11]. Therefore, it is essential to move away from the independent opera-
tion models of the power and transportation sectors and establish a coupled power and
transportation energy systems (CPTES) to optimize the performance of both networks [12].

Based on the above background, research on the coordinated operation of ETNs and
PDNs has become a widely discussed topic among researchers in recent years. This growing
interest has led to a series of research efforts and studies aimed at exploring and optimizing
the integration of these networks. In conventional plug-in charging mode, reference [13] op-
timized road tolls and electricity prices at charging stations to reduce power losses in PDNs
and total travel time in ETNs. Reference [14] presented a holistic modeling framework to
analyze and optimize the interdependent ETN and PDN, which used a multicommunity
user equilibrium model and best-response decomposition algorithm to achieve network
equilibrium. Reference [15] proposed a smart EV charging management system in coupled
networks and investigated how elastic traffic demands respond to locational charging
prices. Reference [16] introduced a bi-level framework optimized by deep reinforcement
learning to coordinate EV charging services, enhancing network operation and renewable
energy integration. Reference [17] developed a variational inequality-based pricing scheme
to enhance the coordination of PDN and ETN, integrating distribution locational marginal
prices and congestion tolls to maximize social welfare. Reference [18] considered the impact
of PDN operation on the traffic equilibrium state and proposed a generalized user equilib-
rium (GUE) method for CPTES. Recently, reference [19] addressed unrealistic assumptions
in previous studies and proposed a holistic pricing framework to manage the power-traffic
flows at network equilibrium, aiming for the least-cost social optimum state with minimum
extra user charges. However, the above studies considered only single-period operation
based on static traffic assignment (STA) while ignoring the time-varying behavior of power
and traffic demands, which is impractical. In this regard, reference [20] investigated the
impact of time-shiftable traffic demands on congestion alleviation in coupled networks.
Reference [21] employed the quasi-dynamic traffic flow model and proposed a multiperiod
hierarchical optimization approach for bi-peak shaving and bi-ramp smoothing in the
coupled networks. To further improve the accuracy of simulating traffic flow dynamics,
reference [22] utilized a dynamic traffic assignment (DTA) model to describe the dynamic
propagation of traffic flow on conventional road segments, revealing the differences in
simulation accuracy between STA, semidynamic traffic assignment (SDTA), and DTA mod-
els and their impact on adjustment results. Unlike reference [22], which calculated travel
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times on road using predefined function expressions (such as the Bureau of Public Roads
function), reference [23] proposed a dynamic traffic model with point queues to describe
the spatial and temporal evolution of traffic flows that is congruent with established user
equilibrium choices.

From the above-discussed research, great progress has been made in achieving coor-
dination of CPTES under traditional plug-in charging modes. Next, we will explore the
research advancements in the context of DWC mode. Reference [24] determined the optimal
prices of both electricity and roads to maximize social welfare, and proposed first-best and
second-best pricing models under different authoritarian regimes. Reference [25] proposed
a decentralized framework to address traffic assignments in ETN as well as economic dis-
patch in PDN. Reference [26] mentioned that an independent system operator is authorized
to manage generation assets and impose congestion tolls on electrified roads and designed
an optimal traffic-power flow model to study the operational equilibria in coupled net-
works. Building on the work of [26], reference [11] addressed the temporal relationship of
traffic demands by proposing an optimal power and semidynamic traffic flow model. This
model was used to conduct congestion analysis over an entire day in coupled networks.
Furthermore, reference [12] considered the shift in EVs charging demand from residential
plug-in charging to charging-while-driving during commuting hours under the DWC
mode, and proposed a bi-level integrated demand response framework to alleviate conges-
tion in the coupled network. Reference [27] accurately depicted the time-varying electricity
and traffic demands and proposed a coordinated optimization method for real and reactive
power in coupled network. Different from the above studies that disregard the uncertainty
of traffic demand and stochastic routing behavior of travelers, reference [28] considered the
PDN load perturbation caused by the traffic demand uncertainty and proposed a robust
dispatch method for coupled network. Reference [29] explored stochastic routing behavior
of travelers and proposed a hybrid stochastic user equilibrium/information gap decision
theory approach for the coordinated operation of coupled network.

The above-discussed studies provided a solid foundation for supporting the coordi-
nated operation of ETNs and PDNs. However, the following inadequacies are identified
through comparison.

1. The EVs battery state-of-charge (SOC) and differentiated charging energy for EVs with
rigid charging demand during driving are not considered and modeled. Most existing
studies often oversimplify the modeling of the ETN by assuming that all EVs can reach
any charging station within the ETN to recharge and that they have the same and
constant charging energy. These models overlook the differentiated charging energy
and the range anxiety of EV drivers due to battery technology limitations. In practice,
both current charging prices and SOC will remarkably impact EV recharging behavior
while driving. For instance, EV drivers must ensure their battery does not run out
when selecting a recharging path. Moreover, incentives related to charging may
lead drivers to partially recharge their batteries rather than fully. Consequently, EVs
traveling different routes between origin and destination (OD) pairs will experience
varying energy demands due to differences in charging prices and SOC. In these cases,
differentiated road charging prices may be an effective method for regulating the
charging energy and route choices of travelers simultaneously.

2. Demand flexibility in both ETNs and PDNs is not fully exploited and modeled in the
current literature. Most of the existing studies often regard both traffic and regular
power demand to be nonshiftable over time, remaining constant across all scheduling
horizons. Although these studies can achieve coordinated operation of CPTES by
merely regulating the route choices of travelers, they may not effectively alleviate
congestion within CPTES and can sometimes exacerbate congestion in the ETN. In
practice, the traffic demands exhibit time-shiftability and can be influenced by factors
such as traffic delays or charging costs. For example, when faced with excessively
high charging prices or heavy traffic conditions, certain travelers may advance or
postpone their departure times. Similarly, in the PDN, regular power demand is
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also time-shiftable and can response to fluctuations in electricity prices. If the time-
shiftable flexibility of both traffic and power demands is fully exploited, it may offer
opportunities for more effectively alleviating congestion in CPTES.

3. Given the above two gaps, they still lack a more detailed model framework and
effective management strategy for CPTES in response to range anxiety of EV drivers
due to battery technology limitations (battery SOC), differentiated charging energy,
and the flexibility of traffic and power demands. Determining how to maximize the
social profit by tapping the flexibility of both networks while alleviating congestion is
still an open question.

The present work addresses the inadequacies of past work by developing a collabo-
rative optimization framework for CPTES, which incorporates IDRs and EV battery SOC.
Specifically, it introduces the concept of integrated demand responses (IDRs) into the
interdisciplinary studies between ETNs and PDNs, considers the range anxiety of EV
drivers (EV battery SOC) in the ETN model, and proposes a distributed coordinated op-
eration method to capture the interactions among transportation system operator (TSO),
distribution system operator (DSO), and IDRs. The main contributions are twofold.

1. We develop two multiperiod models with demand flexibility for an ETN and a PDN,
respectively. In the ETN, a multiperiod traffic assignment model with time-shiftable
traffic demands (MTA-TSTD) is established to optimize travelers’ routes and departure
times while capturing traffic flow distribution. Additionality, effective path generation
models with EV battery SOC are specifically designed to consider the range anxiety
of EV drivers due to battery technology limitations, optimized differentiated charging
energy of EVs, and construction of the effective path sets for MTA-TSTD. In the PDN,
a multiperiod optimal power flow model with time-shiftable power demands (MOPF-
TSPD) is formulated to schedule local generators and flexible power demands while
calculating the power flow distribution.

2. Faced with the flexible response behavior of traffic and regular power demands
demonstrated by the above models, we propose a distributed coordinated operation
model considering IDRs for CPTES to maximize the social profit while alleviating
congestion and ensure data privacy between the PDN and the ETN. An adaptive
effective path generation algorithm is devised to solve MTA-TSTD models, which
iteratively recognizes a subset of paths that are most likely taken. In addition, a
TSO-DSO interaction algorithm is designed for alleviating congestion and ensuring
data privacy between the PDN and ETN.

2. Model Formulation

Before detailing the mathematical model, we summarize the following two major
assumptions made in the present work:

Assumption 1: All devices within the CPTES are equipped with Internet of Things (IoT) capa-
bilities, enabling effective data exchange and communication across different components of the
system.

Assumption 2: Traffic and regular power users are incentivized to participate in IDR programs
through financial rewards or discounts, making the participation process attractive and beneficial.

2.1. Overall Framework

Figure 1 depicts the interaction among the TSO, DSO, and IDRs (flexible traffic and
regular power demands). This interaction aims to promote the coordinated operation
of CPTES from both temporal and spatial perspectives through IDRs, optimizing energy
consumption to alleviate congestion and ensure system safety. Note that the TSO or DSO
have no access to each other’s network information when making decisions, which ensures
data privacy for both networks. Each network optimizes its operations locally based
on shared operational signals (e.g., charging price signals and charging power demand)
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without direct access to each other’s detailed datasets. Sensitive data from each network
(e.g., vehicle information, network information of ETN and network information of PDN)
remain within its respective system. Coordination occurs through anonymized aggregate
data exchange rather than sharing detailed individual data, thus maintaining operational
efficiency without compromising privacy. The specific interaction process is as follows.
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In the ETN, the TSO has access to the network information of ETN, including network
topology, link parameter, and road capacity. Each traveler must report their travel plan
(including origin, destination, and departure time) and SOC to the TSO. Based on the
PT

Lc,s,t − update subproblem 1 (related to the MTA-TSTD model), the TSO reacts to charging
prices, traffic conditions, and coordination factor, and accordingly determines the optimal
route choices, departure times, recharging strategies (charging energy of each charging
road along the driving path) for flexible travelers to minimize their travel costs.

In the PDN, the DSO has access to the network information of PDN, including network
topology, line parameters, upper and lower bounds on nodal voltages, and so on. Each
flexible regular power user must report their energy usage plan to the DSO. After validating
the equivalent charging power demand at each DWC station through smart meters, the
DSO determines optimal energy usage strategy for flexible regular power users, scheduling
plan for local generators, charging power capacity, marginal charging prices, and regular
electricity prices to minimize the total operational cost of PDN, based on the PE

Lc,s,t − update
subproblem 2 (related to the MOPF-TSPD model).

The distributed coordinated operation mechanism will receive the charging power
demand and charging power capacity, update coordination factors, and then return them to
the TSO and DSO. The TSO and DSO should reschedule and resubmit the charging power
demand plans and charging power capacity until the convergence conditions are met.

2.2. Modeling of the ETN

Before detailing the mathematical model, we declare the following two premises:
(1) The CPTES comprises the ETN and PDN, which are interconnected through wireless
charging stations (roads) and mobile EVs. When EVs battery need to be recharged, DWC
systems can continuously recharge them through designated charging lanes installed on
roadways. (2) EVs in ETN are categorized into two types: some of them need battery
recharge, and others do not need battery recharge. For EVs without recharging demand,
we believe that the remaining capacity of EV batteries is sufficient to reach their destination,
and the battery status information is not considered in ETN modeling. To distinguish them,
EVs with recharging demand are referred to EVs, while those without recharging demand
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are called GVs in the following description because they share a common route selection
criterion with GVs.

2.2.1. Multiperiod Traffic Assignment Model with Time-Shiftable Traffic Demands

1. Travel time model

Travel time is a major consideration for travelers when selecting their routes and it is
influenced by the congestion levels of the roads along the path. In ETN modeling, the conges-
tion level of each road is typically quantified by Bureau of Public Roads (BPR) function [30] to
describe the relationship between road travel time χt

a
(
ψt

a
)

and road flow ψt
a.

χt
a
(
ψt

a
)
= χ0

a

[
1 + 0.15

(
ψt

a
Ca

)4
]

, ∀a ∈ ΩA, t ∈ ΩT (1)

where χ0
a represents free flow travel time on road a. Notation Ca denotes the flow capacity

of road a. The symbol ΩA represents the set of roads in an ETN. Superscript t indicates
time interval and ΩT denotes the set of scheduling periods.

Each path is defined by a set of roads, with this relationship captured using an indicator
variable. If a particular road is included in the path, the variable is set to 1, otherwise, it
is set to 0. It is noteworthy that this indicator variable is predetermined and provided in
advance based on the effective paths. In our work, the effective path sets ΩKGV,t and ΩKEV,t
for GVs and EVs are determined by the effective path generation models with EV battery
SOC, detailed in Section 2.2.2. Given the road travel time χt

a
(
ψt

a
)
, the travel time τt

GV,kg,w of
each effective path kg for GVs between each OD pair w can be calculated using Equation (2).
Similarly, the travel time τt

EV,ke,w of each effective path ke for EVs can be calculated using
Equation (3).

τt
GV,kg,w = ∑

a∈ΩA

χt
a(ψ

t
a)xt

a,kg,w, ∀kg ∈ ΩKGV,t, w ∈ ΩOD,t, t ∈ ΩT (2)

τt
EV,ke,w = ∑

a∈ΩA

χt
a(ψ

t
a)xt

a,ke,w, ∀ke ∈ ΩKEV,t, w ∈ ΩOD,t, t ∈ ΩT (3)

where xt
a,kg,w and xt

a,ke,w are indicator variables of effective path for GVs and EVs, re-
spectively. Symbols ΩKGV,t and ΩKEV,t denote set of effective paths, respectively. ΩOD,t
represents set of all travel OD pairs in ETN.

2. Travel cost model

The total travel cost ζt
GV,kg,w for a GV driver on an effective path kg can be expressed

as Equation (4), while for a single EV experienced on effective path ke, the path travel cost
ζt

EV,ke,w becomes the summation of the travel time cost and charging cost, as detailed in
Equation (5).

ζt
GV,kg,w = ∑

a∈ΩA

ηχt
a(ψ

t
a)xt

a,kg,w, ∀kg ∈ ΩKGV,t, w ∈ ΩOD,t, t ∈ ΩT (4)

ζt
EV,ke,w = ∑

a∈ΩA

ηχt
a(ψ

t
a)xt

a,ke,w + ∑
a∈ΩA

λt
a∈s∈jE

t
a,ke,w, ∀ke ∈ ΩKEV,t, w ∈ ΩOD,t, t ∈ ΩT (5)

where η represents value of time, nominally valued at USD 10/hour. The term λt
a∈s∈j refers

to the charging electricity price of road a, specifically a node marginal electricity price
at PDN bus j, which provides power to the DWC station s. Additionally, Et

a,ke,w denotes
charging energy when an effective path ke between the OD pair w traverses road a. This
quantity is optimized by the proposed effective path generation model for EVs.



Energies 2024, 17, 5234 7 of 34

3. Traffic flow model

Traffic flow models are developed to ensure traffic flow conservation in ETN. Specifi-
cally, the total traffic demand for each travel OD pair should equal the sum of traffic flows
on all effective paths for that OD pair. Equations (6) and (7) balance the sum of path flows
and the corresponding traffic demand.

∑
kg∈ΩKGV,w,t

Ht
GV,kg,w = qt

GV,w, ∀w ∈ ΩOD,t, t ∈ ΩT (6)

∑
ke∈ΩKEV,w,t

Ht
EV,ke,w = qt

EV,w, ∀w ∈ ΩOD,t, t ∈ ΩT (7)

where qt
GV,w/qt

EV,w denotes the actual traffic demand of GVs/EVs between the travel OD
pair w during the time period t, which will be explained in detail in the following time-
shiftable traffic demands model.Ht

GV,kg,w/Ht
EV,ke,w represents traffic flow of GVs/EVs on

effective path kg/ke between travel OD pair w, and it must comply with the nonnegativity
constraints outlined in (8) and (9).

Ht
GV,kg,w ≥ 0, ∀kg ∈ ΩKGV,w,t, w ∈ ΩOD,t, t ∈ ΩT (8)

Ht
EV,ke,w ≥ 0, ∀ke ∈ ΩKEV,w,t, w ∈ ΩOD,t, t ∈ ΩT (9)

The total traffic flow ψt
a on any road a is equal to the sum of the traffic flows from all

effective paths for GVs and EVs that traverse the road a. Equations (10)–(12) describe the
relationship between path flows and road flows.

ψt
GV,a = ∑

w∈ΩOD

∑
kg∈ΩKGV

Ht
GV,kg,wxt

a,kg,w, ∀a ∈ ΩA, t ∈ ΩT (10)

ψt
EV,a = ∑

w∈ΩOD,t

∑
ke∈ΩKEV,t

Ht
EV,ke,wxt

a,ke,w, ∀a ∈ ΩA, t ∈ ΩT (11)

ψt
a = ψt

EV,a + ψt
GV,a, ∀a ∈ ΩA, t ∈ ΩT (12)

where ψt
GV,a and ψt

EV,a represent traffic flow of GVs and EVs on road a, respectively.

4. Time-shiftable traffic demands model

In transportation engineering, traffic demand refers to the number of vehicles traveling
from an origin to a destination within a specific time period, which is a known constant
and also called a trip rate. However, when faced with excessively high charging prices
or heavy traffic conditions, certain travelers would rather postpone their travel to a less
congested period, while some could advance their travel, exhibiting time-shiftability. To
capture such temporal flexibility, traffic demand is modeled as a variable, which leads to
the development of a time-shiftable traffic demands model. The detailed modeling process
is as follows:

First, an elasticity coefficient ε is introduced to define the maximum transferable rate
of traffic demand between each time period. Specifically, εtτ represents the maximum
transferable rate at which traffic demand from current time period t can be shifted to
time period τ. If t is less than τ, it indicates a delay in departure time; if t is greater than
τ, it indicates an advance in departure time. Additionally, εtt represents the minimum
nontransferable rate of traffic demand in the current time period t. For an ETN with T time
periods during peak hours, the elasticity coefficients between time periods can be arranged
into an T × T elasticity coefficient matrix, which can be represented as Equation (13):
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E =


ε11 ε12 · · · ε1T
ε21 ε22 · · · ε2T
...

...
. . .

...
εT1 εT2 · · · εTT

 (13)

Using the aforementioned elasticity coefficient matrix, the maximum transferable traffic
demand qtτ

max,w and the minimum nontransferable traffic demand qtt
min,w for each OD pair from

the current time period t to other time periods τ can be expressed as Equations (14) and (15),
respectively.

qtτ
max,w = εtτqt

w, ∀t ̸= τ ∈ ΩT, w ∈ ΩOD,t (14)

qtt
min,w = εttqt

w, ∀t ∈ ΩT, w ∈ ΩOD,t (15)

where qt
w represents the initial traffic demand between the travel OD pair w during time

period t.
Notice that if a driver could delay his travel from current period t to period τ, then

he would also start his travel at an earlier period d for t < d < τ. For the same reason, if a
driver could advance his travel from period t to period τ, then he would also start at any
period d for τ < d < t. Therefore, the actual traffic demand from period t delay to period τ
can be at most the sum of the maximum transferable traffic demand from period t to any
period greater than τ. Similarly, the actual traffic demand from period t advance to period
τ can be at most the sum of the maximum transferable traffic demand from period t to any
period less than τ.

On this account, we introduce the decision variables qtτ
w which stands for the actual

number of vehicles that shift their travels from period t to period τ. Then, the time-shiftable
traffic demand can be formulated by constraints (16)–(20).

qtτ
w ≤ ∑

k≥τ∈ΩT

qtk
max,w, ∀t < τ ∈ ΩT, ∀w ∈ ΩOD,t (16)

qtτ
w ≤ ∑

k≤τ∈ΩT

qtk
max,w, ∀t > τ ∈ ΩT, ∀w ∈ ΩOD,t (17)

qtt
w ≥ qtt

min,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t (18)

∑
τ∈ΩT&τ ̸=t

qtτ
w + qtt

w = qt
w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t (19)

∑
τ∈ΩT&τ ̸=t

qτt
w + qtt

w = qt
w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t (20)

where constraints (16)–(18) define the bounds on the actual transferred traffic demand.
Equation (19) balances initial traffic demand qt

w and the sum of traffic demand qtτ
w trans-

ferred from the current period to other periods and nontransferred traffic demand remain-
ing in the current period. Equation (20) balances actual traffic demand qt

w and the sum of all
traffic demand qτt

w transferred from other periods to the current period and nontransferred
traffic demand qtt

w remaining in the current period.

qtτ
GV,w ≤ ∑

k≥τ∈ΩT

qtk
GV,max,w, ∀t < τ ∈ ΩT, ∀w ∈ ΩOD,t

qtτ
GV,w ≤ ∑

k≤τ∈ΩT

qtk
GV,max,w, ∀t > τ ∈ ΩT, ∀w ∈ ΩOD,t

qtt
GV,w ≥ qtt

GV,min,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

∑
τ∈ΩT&τ ̸=t

qtτ
GV,w + qtt

GV,w = qt
GV,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

∑
τ∈ΩT&τ ̸=t

qτt
GV,w + qtt

GV,w = qt
GV,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

(21)
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

qtτ
EV,w ≤ ∑

k≥τ∈ΩT

qtk
EV,max,w, ∀t < τ ∈ ΩT, ∀w ∈ ΩOD,t

qtτ
EV,w ≤ ∑

k≤τ∈ΩT

qtk
EV,max,w, ∀t > τ ∈ ΩT, ∀w ∈ ΩOD,t

qtt
EV,w ≥ qtt

EV,min,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

∑
τ∈ΩT&τ ̸=t

qtτ
EV,w + qtt

EV,w = qt
EV,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

∑
τ∈ΩT&τ ̸=t

qτt
EV,w + qtt

EV,w = qt
EV,w, ∀t ∈ ΩT, ∀w ∈ ΩOD,t

(22)

Keeping the above modeling ideas in mind, the time-shiftable traffic demand model
for GVs and EVs can be expressed by constraints (21) and (22), respectively.

5. Mixed user equilibrium complementarity condition

Traffic assignment captures how vehicular flow is distributed throughout the ETN.
Unlike a power system managed by a central operator, each driver in the ETN will choose
the route that minimizes their own travel cost. Due to traffic congestion effect shown in (1),
the shortest path may not always be the fastest one. The travel time on each road depends
on the aggregated traffic flow on that link, which is influenced by the route choices of all
EV and GV drivers. A steady state is achieved when no driver can reduce their travel cost
by unilaterally changing their route, which is known Wardrop user equilibrium (UE) [30].
When the ETN reaches this equilibrium state, every utilized path kg/ke for each travel
OD pair has an equal and minimal travel expense µt

GV,w/µt
EV,w, while the travel costs for

unused paths exceed this minimum travel expense. This equilibrium state can be stated
through the following nonlinear complementarity constraints.

0 ≤ Ht
GV,kg,w⊥ζt

GV,kg,w − µt
GV,w ≥ 0, ∀kg ∈ ΩKGV,w,t, w ∈ ΩOD,t, t ∈ ΩT (23)

0 ≤ Ht
EV,ke,w⊥ζt

EV,ke,w − µt
EV,w ≥ 0, ∀ke ∈ ΩKEV,w,t, w ∈ ΩOD,t, t ∈ ΩT (24)

where 0 ≤ a⊥b ≥ 0 stands for a ≥ 0, b ≥ 0 and ab = 0.
As demonstrated in [30], the Wardrop UE model can effectively capture traffic flow

distribution and accurately represent route choices based on individual travel costs. It is
also worth mentioning that the optimal route selections of individual travelers depend
on the information they can gather. With advancements in communication technology,
everyone now has easy access to real-time road conditions and regulatory policies. For
example, navigation apps on smartphones can identify the best routes to a destination
based on the latest information about congestion levels and charging prices of each road.

6. Multiperiod traffic assignment model with time-shiftable traffic demands

In summary, Equations (1)–(12) and (21)–(24) form MTA-TSTD. However, the comple-
mentary constraints presented in (23)–(24) deviate from standard constraint forms, making
the MTA-TSTD difficult to solve. As noted in [31], the Wardrop UE condition aligns with
the Karush–Kuhn–Tucker (KKT) optimality conditions of a convex optimization problem,
specifically the Beckmann model. By extending the Beckmann model into a multiperiod
framework, the MTA-TSTD is transformed into the following convex optimization problem.

minFMTA−TSTD = FDT + FCH

s.t.
{

(4)− (12)
(21)− (22)

}
(25)

where FMTA−TSTD is objective function value. FDT and FCH represent the total delay cost for
traffic users and the total charging cost for EVs over the entire scheduling cycle, as detailed
in Equations (26) and (27), respectively.

FDT = ∑
t∈ΩT

∑
a∈ΩA

η
∫ ψt

a

0
χt

a(ψ
t
a) dψt

a = ∑
t∈ΩT

∑
a∈ΩA

ηχ0
a

[
ψt

a +
0.15× (ψt

a)
5

4× (Ca)
4

]
(26)
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FCH= ∑
t∈ΩT

∑
w∈ΩOD

∑
ke∈ΩKEV,w

∫ Ht
EV,ke,w

0
∑

a∈ΩA

λt
a∈s∈jE

t
a,ke,wdHt

EV,ke,w

= ∑
t∈ΩT

∑
w∈ΩOD

∑
ke∈ΩKEV,w

(
∑

a∈ΩA

λt
a∈s∈jE

t
a,ke,w

)
Ht

EV,ke,w

(27)

Remark 1. The above MTA-TSTD model is strictly convex optimization problem with linear
constraints, and can be efficiently solved by nonlinear solvers such as IPOPT 3.14.4 (Interior Point
OPTimizer, a software package for large-scale nonlinear optimization problems).

2.2.2. Effective Path Generation Models with Battery SOC of EVs

Based on the description in Section 2.2.1, it is essential to determine the effective
path sets ΩKEV and ΩKGV before solving the MTA-TSTD model. In most previous studies,
path search algorithms were employed to enumerate sets of travel paths between each
OD pair. While enumeration can generate all potential paths, many of these paths may
not be selected by drivers, as they tend to choose the paths with the lowest travel costs.
Consequently, many of the enumerated paths may be redundant, which significantly
increases the computational complexity of the MTA-TSTD model.

Furthermore, the effective path generation for EVs involves additional complexities be-
yond those for GVs, including battery SOC and charging decisions (such as choosing DWC
stations or roads and determining charging energy). This complexity makes enumeration
methods particularly burdensome and potentially impractical for EV path analysis. To
address these issues, we propose two types of effective path generation models to construct
the effective path sets ΩKEV and ΩKGV for both EVs and GVs.

1. Effective path generation model for EVs

For an EV driver, the primary objectives are to maximize battery replenishment and
minimize travel costs during their journey. To achieve these goals, the effective path
generation model for EVs (EPGM-EVs) focuses on enhancing travel benefits of EV driver
by identifying the optimal travel route and optimizing charging energy at DWC road along
the route. This optimization considers and balances the current traffic flow distribution,
battery SOC, and charging prices to improve the overall travel experience for the EV driver.

To characterize the charging behavior of EVs, we employ utility functions [32] from
microeconomics for analysis and modeling. In practical ETN, EV drivers who select the
same route tend to display similar charging behaviors. Thus, the utility function Ut

EV,ke,w
for EV drivers on the same path can be standardized, and the following two essential
properties need to be exhibited:

Property 1. The charging utility function Ut
EV,ke,w(Et

a,ke,w, ω) should be a nondecreasing function
of the charging energy Et

a,ke,w. As drivers generally aim to maximize their energy replenishment up
to the allowable capacity, user satisfaction or utility increase with the amount of charging energy.
When the charging energy Et

a,ke,w reaches the output maximum value La of DWC road, user
satisfaction with the charging experience peaks.

Property 2. The charging marginal revenue ∂Ut
EV,ke,w(Et

a,ke,w, ω)/∂Et
a,ke,w of EV drivers derived

from additional charging energy should decrease as the total charging energy increases. Despite the
increasing utility with more charging energy Et

a,ke,w, the rate of additional benefit (marginal revenue)
that EV drivers receive from each additional unit of charging decreases as the total charging energy
increases. This results in a decreasing rate of added utility, reflecting that the utility approaches a
saturation point, where further increases in charging energy yield progressively smaller gains.
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Considering the above two properties, we employ a widely used piecewise quadratic
function to quantify the charging utility for EV drivers traversing charging roads. The
detailed model is as follows:

Ut
EV,a,ke,w(Et

a,ke,w, ω) =

{
Et

a,ke,w(ω−
α
2 Et

a,ke,w), 0 ≤ Et
a,ke,w ≤

ω
α

ω2

2α , Et
a,ke,w ≥

ω
α

(28)

where the symbol ω is a parameter in the charging utility function, representing the
sensitivity of EV drivers to the charging prices. A higher value of ω indicates a stronger
willingness of EV drivers to fully recharge their batteries, despite high cost. Notation α is a
preset parameter influencing the peak value of the utility function. When variable Et

a,ke,w
maps to the peak value of utility function, the charging road will deliver the maximum
charging energy La, and then

ω

α
= La ⇒ α =

ω

La
(29)

The total charging utility function of EV drivers on the path ke between OD pair w is
given by Equation (30):

Ut
EV,ke,w = ∑

a∈ΩA

[
ωEt

a,ke,w −
ω

2La
(Et

a,ke,w)
2
]

(30)

The total travel costs of EV drivers on the path ke between OD pair w is given by
Equation (31):

κt
EV,ke,w = ∑

a∈ΩA

[
ηχt

a(ψa)γ
t
a,ke + λt

a∈s∈jE
t
a,ke,w

]
(31)

where κt
EV,ke,w is the travel cost of EVs in path ke between OD pair w. γt

a,ke is an 0–1 decision
variable, and if the path ke includes road a, then γt

a,ke = 1, otherwise, γt
a,ke = 0.

Combining the above Equations (30) and (31), for each OD pair w ∈ ΩOD,t, the detailed
EPGM-EVs can be described as follows.

• Objective function:

max
γ,E

Wt
EV,ke,w= Ut

EV,ke,w − κt
EV,ke,w (32)

where Wt
EV,ke,w is the travel benefit of EVs in path ke between OD pair w.

• Constraints:

∆γt
ke,w = It

EV,w ∀w ∈ ΩOD,t, t ∈ ΩT (33)

SOCt
i,ke,w − daϖ + Et

a,ke,w − SOCt
j,ke,w = εt

a,ke,w ∀(i, j) = a ∈ ΩA, t ∈ ΩT (34) εt
a,ke,w ≥ −M

(
1− γt

a,ke,w

)
εt

a,ke,w ≤ M
(

1− γt
a,ke,w

) ∀(i, j) = a ∈ ΩA, t ∈ ΩT (35)

SOCt
i,ke,w − daϖ + Et

a,ke,w ≥ −M
(

1− γt
a,ke,w

)
+ m ∀(i, j) = a ∈ ΩA, t ∈ ΩT (36)

SOCt
i,ke,w − daϖ + Et

a,ke,w ≤ M
(

1− γt
a,ke,w

)
+ SOCmax ∀(i, j) = a ∈ ΩA, t ∈ ΩT (37){

0 ≤ Et
a,ke,w ≤ Laγt

a,ke,w if a ∈ s ∈ ΩWCS

Et
a,ke,w = 0 if a /∈ s ∈ ΩWCS

, ∀t ∈ ΩT (38)

SOCt
r,ke,w = SOCini,w, ∀t ∈ ΩT (39)

SOCend,w ≤ SOCt
s,ke,w ≤ SOCmax, ∀t ∈ ΩT (40)
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Equation (33) constrains all possible paths between each OD pair. The node-link
incidence matrix ∆ depicts the network topology, where each column corresponds to a
road and contains two nonzero elements: 1 and −1 at the positions related to the entrance
and exit nodes, respectively. In view of the definition of ∆, γt

ke,w represents a chain of
connected roads from origin r and travels to its destination s. It

EV,w has two nonzero
elements, 1 and −1 at the entries corresponding to the origin node r and the destination
node s. Constraints (34) and (35) describe the variation in battery charge experienced by
an EV traveling through any road. SOCt

i,ke,w and SOCt
j,ke,w represent the initial and final

SOC, respectively, for the EV when it travels through the road on a path ke between OD
pair w. Notations da and ϖ denote the road distance and driving energy consumption rate
of EVs, respectively. The symbols εt

a,ke,w and M are auxiliary variable and infinite constant.
Constraints (36) and (37) take into account the impact of range limitations and battery
capacity of EVs. When an EV traverses a certain road and reaches the next node, the SOC
must remain above a minimum threshold m and below the maximum capacity SOCmax.
Constraints (38) specify that if a path includes a DWC road, the charging energy Et

a,ke,w on
that road must be less than the maximum allowable amount La; otherwise, Et

a,ke,w is set to
zero. ΩWCS denotes the set of DWC stations in ETN. Constraints (39) and (40) indicate that
the EV must meet the initial and final SOC requirements. SOCini,w and SOCend,w denote
the SOCs of the EV at the origin r and at the destination s, respectively.

2. Effective path generation model for GVs

For a GV driver, the primary objectives are to minimize travel costs during their
journey, without the need for recharging. Therefore, the effective path generation model for
GVs (EPGM-GVs) is relatively straightforward, as it does not require optimizing charging
energy or considering battery state of charge (SOC) constraints. This model is described
as follows:

minκt
GV,kg,w = ∑

a∈ΩA

ηχt
a(ψ

t
a)γ

t
a,kg (41)

∆γt
kg = It

GV,w ∀w ∈ ΩOD,t, t ∈ ΩT (42)

2.3. Modeling of PDN
2.3.1. Demand–Price Elasticity Model

The response of regular power demand to market electricity prices is typically de-
scribed using a demand–price elasticity model. This model guides regular power users to
adjust their power demand in response to real-time price changes, thereby improving the
operational characteristics of the PDN during peak periods. The specific modeling process
is as follows.

In actual electricity usage, a user’s power demand during a given period is influenced
not only by the current period’s electricity price but also by the prices of other periods. To
describe the interrelationship between electricity prices and power demand across different
periods, the demand–price elasticity model defines two distinct elasticity coefficients: the
self-elasticity coefficient ett and the cross-elasticity coefficient etτ [33].

ett =
ξt

ini
Pt

Ld,ini

∂Pt
Ld

∂ξt , ∀t ∈ ΩT (43)

etτ =
ξτ

ini
Pt

Ld,ini

∂Pt
Ld

∂ξτ
, ∀τ ̸= t ∈ ΩT (44)

where Pt
Ld,ini and Pt

Ld represent the initial power demand and the power demand after
price response for regular power users during period t, respectively. ξt

ini and ξt represent
the initial electricity price and the price after demand response for period t, respectively.

After implementing demand response, the regular power user’s energy demand at any
given period t should be optimized to maximize net benefits WE, defined as the difference
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between the revenue from electricity consumption W
(

Pt
Ld

)
and the cost of purchasing

electricity ξtPt
Ld, given by

WE = W
(

Pt
Ld
)
− ξtPt

Ld, ∀t ∈ ΩT (45)

When the regular power user responds to the market electricity price in the current
period t, the revenue function from electricity consumption can be expressed as

W
(

Pt
Ld
)
= W

(
Pt

Ld,ini

)
− ξt

ini

(
Pt

Ld − Pt
Ld,ini

)(
1 +

Pt − Pt
Ld,ini

2ettPt
Ld,ini

)
, ∀t ∈ ΩT (46)

We substitute Equation (46) into Equation (45) and compute the differential equa-
tion for Equation (45) with respect to the current period’s power demand Pt

Ld. When
∂WE/∂Pt

Ld = 0, the regular power user’s net benefits are maximized. The resulting power
demand in response to changes in the electricity price during the current period t can be
expressed as

Pt
Ld = Pt

Ld,ini + Pt
Ld,iniett

(
ξt − ξt

ini
ξt

ini

)
, ∀t ∈ ΩT (47)

Using a method similar to that in Equation (47), the regular power demand that
maximizes the user’s net benefits in response to changes in electricity prices during other
periods can be expressed as

Pt
Ld = Pt

Ld,ini + Pt
Ld,ini ∑

τ∈ΩT&τ ̸=t
eτt

(
ξτ − ξτ

ini
ξτ

ini

)
, ∀t ∈ ΩT (48)

By combining Equations (47) and (48), the total power demand that maximizes the
user’s net benefits can be expressed as

Pt
Ld = Pt

Ld,ini +

[
Pt

Ld,iniett

(
ξt − ξt

ini
ξt

ini

)
+ Pt

Ld,ini ∑
τ∈ΩT&τ ̸=t

eτt

(
ξτ − ξτ

ini
ρτ

ini

)]
= Pt

Ld,ini + ∆Pt
Ld, ∀t ∈ ΩT

(49)

where ∆Pt
Ld represents the change of regular power demand after participating in demand

response.

2.3.2. Multiperiod Optimal Power Flow Model with Time-Shiftable Power Demands

1. Objective function

The objective function of the MOPF-TSPD is to minimize the total operational cost
over the scheduling period FMOPF−TSPD, which includes the purchasing electricity cost
from the main grid Fsub, the generation cost FG, and the penalty cost for load peak–valley
differences Fpeak−Valley.

minFMOPF−TSPD = Fsub + FG + Fpeak−Valley (50)

Fsub = ρt
sub ∑

t∈ΩT

∑
j∈Ωsub

Pt
sub,j (51)

FG = ∑
t∈ΩT

∑
g∈ΩG

[
ag(Pt

G,g)
2
+ bgPt

G,g

]
(52)

Fpeak−Valley = ρpeak−Valley

[
Pmax

L − Pmin
L

]
(53)

Pt
L = ∑

j∈ΩN

Pt
Ld,j + ∑

j∈ΩN

Pt
Lc,j, ∀t ∈ ΩT (54)
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{
Pmax

L = max
(

Pt
L
)

Pmin
L = min

(
Pt

L
) (55)

where ρt
sub represents the unit cost of purchasing electricity from the higher-level power

grid. Pt
sub,j denotes active power delivered through line connected to the slack bus. Pt

G,g
represents the active power of local generator. Notations ag and bg are production cost
coefficients of the generator. The variables Pt

L, Pt
Ld,j, and Pt

Lc,j represent the total system load,
regular power load, and charging load at node j of the PDN during period t, respectively.
The variables Pmax

L and Pmin
L represent the maximum and minimum values of the total

system load during the scheduling period, respectively.

2. Constraints

The MOPF-TSPD is subjected to branch flow equations with second-order cone relax-
ation (SOC) [34,35], as shown in (56)–(60):

Pt
i,j + Pt

G,j − It
i,jri,j − ∑

h∈Ωj

Pt
j,h − Pt

L,j = 0, ∀(i, j) ∈ ΩL, t ∈ ΩT (56)

Pt
L,j = Pt

Ld,j + Pt
Lc,j, ∀j ∈ ΩN, t ∈ ΩT (57)

Qt
i,j + Qt

G,j − It
i,jxi,j − ∑

h∈Ωj

Qt
j,h −Qt

L,j = 0, ∀(i, j) ∈ ΩL, t ∈ ΩT (58)

Ut
i −Ut

j = 2(ri,jPt
i,j + xi,jQt

i,j)− [(ri,j)
2 + (xi,j)

2]It
i,j, ∀(i, j) ∈ ΩL, t ∈ ΩT (59)∥∥∥∥∥∥∥

2Pt
i,j

2Qt
i,j

It
i,j −Ut

i

∥∥∥∥∥∥∥ ≤ It
i,j + Ut

i , ∀(i, j) ∈ ΩL, t ∈ ΩT (60)

(Pt
i,j)

2
+ (Qt

i,j)
2 ≤ (Smax

i,j )2 ∀(i, j) ∈ ΩL, t ∈ ΩT (61)

Pt
i,j − ri,j It

i,j ≥ 0 ∀(i, j) ∈ ΩL, t ∈ ΩT (62)

Qt
i,j − xi,j It

i,j ≥ 0 ∀(i, j) ∈ ΩL, t ∈ ΩT (63)

Umin
j ≤ Ut

j ≤ Umax
j ∀j ∈ ΩN, t ∈ ΩT (64)

where constraints (56) and (58) enforce active and reactive power balance at each PDN node,
respectively. Constraints (59) link voltage drop to the power flow on each line. Constraints
(60) indicate the SOC relaxation. Constraints (61)–(63) impose power flow limitations of
distribution lines. Constraints (64) impose bounds on nodal voltages.Pt

i,j and Qt
i,j are the

active and reactive power of branch (i, j) at period t. Pt
j,h and Qt

j,h are the active and reactive
power of branch (j, h) connected to node j at period t. ri,j and xi,j are the resistance and
reactance of branch (i, j). Pt

L,j and Qt
L,j are the active and reactive power demand at node j

at period t. It
i,j and Ut

j represent squared current magnitude in branch (i, j) and squared
voltage magnitude at node j at period t, respectively. Smax

i,j is maximum allowable capacity

of distribution line (i, j). Umin
j and Umax

j are the minimum and maximum squared values
of node voltage, respectively.

Assuming that all distributed energy sources in PDN are local generators, the genera-
tors in the multiperiod scheduling model must satisfy the ramp rate constraints, as shown
in (65) to (67).

Pmin
G,g ≤ Pt

G,g ≤ Pmax
G,g , ∀g ∈ ΩG, t ∈ ΩT (65)

Qmin
G,g ≤ Qt

G,g ≤ Qmax
G,g , ∀g ∈ ΩG, t ∈ ΩT (66)

−Pramp
G,g ≤ Pt

G,g − Pt−1
G,g ≤ Pramp

G,g , ∀g ∈ ΩG, t ∈ ΩT (67)
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where constraints (65) and (66) impose the upper/lower bound on generators output. Pramp
G,g

represents the ramp rate limit of distributed generator.
To address unforeseen situations such as generator failures and load response errors,

the PDN needs to provide a certain amount of upward and downward spinning reserves,
as shown in (68) to (73).

0 ≤ st
u,g ≤ min

(
Pmax

G,g − Pt
G,g, Pramp

G,g

)
, ∀g ∈ ΩG, t ∈ ΩT (68)

0 ≤ st
d,g ≤ min

(
Pt

G,g − Pmin
G,g , Pramp

G,m

)
, ∀g ∈ ΩG, t ∈ ΩT (69)

St
u ≥ εd ∑

j∈ΩN

Pt
L,j, ∀t ∈ ΩT (70)

St
d ≥ εd ∑

j∈ΩN

Pt
L,j, ∀ t ∈ ΩT (71)

St
u = ∑

g∈ΩG

st
u,g, ∀ t ∈ ΩT (72)

St
d = ∑

g∈ΩG

st
d,g, ∀ t ∈ ΩT (73)

where st
u,g and st

d,g denote upward and downward spinning reserves of distributed genera-
tor g at time period t. St

u and St
d represent upward and downward spinning reserves of

the entire distribution system at time period t. εd indicates error coefficient of the regular
power load participating in demand response.

For the demand–price elasticity model, it is necessary to limit the variation in electricity
prices to a range acceptable to users. Additionally, as electricity prices change, only a
portion of users may be willing to alter their consumption habits. Therefore, it is essential
to ensure that user satisfaction remains above a certain threshold.

ξmin ≤ ξt ≤ ξmax

Ds = 1−
∑

t∈ΩT

∣∣∣∆Pt
Ld,j

∣∣∣
∑

t∈ΩT
Pt

Ld,j
≥ 0.8

(74)

where ξmin and ξmax denote the minimum and maximum electricity prices. Ds represents
user satisfaction with their energy consumption patterns.

Remark 2. The above MOPF-TSPD model is a second-order cone programming problem and can
be effectively solved using CPLEX or Mosek solvers. CPLEX is an optimization solver developed
by IBM that is widely used for linear programming, mixed-integer programming, and quadratic
programming problems. Mosek is developed by Mosek ApS, a Danish company specializing in
optimization software. It is capable of solving a variety of optimization problems, including linear
programming, mixed-integer programming, and second-order cone programming.

2.4. Distributed Coordinated Operation Model Considering IDR

Faced with the flexible response behavior of traffic and regular power demands demon-
strated by the above MTA-TSTD and MOPF-TSPD models, we propose a distributed coordinated
operation model considering IDRs for CPTES to maximize the social profit while alleviating con-
gestion and ensure data privacy between the PDN and ETN. This model calculates the marginal
electricity prices at nodes in the PDN for each period within the scheduling horizon and utilizes
the spatiotemporal differences in these prices to adjust the spatiotemporal distribution of EV
charging loads. Additionally, it sets real-time electricity prices to guide regular power loads
in responding to price changes and modifying their energy consumption. Through IDRs, the
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CPTES achieves coordinated operation on both temporal and spatial levels, thereby enhancing
overall system efficiency and stability.

The established MTA-TSTD and MOPF-TSPD models are coupled through the load
constraints of DWC stations, as represented by Equation (75):

PLc,s,t = ∑
a∈ΩA

∑
w∈ΩOD

∑
ke∈ΩKEV,w,t

Ht
EV,ke,wEt

a,ke,w

PE
Lc,s,t = PT

Lc,s,t

∀s ∈ ΩWCS, t ∈ ΩT (75)

Here, PE
Lc,s,t and PT

Lc,s,t represent the optimized charging loads obtained from the PDN
and the ETN, respectively. Note that PT

Lc,s,t refers to the charging power demand optimized
by the TSO, while PE

Lc,s,t denotes the charging power capacity optimized by the DSO.
Based on the alternating direction multiplier method (ADMM) [36], the coupling

constraints (75) are relaxed by introducing the Lagrange multiplier ρs,t. This leads to the
establishment of an augmented Lagrangian function for CPTES, as shown in Equation (76):

L(PT
Lc,s,t, PE

Lc,s,t, ρs,t)= FMTA−TSTD(PT
Lc,s,t) + FMOPF−TSPD(PE

Lc,s,t)

+ ∑
t∈ΩT

∑
s∈ΩWCS

ρs,t(PT
Lc,s,t − PE

Lc,s,t) + ∑
t∈ΩT

∑
s∈ΩWCS

b
2

∥∥∥PT
Lc,s,t − PE

Lc,s,t

∥∥∥2

2

(76)

This augmented Lagrangian function can be decomposed into three subproblems:PT
Lc,s,t−

update subproblem 1, PE
Lc,s,t − update subproblem 2, and Lagrange multipliers updating.

Specifically, the MTA-TSTD corresponds to PT
Lc,s,t − update subproblem 1, and the MOPF-

TSPD corresponds to PE
Lc,s,t − update subproblem 2. The detailed model is provided below:

PT,k+1
Lc,s,t ∈ argmin

PT
Lc,s,t∈ΩMTA−TSTD

{
FMTA−TSTD + ∑

t∈ΩT

∑
s∈ΩWCS

ρs,t(PT
Lc,s,t − PE,k

Lc,s,t) + ∑
t∈ΩT

∑
s∈ΩWCS

b
2

∥∥∥PT
Lc,s,t − PE,k

Lc,s,t

∥∥∥2

2

}
(77)

PE,k+1
Lc,s,t ∈ argmin

PE
Lc,s,t∈ΩOPF−DR

{
FMOPF−TSPD + ∑

t∈ΩT

∑
s∈ΩWCS

ρs,t(PT,k+1
Lc,s,t − PE

Lc,s,t) + ∑
t∈ΩT

∑
s∈ΩWCS

b
2

∥∥∥PT,k+1
Lc,s,t − PE

Lc,s,t

∥∥∥2

2

}
(78)

ρk+1
s,t = ρk

s,t + b
(

PT,k+1
Lc,s,t − PE,k+1

Lc,s,t

)
, ∀s ∈ ΩWCS, t ∈ ΩT (79)

where ΩMTA−TSTD and ΩMOPF−TSPD represent the constraint sets of MTA-TSTD and MOPF-
TSPD models, respectively.

3. Solution Methodology
3.1. Adaptive Effective Path Generation Algorithm for Solving MTA-TSTD Model

The adaptive effective path generation algorithm is designed to solve the MTA-TSTD
model, which iteratively recognizes a subset of paths that are most likely taken. The
detailed algorithm process is outlined in Algorithm 1.

Remark 3. The adaptive effective path generation algorithm can be regarded as the process of optimal
route, departure times, and charging plan for individual EV and GV drivers. To support this, an
online traveling and charging navigation platform should be designed. This platform would allow
drivers to input their origin, destination, departure time, and SoC level, enabling them to receive
optimal traveling and charging guidance, Concurrently, the TSO would collect traffic demands data
of OD pairs and implement the price-based management accordingly.
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Algorithm 1: Adaptive effective path generation algorithm.

1. Initialize Traffic Flow Pattern: Let ψt
a = 0, ∀a ∈ ΩA, t ∈ ΩT, solve EPGM-EVs and

EPGM-GVs for each OD pair w ∈ ΩOD,t in each period t ∈ ΩT, and then build initial
effective path sets ΩKEV and ΩKGV.

2. Solve MTA-TSTD Model: Using the current effective path sets ΩKEV and ΩKGV, solve the
MTA-TSTD model, determine the traffic flow ψt,∗

a , ∀a ∈ ΩA, t ∈ ΩT on each road in each
period t ∈ ΩT. And then update travelling costs ζt

EV,ke,w and ζt
GV,kg,w for each path, find

minimal travelling expenses µt
EV,w and µt

GV,w for each OD pair w ∈ ΩOD in each period
t ∈ ΩT.

3. Solve EPGM-EVs and EPGM-GVs: With the obtained traffic flow ψt,∗
a , ∀a ∈ ΩA, t ∈ ΩT,

solve EPGM-EVs and EPGM-GVs for each OD pair w ∈ ΩOD,t in each period t ∈ ΩT, the
optimal solutions are new effective paths υt

ke and υt
kg, and corresponding travelling costs are

κt
EV,ke,w and κt

GV,kg,w.

4. Convergence Check: If κt
EV,ke,w ≥ µt

EV,w, κt
GV,kg,w ≥ µt

GV,w, ∀w ∈ ΩOD,t, t ∈ ΩT, terminate

the procedure and report the current traffic flow on each road; otherwise, if κt
EV,ke,w < µt

EV,w
for some OD pairs, Ωt

KEV,w ← [Ωt
KEV,w, υt

ke] ; if κt
GV,kg,w < µt

GV,w for some OD pairs,

Ωt
KGV,w ← [Ωt

KGV,w, υt
kg] ; Update effective path sets ΩKEV and ΩKGV, and go to step 2.

3.2. ETN–PDN Interaction Algorithm for Solving Distributed Coordinated Operation Model

The distributed coordinated operation model for CTPES can be iteratively solved by
addressing the PT

Lc,s,t − update subproblem 1 and PE
Lc,s,t − update subproblem 2, as well

as updating Lagrange multipliers. The iteration process will terminate when the primal
and dual residuals satisfy the convergence criteria defined in Equations (80) and (81). The
ETN–PDN interaction process is detailed in Algorithm 2.

max
{∣∣∣PT,k+1

Lc,s,t − PE,k+1
Lc,s,t

∣∣∣∀s ∈ ΩWCS, t ∈ ΩT

}
≤ εpri (80)

max
{∣∣∣PT,k+1

Lc,s,t − PT,k
Lc,s,t

∣∣∣, ∣∣∣PE,k+1
Lc,s,t − PE,k

Lc,s,t

∣∣∣∀s ∈ ΩWCS, t ∈ ΩT

}
≤ εdual (81)

Algorithm 2: ETN–PDN interaction algorithm.

1. Initialize: Set the current iteration count k = 0, and initialize the charging load
PE,k

Lc,s,t = 0, ∀s ∈ ΩWCS, t ∈ ΩT in PE
Lc,s,t − update subproblem 2, nodal marginal electricity

prices λt,k
a = 0, ∀a ∈ ΩA, t ∈ ΩT, and Lagrange multipliers ρk

s,t = 0, ∀s ∈ ΩWCS, t ∈ ΩT.

2. Solve subproblem 1: Utilize Algorithm 1 to solve PT
Lc,s,t − update subproblem 1, obtain

charging load PT,∗
Lc,s,t, ∀s ∈ ΩWCS, t ∈ ΩT in ETN. Then set PT,k+1

Lc,s,t = PT,∗
Lc,s,t.

3. Solve subproblem 2: Solve PE
Lc,s,t − update subproblem 2 to determine nodal marginal

electricity prices λt,∗
a = 0, ∀a ∈ ΩA, t ∈ ΩT, and charging load PE,∗

Lc,s,t, ∀s ∈ ΩWCS, t ∈ ΩT in

PDN. Set λt,k+1
a = λt,∗

a , PE,k+1
Lc,s,t = PE,∗

Lc,s,t.

4. Update Lagrange multipliers: Update Lagrange multipliers ρk+1
s,t , ∀s ∈ ΩWCS, t ∈ ΩT based

on the charging load PT,k+1
Lc,s,t and PE,k+1

Lc,s,t .

5. Check Convergence: If the convergence criteria specified in Equations (80) and (81) are
satisfied, terminate the iteration process. Otherwise, return to Step 2.

The overall flowchart of the solution methodology (Algorithms 1 and 2) is summarized
in Figure 2.
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4. Case Studies

In this section, two test systems are adopted to evaluate the effectiveness of the
proposed models and algorithms.

4.1. Test System 1

The test system 1 is a simple CPTES comprising a 3-node ETN and a 5-node PDN. The
topological structure is depicted in Figure 3 [11]. The ETN features a single OD pair (from
T1 to T3), three nodes, and five roads/links. All roads are equipped with DWC facilities,
each powered by a corresponding bus in the PDN. The PDN consists of five buses, five
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distribution lines, and a local generator connected to bus 2. The infrastructure parameters
of the ETN and its coupling relationship with the PDN are detailed in Table 1.

Energies 2024, 17, x FOR PEER REVIEW 20 of 36 
 

 

five distribution lines, and a local generator connected to bus 2. The infrastructure param-
eters of the ETN and its coupling relationship with the PDN are detailed in Table 1. 

a3

a2

a1

T1 T2 T3

a5

a4

E2

E1

E3

E5

E4E0

 
Figure 3. Topology of test system 1. 

Table 1. Parameters of the ETN infrastructure in test system 1. 

Road 
Flow Capacity of 
Road aC  (p.u.) 

Maximum Charging En-
ergy aL  (kWh) 

Road Distance  
ad  (km) 

Free Flow Travel 
Time 0

aχ  (min) 
Connected 
PDN Bus 

a1 6 3 8.00 6 E2 
a2 8 5 13.33 10 E4 
a3 5 3.25 8.67 6.5 E5 
a4 9.8 2.5 6.67 5 E3 
a5 7 2.75 7.33 5.5 E1 

We simulate the afternoon commuting hours (16:00–20:00), a period often character-
ized by congestion. The initial curves of traffic demand and regular power demand are 
shown in Figure 4. The peak traffic demand occurred at 18:00, while the peak regular 
power load occurred at 20:00. Among the traffic demand, 40% consisted of EVs requiring 
charging. Each EV has a battery capacity of 24 kWh, with an energy consumption rate of 
0.18 kWh/km. The base values of traffic flow and power load are set at 100 veh/h and 10 
MVA, respectively. In the MTA-TSTD model, the elasticity coefficient matrix E  is 
sourced from the literature [20]. In the MOPF-TSPD, the initial electricity price for regular 
power loads during peak periods is set as USD 1800/p.u., with acceptable price adjustment 
limits set at 0.8 and 1.2 times the initial electricity price. The upward and downward spin-
ning reserve requirements are set at 10% of the total load for each period. The local gen-
erator has a generation capacity of 0.6 p.u, and a ramp rate of 0.5 times its capacity. The 

lower and upper voltage boundaries are min 0.9110jU =  and max 1.05jU = . In addition, 
we adopt the following parameter settings: 0.6tte = − , 0.15te τ = , 200ga = USD/p.u., 

1300gb = USD/p.u., and sub 1500tρ = USD/p.u. 
In order to analyze in detail the impact of time-shiftable traffic demand on CPTES 

and demonstrate the effectiveness of the proposed models and algorithms, we consider 
the following five cases: 

Case 1: Independent operation between ETN and PDN without considering time-
shiftable traffic demand. 

Figure 3. Topology of test system 1.

Table 1. Parameters of the ETN infrastructure in test system 1.

Road Flow Capacity of
Road Ca (p.u.)

Maximum Charging
Energy La (kWh)

Road Distance
da (km)

Free Flow Travel
Time χ0

a (min)
Connected PDN

Bus

a1 6 3 8.00 6 E2
a2 8 5 13.33 10 E4
a3 5 3.25 8.67 6.5 E5
a4 9.8 2.5 6.67 5 E3
a5 7 2.75 7.33 5.5 E1

We simulate the afternoon commuting hours (16:00–20:00), a period often characterized
by congestion. The initial curves of traffic demand and regular power demand are shown
in Figure 4. The peak traffic demand occurred at 18:00, while the peak regular power load
occurred at 20:00. Among the traffic demand, 40% consisted of EVs requiring charging. Each
EV has a battery capacity of 24 kWh, with an energy consumption rate of 0.18 kWh/km. The
base values of traffic flow and power load are set at 100 veh/h and 10 MVA, respectively. In
the MTA-TSTD model, the elasticity coefficient matrix E is sourced from the literature [20].
In the MOPF-TSPD, the initial electricity price for regular power loads during peak periods
is set as USD 1800/p.u., with acceptable price adjustment limits set at 0.8 and 1.2 times the
initial electricity price. The upward and downward spinning reserve requirements are set
at 10% of the total load for each period. The local generator has a generation capacity of
0.6 p.u, and a ramp rate of 0.5 times its capacity. The lower and upper voltage boundaries are√

Umin
j = 0.9110 and

√
Umax

j = 1.05. In addition, we adopt the following parameter settings:

ett = −0.6, etτ = 0.15, ag = 200 USD/p.u., bg = 1300 USD/p.u., and ρt
sub = 1500 USD/p.u.
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Figure 4. Initial curves of traffic demand and regular power demand from 16:00 to 20:00 in test system 1.

In order to analyze in detail the impact of time-shiftable traffic demand on CPTES and
demonstrate the effectiveness of the proposed models and algorithms, we consider the
following five cases:

Case 1: Independent operation between ETN and PDN without considering time-
shiftable traffic demand.

Case 2: Independent operation between ETN and PDN with time-shiftable traffic
demand.

Case 3: Coordinated operation between ETN and PDN without considering time-
shiftable traffic and regular power demand.

Case 4: Coordinated operation between ETN and PDN, considering time-shiftable
traffic demand based on Case 3.

Case 5: Coordinated operation between ETN and PDN, considering both time-shiftable
traffic and regular power demand based on Case 4.

In Case 1 and Case 3, nonshiftable traffic demand is distributed according to single-
period UE, in which travelers do not switch departure time but merely determine route
choice. In Case 1 and Case 2, the ETN and PDN operate independently, with no interaction
between the two networks. In this situation, the nodal marginal price (charging price) does
not influence the departure time, route choice, or charging decisions of EV drivers. In
other words, drivers choose the shortest travel time routes based on their preferences and
will charge as much as possible during the journey until their batteries are fully charged.
Additionally, the flexibility of regular power demand in PDN is not considered.

To ensure a feasible solution for Case 1 and 2 under high traffic density, it is assumed
that the lower bound of voltage can be violated at the cost of an additional high penalty.
Consequently, the total operation cost of PDN FMOPF−TSPD in the MOPF-TSPD is adjusted
as follows:

FMOPF−TSPD = Fsub + FG + Fpeak−Valley + FU−penalty

= ρsub ∑
t∈ΩT

∑
j∈Ωsub

Pt
sub,j + ∑

t∈ΩT

∑
g∈ΩG

[
ag(Pt

G,g)
2
+ bgPt

G,g

]
+ρpeak−Valley

[
Pmax

L − Pmin
L
]
+ κ ∑

t∈ΩT

∑
j∈ΩN

∆Ut
j

(82)

Here, the penalty coefficient is chosen as κ = 50000 USD/p.u. [26]; meanwhile, the
voltage boundary constraints in (64) are adjusted to the following:

Umin
j − ∆Ut

j ≤ Ut
j ≤ Umax

j , ∆Ut
j ≥ 0, ∀j ∈ ΩN, t ∈ ΩT (83)



Energies 2024, 17, 5234 21 of 34

4.1.1. Impact of Time-Shiftable Traffic Demand on ETN and PDN

This subsection analyzes the impact of time-shiftable traffic demand on ETN and PDN
using Cases 1 and 2, and then demonstrates the necessity for coordinated management in
the coupled networks.

1. Impact of time-shiftable traffic demand on ETN

Figures 5 and 6 show the variations in traffic demand and traffic flow distribution
during the evening peak period for Case 1 and Case 2. From Figures 5 and 6a, it can be
observed that in Case 1, the majority of traffic users are concentrated around 18:00 as their
initial plan, resulting in severe congestion compared to other times. In contrast, traffic
demand at 16:00 is minimal, and the ETN operates more smoothly. During this period,
most traffic users prefer road with shorter travel time. For example, between traffic nodes
T1 and T2, shorter roads a1 and a3 are allocated traffic flow, while the traffic flow in the
longer road is zero (as shown by the absence of traffic flow on road a2 at 16:00 in Figure 6a).
This comparison highlights the underutilization of roads at 16:00 and indicates the potential
for peak-shaving and valley-filling in the ETN.
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Figure 6. Traffic flow distribution of the ETN from 16:00 to 20:00: (a) in Case 1, (b) in Case 2. 

In Case 2, the flexibility of traffic demand is leveraged by considering the interaction 
between user departure times and road congestion. This approach fully explores the com-
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Figure 6. Traffic flow distribution of the ETN from 16:00 to 20:00: (a) in Case 1, (b) in Case 2.

In Case 2, the flexibility of traffic demand is leveraged by considering the interaction
between user departure times and road congestion. This approach fully explores the comple-
mentary advantages of different time periods within the evening peak hours. Figures 5 and 6b
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show that traffic demand during the peak period (18:00–19:00) is significantly reduced, while traf-
fic demand in other periods is moderately increased. This results in a more uniform distribution
of traffic flow from 16:00 to 20:00, indicating a more efficient utilization of ETN.

2. Impact of time-shiftable traffic demand on PDN

Figures 7 and 8 illustrate the variations in charging load and node voltage in the PDN
during the evening peak period for both Case 1 and Case 2. It can be observed that in Case 1,
where traffic demand is nonshiftable, the peak charging load occurs at 18:00, which causes
a significant drop in voltages at buses E3 and E5, falling well below safe operational limits.
In contrast, Case 2 leverages the flexibility of time-shiftable traffic demand. As a result, the
peak charging load decreases from 0.88 p.u. to 0.68 p.u., representing a reduction of nearly
25%. Additionally, the charging load at 17:00 is reduced, while there is a slight increase
in other periods. This adjustment reduces the peak-to-valley difference in charging load
between 16:00 and 20:00, leading to a more uniform load distribution. Consequently, the
voltage levels and overall operational performance of the PDN are significantly improved.
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Figure 8. Node voltage level of PDN from 16:00 to 20:00: (a) in Case 1, (b) in Case 2. 
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Figure 8. Node voltage level of PDN from 16:00 to 20:00: (a) in Case 1, (b) in Case 2.

However, it is worth noting that time-shiftable traffic demand also increases the
charging load at 20:00, as shown by the charging load curve in Case 2 (Figure 7). This
exacerbates the already high load levels during the regular power demand peak, leading
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to a voltage violation at the E5 bus at 20:00, as depicted in Figure 8b. Therefore, while
time-shiftable traffic demand in the independent operation mode effectively smooths out
the total traffic demand and charging load curves, alleviating peak-hour traffic congestion
and improving voltage levels, voltage violation still exists in both networks. This indicates
the necessity for appropriate coordinated management methods for CPTES to ensure safe
and economical operation throughout the peak period, which is discussed in Section 4.1.3.

4.1.2. Effectiveness of Effective Path Generation Models with EV Battery SOC

To demonstrate the effectiveness of the proposed effective path generation models
with EV battery SOC, this subsection compares them with traditional path generation
models that do not consider EV battery SOC. Specifically, based on Case 5, we designed
Case 6 by removing the relevant SOC constraints for comparative analysis. In Case 6
(traditional path generation models without EV battery SOC), charging energy Et

a,ke,w is
not optimized; instead, a constant charging energy is assumed, which is set to maximum
charging energy La. In our proposed model (Case 5), the parameters are defined as follows:
the minimum threshold m for the SOC for EVs is set at 10% of the battery capacity, the
initial SOC of EVs is uniformly set to 30% of the battery capacity, and by the end of the trip,
the SOC must be maintained at or above 30% of the battery capacity.

Table 2 presents the operational cost results for ETN and PDN objective functions in
Cases 5 and 6. It is evident that in Case 6, the total charging cost, purchasing electricity
and generation costs are higher than those in Case 5, while also exhibiting a larger peak-
to-valley load difference. This is because, in traditional methods, the charging energy
for EVs is fixed and cannot be regulated or optimized. Drivers attempt to fill their EV
batteries based on the maximum charging capacity provided by DWC roads, resulting in
relatively high charging loads. This, in turn, increases the PDN purchasing electricity and
generation costs, leading to higher charging prices and an increase in total charging costs
of ETN. These results indicate that our method contributes to better power load balancing
by optimizing charging energy Et

a,ke,w with consideration of EV battery SOC.

Table 2. Operational costs of objective function in Cases 5–6.

Cases
Total Operational Costs for ETN Total Operational Costs for PDN

Total Delay Cost FDT
(USD)

Total Charging Cost
FCH (USD)

Purchasing Electricity and
Generation Cost Fsub+FG (USD)

Penalty Cost for Load Peak-Valley
Differences Fpeak-Valley (USD)

Penalty Cost for Voltage
Violations (USD)

5 26,417.99 2750.17 5289.51 465.84 0.00
6 26,419.84 4183.68 6601.59 559.32 0.00

As an example from Case 5 at 18:00, Figure 9 presents SOC of EVs at each road node
and charging energy Et

a,ke,w at DWC road along the effective travel path. It is can be seen
that the proposed EPGM-EVs identifies two effective paths from origin T1 to destination T3:
path a1 − a4 and path a3 − a5 and path, with distributed traffic flows of 998 and 80 vehicles,
respectively. Additionally, the charging energy Et

a,ke,w of EVs at each DWC road along the
travel route is optimized, and all the EVs battery SOC constraints in EPGM-EVs are met,
ensuring that their batteries do not run out and avoiding range anxiety of EV drivers due
to battery technology limitations. These results further demonstrate that the proposed
EPGM-EVs effectively captures the SOC of EVs across different travel paths, while also
optimizing and regulating EV charging energy along the travel routes.

Therefore, the proposed effective path generation models with EV battery SOC have
significant advantages compared to traditional methods, which often ignore battery status
and focus solely on distance or time. This model not only provides more realistic and
reliable routes for EVs, but also promotes the coordinated operation of the PDN and ETN
by optimizing charging energy with consideration of EV battery SOC.
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Figure 9. SOC of EVs at each road node and charging energy for EVs at DWC road along the effective
travel path.

4.1.3. Effectiveness of the Proposed Distributed Coordinated Operation Model Considering
IDRs in Congestion Alleviation and Cost Reduction

This subsection evaluates the effectiveness of the proposed distributed coordinated
operation model considering IDRs for decreasing congestion levels and reducing total
operating cost in the ETN and PDN by analyzing Cases 3–5.

1. The operational cost results for ETN and PDN objective functions

The operational cost results for ETN and PDN objective functions in Cases 3–5 are
presented in Table 3. It is evident that in Cases 3–5, the penalty costs for voltage violations
in PDN are all zero, indicating that the voltage safety constraints are met in all scenarios.
Compared to Cases 1–2, the coordinated operation management for CPTES enables EV
users to respond to charging electricity prices during the evening peak period, thereby
adjusting their route choices and charging roads. This approach significantly improves
and enhances the operational performance of the PDN, particularly alleviating voltage
violations caused by congestion in the PDN.

Table 3. Operational costs of objective function in Cases 3–5.

Cases
Total Operational Costs for ETN Total Operational Costs for PDN

Total Delay Cost FDT
(USD)

Total Charging Cost
FCH (USD)

Purchasing Electricity and
Generation Cost Fsub+FG (USD)

Penalty Cost for Load Peak-Valley
Differences Fpeak-Valley (USD)

Penalty Cost for Voltage
Violations (USD)

3 28,091.28 2770.51 5380.15 899.81 0.00
4 26,417.89 2753.75 5371.67 697.07 0.00
5 26,417.99 2750.17 5289.51 465.84 0.00

However, in Case 3, the total operational costs for both ETN (including total delay
and charging costs) and PDN are higher compared to Case 4 and Case 5, with particularly
significant differences observed in total delay costs and penalty costs for load peak-to-valley
differences. Because Case 4 leverages the flexibility of time-shiftable traffic demand to
redistribute the peak period (18:00–19:00) traffic demand to other off-peak periods, it results
in a more uniform traffic flow distribution from 16:00 to 20:00 and a smoother charging load
curve. Consequently, Case 4 incurs lower total delay costs and peak-to-valley penalty costs
compared to Case 3. Building on Case 4, Case 5 further incorporates demand response
for regular power loads and adjusts the consumption behavior of flexible noncharging
loads under “peak shaving and valley filling” state of the ETN, thereby achieving a greater
smoothing effect on the PDN’s load curve during peak periods. As a result, Case 5 has the
lowest penalty costs for load peak-to-valley differences.

In summary, Case 5 has the lowest operational costs in both the ETN and PDN. Com-
pared to Case 3, it reduces total operational costs for the ETN by USD 1693.63, representing
a 5.48% decrease, and for the PDN by USD 524.61, representing an 8.35% decrease. There-
fore, the proposed distributed coordinated operation model effectively reduces the total
operating costs for both the ETN and PDN by considering time-shiftable traffic and power
demand, along with the implementation of IDRs.

2. Effect of flexible traffic and power demand on congestion management

To further demonstrate the effect of flexible traffic and power demand on congestion
management, Figures 10 and 11 present the variation curves of total traffic demand in ETN
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and total power load in PDN from 16:00 to 20:00. Table 4 outlines the effective path, travel
time, travel cost, and path traffic flow at 18:00 for Cases 3 and 5. Additionally, Table 5
provides details on the corresponding peak and valley loads in PDN, along with their
occurrence times.
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Figure 10. Total traffic demand variation curves in ETN from 16:00 to 20:00 in Cases 3 and 5.
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Table 4. Effective path, travel time, travel cost, and path traffic flow (18:00 in Cases 3 and 5).

Effective Path
Case 3 Case 5

Travel Time
(min)

Travel Cost
(USD)

Traffic Flow
(veh)

Travel Time
(min)

Travel Cost
(USD)

Traffic Flow
(veh)

GV-Path
a3 − a5 37.91 6.32 792 21.93 3.66 708
a2 − a4 37.91 6.32 753 21.93 3.66 530
a2 − a5 37.91 6.32 555 21.93 3.66 380

EV-Path
a1 − a4 38.31 6.99 1215 22.32 4.32 998
a3 − a5 37.91 6.99 185 21.93 4.32 80
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Table 5. Peak values and valley values of total power load in Cases 3–5.

Cases
Peak Times

(h)

Peak Value (MW)
Valley

Times (h)

Valley Value (MW)

Regular
Power Load

Charging
Load

Total
Power
Load

Regular
Power
Load

Charging
Load

Total
Power
Load

3 18:00 4.00 5.20 9.20 16:00 2.40 2.30 4.70
4 20:00 5.20 3.43 8.63 16:00 2.40 2.74 5.14
5 18:00~20:00 3.74/4.28/4.32 4.04/3.50/3.46 7.78 16:00 2.71 2.74 5.45

From Figure 10, it is clear that, compared to Case 3, Case 5 shows a smoother load
curve during the evening peak period (16:00–20:00). Notably, as shown in Table 4, during
the traffic peak at 18:00, both GVs and EVs experience significant reductions in travel time
and costs on their effective travel paths. This improvement contributes to the total traffic
delay cost decreasing from USD 28,091.28 in Case 3 to USD 26,417.99 in Case 5. These
results indicate that the proposed model is effective in alleviating traffic congestion.

As indicated in Figure 11, the total power load curve in Case 3 exhibits a larger peak-
to-valley difference due to the limitation that travelers do not switch departure time but
merely determine route choice and charging energy. The peak and valley occur at 18:00 and
16:00 in Case 3, respectively. In contrast, Case 4 smooths the total load curve by considering
the flexibility of time-shiftable traffic demand, allowing EV travelers to either advance
or delay their departure times. The peak and valley occur at 20:00 and 16:00 in Case 4,
respectively. In Case 5, which considers the flexibility of both time-shiftable traffic and
regular power demand simultaneously, the peak-to-valley difference for both charging and
regular loads is further reduced, resulting in a flattened total load curve from 18:00 to 20:00.
Therefore, the flexibility of time-shiftable traffic and power demand has a positive effect on
congestion management for PDN.

However, from Figure 11 and Table 5, it can be observed that the peak value of total
power load in PDN shifts to 20:00 in Case 4, which coincides with the peak period for regular
power consumption. At 20:00, the total power load in Case 4 is higher than in Case 3 and
Case 5. This occurs because, after considering the flexibility of time-shiftable traffic demand,
the charging demand during the peak periods of 18:00 and 19:00 is redistributed to off-peak
periods, leading to an increase in the charging load of PDN at 20:00. This exacerbates the
already high load level during the regular load peak period, causing the total power load in
Case 4 at 20:00 to surpass that in Case 3. In contrast, Case 5 coordinates the demand response
of regular power load, effectively shifting the regular power demand at 20:00, thereby avoiding
the creation of another load peak due to the time-shiftable traffic demand.

Figure 12 presents the electricity prices for regular power demand and load values
before and after demand response from 16:00 to 20:00 in Case 5. This indicates that Case
5, building on Case 4, further adjusts the consumption behavior of flexible regular power
demand by coordinating the flexibility of time-shiftable traffic demand. By implementing
real-time electricity prices for regular power demand, Case 5 effectively shifts the regular
power load during peak period to off-peak periods, achieving true temporal and spatial
coordination between the ETN and PDN.

Figure 13 presents the node marginal charging electricity price variations for different
charging road from 16:00 to 20:00 in Cases 3–5. It is evident that in Case 3, there is a
significant difference in node marginal charging electricity prices across different time
periods, with the charging price being notably high during the traffic demand peak at
18:00. In contrast, Cases 4 and 5 show a more gradual change in node marginal charging
electricity prices throughout the time periods. Particularly in Case 5, the node marginal
charging electricity prices are more stable across time periods, demonstrating the significant
advantages of considering both time-shiftable traffic demand and regular load demand, as
well as IDRs. This promotes the safe, economical, and coordinated operation of the PDN
and ETN during the evening peak hours.
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4.2. Test System 2

Test system 2 is a larger-scale CPTES composed of a 12-node ETN and a 20-node
PDN. The topological structure is depicted in Figure 14 [26]. The ETN features a typical
inner and outer ring structure and includes 11 OD pairs and 20 traffic nodes, with road
parameters set as shown in Table 6. Similar to test system 1, the PDN is coupled with the
ETN through DWC roads, which comprises 20 buses and 20 distribution lines. Additionally,
the PDN has four local generators with identical parameters at nodes E7, E10, E11, and E14,
each with a capacity of 1.8 p.u., and cost coefficients specified as ag = 200 USD/p.u. and
bg = 1300 USD/p.u. The impedance parameters for the distribution lines are provided
in [26]. During the evening peak period (16:00–20:00), the initial load curves for traffic
demand and regular power demand are shown in Figure 15, with peak values of 90 p.u.
and 2.08 p.u., respectively. The MTA-TSTD, MOPF-TSPD, and other parameter settings are
the same as those in test system 1 and are not repeated here.
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Table 6. Parameters of the ETN infrastructure in test system 2.

Road
Flow Capacity

of Road Ca
(p.u.)

Road Distance
da (km)

Free Flow
Travel Time χ0

a
(min)

Road
Flow Capacity

of Road Ca
(p.u.)

Road Distance
da (km)

Free Flow
Travel Time χ0

a
(min)

T1–T3 10.80 6.0 8.00 T5–T9 8.28 12.5 16.67
T1–T2 12.00 10 13.33 T6–T10 12.00 10.5 14.00
T2–T6 10.20 6.5 8.67 T7–T8 5.34 5.8 7.73
T1–T4 5.88 5.0 6.67 T8–T9 7.92 11 14.67
T2–T5 4.74 5.5 7.33 T9–T10 5.49 5.9 7.87
T3–T4 5.10 6.0 8.00 T7–T11 10.50 6.3 8.40
T4–T5 8.10 12 16.00 T8–T11 5.86 5.7 7.60
T5–T6 4.92 6.5 8.67 T9–T12 5.38 5.8 7.73
T3–T7 11.40 10.2 13.60 T12–T10 10.92 6.1 8.13
T4–T8 8.40 11.5 15.33 T11–T12 12.00 9.8 13.07

Energies 2024, 17, x FOR PEER REVIEW 30 of 36 
 

 

 
Figure 15. Initial of traffic demand and regular power demand from 16:00 to 20:00 in test system 2. 

4.2.1. Effectiveness of the Proposed Distributed Coordinated Operation Model Consider-
ing IDRs in Congestion Alleviation and Cost Reduction 

To further discuss and evaluate the effectiveness of the proposed distributed coordi-
nated operation model considering IDRs in larger system, this subsection provides a de-
tailed analysis using Cases 1, 3, and 5 as examples. 

Figures 16 and 17 present the traffic flow distribution in ETN and the bus voltage 
levels in PDN during the afternoon commuting hours for Cases 1 and 5. In Case 1, it can 
be observed that the majority of traffic flows occurs at 18:00, during which the ETN expe-
riences high traffic density, and the traffic flow on various roads is significantly higher 
than at other times. Simultaneously, influenced by the peak traffic demand, the peak 
charging load for EVs also occurs at 18:00, leading to a voltage violation at the end buses 
E3 and E16 in the ETN, as they fail to maintain voltage safety constraints. In contrast, Case 
5 considers both the time-shifted traffic demand and regular power demand, and utilizes 
IDRs to regulate the departure times of traffic users and the consumption behavior of reg-
ular power users. This results in a more balanced traffic flow distribution from 16:00 to 
20:00, preventing voltage violations and improving the overall operational performance 
of both networks. 

Road

N
um

be
r o

f v
eh

ic
le

s (
p.

u.
)

1-2 1-3 1-4 2-5 2-6 3-4 3-7 4-5 4-8 5-6 5-9 6-10 7-8 7-118-9 8-119-109-1211-1212-10
0

10

20

30

0

10

20

30

16h 17h 18h 19h 20hCase 1

Case 5

1-2 1-3 1-4 2-5 2-6 3-4 3-7 4-5 4-8 5-6 5-9 6-10 7-8 7-118-9 8-119-109-1211-1212-10
 

Figure 16. Traffic flow distribution of ETN from 16:00 to 20:00 in Case 1 and Case 5 in test system 
2. 

Tr
af

fic
 d

em
an

d 
(p

.u
.)

Re
gu

la
r p

ow
er

 d
em

an
d 

(p
.u

.)

Figure 15. Initial of traffic demand and regular power demand from 16:00 to 20:00 in test system 2.



Energies 2024, 17, 5234 29 of 34

4.2.1. Effectiveness of the Proposed Distributed Coordinated Operation Model Considering
IDRs in Congestion Alleviation and Cost Reduction

To further discuss and evaluate the effectiveness of the proposed distributed coor-
dinated operation model considering IDRs in larger system, this subsection provides a
detailed analysis using Cases 1, 3, and 5 as examples.

Figures 16 and 17 present the traffic flow distribution in ETN and the bus voltage
levels in PDN during the afternoon commuting hours for Cases 1 and 5. In Case 1, it
can be observed that the majority of traffic flows occurs at 18:00, during which the ETN
experiences high traffic density, and the traffic flow on various roads is significantly higher
than at other times. Simultaneously, influenced by the peak traffic demand, the peak
charging load for EVs also occurs at 18:00, leading to a voltage violation at the end buses
E3 and E16 in the ETN, as they fail to maintain voltage safety constraints. In contrast,
Case 5 considers both the time-shifted traffic demand and regular power demand, and
utilizes IDRs to regulate the departure times of traffic users and the consumption behavior
of regular power users. This results in a more balanced traffic flow distribution from 16:00
to 20:00, preventing voltage violations and improving the overall operational performance
of both networks.
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Figure 16. Traffic flow distribution of ETN from 16:00 to 20:00 in Case 1 and Case 5 in test system 2.
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Additionally, Table 7 presents the various costs of the objective function for Cases 3
and 5. It can be observed that the penalty cost for voltage violations in Case 3 is also zero,
indicating that Case 3 effectively alleviates the voltage violation issues encountered in Case
1. However, compared to Case 5, Case 3 has higher total delay costs, charging costs, and
total operational costs for PDN. This is because Case 3 does not consider the time-shifted
traffic and regular power demand, it only achieves coordinated operation of the PDN
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and ETN by adjusting the spatial distribution of traffic flow and charging loads via node
marginal pricing. In contrast, Case 5 fully leverages the flexibility of both time-shiftable
traffic and regular power demand, optimizing traffic and power load curves in both spatial
and temporal dimensions, thus significantly reducing total delay costs for traffic users and
overall PDN operating costs.

Table 7. Costs of objective function in Cases 3 and 5 in test system 2.

Cases

Total Operational Costs for ETN Total Operational Costs for PDN

Total Delay Cost FDT
(USD)

Total Charging Cost
FCH (USD)

Cost of Purchasing Elec-tricity
and Generation Cost Fsub+FG

(USD)

Penalty Cost for Load Peak-Valley
Differences Fpeak-Valley (USD)

Penalty Cost for Voltage
Violations (USD)

3 184,625.14 13,822.27 24,161.26 3035.19 0.00
5 175,278.99 13,746.46 23,787.11 1536.45 0.00

Therefore, the above results demonstrate that the proposed distributed coordinated
operation model considering IDR is also effective in larger system.

4.2.2. Performance Analysis of the Algorithms 1 and 2

In this subsection, we examine a heavily loaded scenario (18:00 in Case 5) to assess the
effectiveness of Algorithm 1, while concurrently recording the convergence of Algorithm 2
in Case 5. Additionally, we analyze the computational complexities associated with solving
the MTA-TSTD and distributed coordinated operation models.

Tables 8 and 9 provide the effective travel path sets for EVs and GVs in a heavy loaded
scenario (18:00 in Case 5), respectively. From Tables 8 and 9, we can observe that the
proposed effective path generation model, along with solution Algorithm 1, effectively
eliminates redundant routes not chosen by travelers, optimizing the effective path sets for
both EVs and GVs. Moreover, travel time, travel cost, and traffic flow on these effective
paths for GVs and EVs were successfully computed. It is worth noting that in cases where
multiple effective paths exist between an OD pair (e.g.,T1–T11, T1–T12, T3–T10, T4–T9,
T4–T10, and T4–T12 for GVs; T1–T12 for EVs), the travel costs on each path are equal,
which is consistent with mixed UE state (constraints (23) and (24)). These findings strongly
support the validity of the proposed ETN model and Algorithm 1.

Table 8. Effective path, travel time, travel cost, and path traffic flow for EVS (18:00 in Case 5).

Form
Node To Node Effective Path Travel Time

(min)
Travel Cost

(USD)
Traffic Flow

(veh)

T1 T6 T1–T2–T6 46.45 8.41 298
T1 T10 T1–T2–T6–T10 58.94 10.90 508
T1 T11 T1–T4–T8–T11 46.22 8.55 277

T1 T12
T1–T4–T8–T11–T12 58.33 10.96 129
T1–T2–T5–T9–T12 58.07 10.96 56

T3 T6 T3–T4–T5–T6 49.56 9.20 304
T3 T10 T3–T7–T8–T9–T10 58.49 11.05 370
T3 T11 T3–T7–T11 40.22 7.39 222
T3 T12 T3–T7–T11–T12 52.33 9.80 148
T4 T9 T4–T8–T9 42.10 7.86 92
T4 T10 T4–T8–T9–T10 52.49 9.83 185
T4 T12 T4–T8–T9–T12 51.82 9.68 277



Energies 2024, 17, 5234 31 of 34

Table 9. Effective path, travel time, travel cost, and path traffic flow for GVS (18:00 in Case 5).

Form
Node To Node Effective Path Travel Time

(min)
Travel Cost

(USD)
Traffic Flow

(veh)

T1 T6 T1–T2–T6 46.45 7.74 416
T1 T10 T1–T2–T6–T10 58.94 9.82 693

T1 T11
T1–T4–T8–T11 46.22 7.70 275
T1–T3–T7–T11 46.22 7.70 179

T1 T12
T1–T2–T5–T9–T12 58.07 9.68 258
T1–T4–T5–T9–T12 58.07 9.68 19

T3 T6 T3–T4–T5–T6 49.56 8.26 416

T3 T10
T3–T7–T11–T12–T10 58.49 9.75 543

T3–T7–T8–T9–T10 58.49 9.75 50
T3 T11 T3–T7–T11 40.22 6.70 340
T3 T12 T3–T7–T11–T12 52.33 8.72 247

T4 T9
T4–T8–T9 42.10 7.02 22
T4–T5–T9 42.10 7.02 126

T4 T10
T4–T8–T9–T10 52.49 8.75 41
T4–T5–T6–T10 52.49 8.75 71
T4–T5–T9–T10 52.49 8.75 178

T4 T12
T4–T5–T9–T12 51.56 8.59 262
T4–T8–T9–T12 51.56 8.59 175

Now investigate the convergence of Algorithm 2. The presented MOPF-TSPD (PT
Lc,s,t−

update subproblem (1) and MOPF-TSPD (PE
Lc,s,t − update subproblem (2) problems are

strictly convex nonlinear programming problem and second-order cone programming
problem respectively, which can be efficiently solved by optimization software solvers
IPOPT and Mosek, respectively. Meanwhile, due to the two problems being convex,
Algorithm 2 will be able to converge to an optimal solution.

Figure 18 shows the convergence curves for the primal and dual residuals in Algorithm 2.
After 15 iterations, both residuals approach zero, meeting the convergence criteria. This
demonstrates that the distributed coordinated operation model for CPTES satisfies all con-
straints imposed by the ETN and PDN, and converges efficiently to an optimal solution.
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Next, we analyze the computational complexity involved in solving the MTA-TSTD
and distributed coordinated operation models. The computational complexity arises from
three aspects: (1) Nonstandard constraints: The original MTA-TSTD includes nonstandard
constraints (23) and (24), making it difficult to solve. (2) Time-shiftable traffic demands:
The introduction of time-shiftable traffic demands increases model variables, adding com-
plexity to the MTA-TSTD. 3) Effective path generation considering EV battery SOC: The
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proposed model considers the EV battery SOC constraints and requires the optimization of
charging energy, presenting additional challenges for path generation. These factors hinder
traditional solution methods, preventing them from effectively resolving the problem. To
address these challenges, we transform the MTA-TSTD into a strictly convex optimization
problem with linear constraints. This transformation enables the use of efficient nonlinear
solvers, such as IPOPT, which significantly enhances the model’s solvability. Additionally,
the effective path generation models are structured as mixed-integer quadratic program-
ming problem. By employing solvers like CPLEX or Mosek, it can efficiently generate
effective path sets while eliminating redundant paths, which further reduces computational
burden. Furthermore, the distributed coordinated operation model uses decomposition
techniques to break the problem into smaller, manageable subproblems, allowing for more
efficient computations. Given the above approaches, Case 5 (the proposed models) can be
effectively solved in about 30 min.

Figure 19 presents the computation time for each iteration of Algorithm 2 in Case 5. It
can be observed that the solution time for the ETN model is significantly greater than that
for the PDN in each iteration. Specifically, the average solution time for the ETN is 135 s,
while the average solution time for the PDN is 0.84 s. This further demonstrates that the
proposed ETN model exhibits greater computational complexity.
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5. Conclusions

In this paper, we propose a collaborative optimization framework and corresponding
solution algorithms for CPTES considering IDR and EVs battery SOC. The main conclusions
drawn from simulation results are as follows:

1. The MTA-TSTD effectively simulates departure times and path choices of travelers
while capturing traffic flow distribution in ETN. Simultaneously, the effective path
generation models with battery SOC of EVs can optimize charging energy during
driving and construct the effective path sets for MTA-TSTD to reduce computational
complexity.

2. The proposed distributed coordinated operation model considering IDR effectively
coordinates and leverages the flexibility of time-shiftable traffic demand and regular
power demand. This coordination helps reduce congestion levels and lowers total
operational costs in both the ETN and PDN.

3. The developed adaptive effective path generation algorithm and ETN–PDN inter-
action algorithm for solving the MTA-TSTD and distributed coordinated operation
model is efficient and provides reasonable solutions. The ETN–PDN interaction algo-
rithm promotes the implementation of IDR into coordinated operation of the CPTES
while ensuring data privacy between the PDN and ETN.



Energies 2024, 17, 5234 33 of 34

The effectiveness of the proposed modeling framework and corresponding solution
algorithms has been demonstrated through case studies and comparisons; however, our
study primarily focuses on a deterministic model and does not consider certain uncertain-
ties, such as the random route choice of travelers due to different individual perception
on travel time and charging price, and random power output of renewable distributed
generators (DGs) in PDN. These factors are limitations of our current approach.

As an immediate next step, we plan to incorporate these uncertainties into the CPTES.
A stochastic user equilibrium assignment model based on logit function will be adopted
to describe EV routing behavior and traffic flow distribution. Additionally, we will utilize
information gap decision theory (IGDT) to address the random power output of renewable
DGs. Those approaches will ultimately enhance the resilience of the proposed collaborative
optimization framework, thereby improving its applicability in real-world scenarios.
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