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Abstract: In order to improve the reliability of the deployment of production schemes after artificial
fracturing in tight reservoirs, it is urgent to carry out research on the description of fractures after
artificial fracturing. In this study, taking the Chang 61 oil formation group in the Wangyao South area
of Ordos Basin as an example, three different fracture modeling schemes are used to establish the
geological model of fractured reservoirs, and the fitting ratios of the respective reservoir models are
calculated by using the method of reservoir numerical simulation of the initial fitting, and the optimal
fractured reservoir modeling scheme is screened in the end. The research area adopts three types of
fracture prediction results based on FMI fracture interpretation data, seismic fracture prediction data,
and rock mechanics artificial fracturing simulation data. On this basis, geological models of fractured
reservoirs are established, respectively. The initial fitting of reservoir values of each geological model
are compared, and the highest initial fitting rate of reservoir values is 88.44%, which is based on rock
mechanics artificial fracturing simulation data. However, the initial fitting rate of the reservoir model
was the lowest at 75.76%, which was established based on the fracture random modeling results
of FMl fracture interpretation data. Under the constraints of seismic geostress prediction results
and microseismic monitoring data, the simulation results of rock mechanics artificial fracturing
fracture are used as the basis, on which the geological model of artificially fractured reservoirs is
thus established, and this scheme can more realistically characterize the characteristics of fractured
reservoirs after artificial fracturing in the study area.

Keywords: tight reservoir; artificial fracturing; fracture prediction; reservoir modeling

1. Introduction

In low permeability reservoirs, artificial fracturing technology should be used to
improve the physical properties of the reservoirs, so as to realize the effective development
of tight oil and gas reservoirs. The distribution characteristics of artificially induced
fractures will directly impact the dynamic production behavior of the oil field. The fine
portrayal and establishment of artificial fracture characteristics after fracturing can reflect
the fine geological model of fractured reservoirs with seepage characteristics of reservoirs
after artificial fracturing. Therefore, it is an urgent practical problem to improve the
development efficiency of tight reservoirs after fracturing [1,2].

Dershowitz, B. [3] and others argued that in real reservoirs, fracture network models
are more consistent with fracture non-homogeneity and connectivity. Sarda, S., Jeannin,
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L. [4] et al. defined fracture nodes according to fracture intersections and ends. Jian,
W. [5] et al. used imaging logging and dynamic monitoring data, etc., to quantitatively
characterize the geometric parameters of the fractures. Fracture network model charac-
terization theory and technology are important technical support for artificial fracture
characterization [6,7]. However, there is a big difference between geological modelling of
artificially fractured reservoirs and naturally fractured reservoirs coarse, which is reflected
in the data, information, and its technical methods. The reservoir geological modeling
methods adopted in different study areas are different, and the optimal reservoir geological
modeling scheme should be selected according to the target reservoir, structural conditions,
the richness of original data, and the particularity of the data [8,9].

Chang 61 oil reservoir in the Wangyao South area of Ordos Basin, which contains
low porosity and low permeability reservoirs, is a reservoir with strong heterogeneity and
undeveloped natural fractures. Based on the characteristics of the fracture information data
source after artificial fracturing, the corresponding fracture modelling methods are selected,
and finally different artificial fracture modelling schemes are obtained. By comparing
the initial fitting rates of geological models for different fractured reservoirs, the optimal
modeling scheme for artificial fractured reservoirs in the study area is selected

2. Materials and Methods

Fracture properties of fractured reservoirs can be described through two parts: reser-
voir matrix and fracture. Petrel combines both the discrete fracture network (DFN) model
and implicit fracture model (IFM) into standard fracture modeling with a hybrid model.
In the discrete fracture network (DFN) model, large/significant fractures are explicitly
modeled as discrete slices. In the implicit fracture model (IFM), grid properties represent
the subtle part of the distribution of fracture properties (smaller fractures), i.e., reservoir
matrix properties [10].

In this study, the implicit fracture model (IFM) was used to characterize the tight
reservoir matrix property model, and the discrete fracture network model (DFN) was
used to characterize the artificially fractured fracture model. Ultimately, it is synthesized
in the form of attribute models such as permeability and porosity, which can reflect the
information of both in an integrated geological model of fractured reservoirs.

2.1. Establish a Reservoir Matrix Attribute Model

The target layer structure in the research area is gentle, and natural faults and fractures
are not developed. The burial depth of the target layer is between 1000 m and 1100 m. The
Chang 61 Formation belongs to the sedimentary environment of the delta front. In the
target layer of the study area, most of the reservoirs belong to the microfacies of underwater
distributary channels. The thickness of the formation is 35–45 m, the average effective thick-
ness is 13.3 m, the average porosity of the reservoir is 13.9%, and the average permeability
is 2.29 mD, which belongs to a low porosity and low permeability reservoir [11].

Firstly, the reservoir matrix model was established. The study area is 50 km2; 347 wells’
geological stratification data and 3D seismic interpretation data are used, so the structural
model can be constructed. On the basis of the tectonic model, the lithological interpretation
data of 321 wells and the seismic inversion lithological data body are used, so the lithological
model can be constructed. Under the constraint of the lithology model, 309 wells’ porosity,
permeability, and oil saturation logging interpretation data are used, so the reservoir
attribute model can be constructed, and finally the reservoir matrix model is completed.

2.2. Establishing a Geological Model of Artificially Fractured Reservoirs

There are two main methods for geological modeling of fractured oil reservoirs:
deterministic modelling and stochastic modelling. The Kriging method is a deterministic
interpolation method, which can give the “best” local smooth estimation. For deterministic
modeling methods, the input data can be a data volume with continuous prediction results
in space [12].
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Stochastic modeling is based on known geological information, guided by random
functions, constrained by geological conditions, and using random simulation to generate
selectable reservoir models with equal probabilities. One of the main methods is the
Gaussian simulation algorithm, which requires the statistical data of the actual fracture
geological information as conditional data [13,14].

Based on the unified matrix model, three different fracture geological modelling
schemes are adopted, and finally a comprehensive geological model of three types of
fractured reservoirs is established.

2.2.1. Random Interpolative Modelling Scheme Based on FMI Fracture Interpretation Data

In the target layer of the research area, based on the artificial fracture density interpre-
tation curves of imaging logging in four wells, and the statistical results of imaging logging
and microseismic monitoring data, a random fracture model was established by a Petrel
Gaussian simulation algorithm, and finally the Scheme I fracture model was completed.

After artificial fracturing in the research area, only four wells have imaging logging
data. The statistics of imaging log interpretation results show that the minimum fracture
strike is 20.1◦, the maximum is 114.3◦, most of them are distributed between 50◦ and 77◦,
and the average value of an artificial fracture strike is 65.2◦. The minimum artificial fracture
inclination angle was 66.8◦ and the maximum was 87.1◦, with most of them distributed
between 77◦ and 87.1◦, and the average value of the artificial fracture inclination angles
was 83◦ (Table 1). And, controlled by the construction parameters of the artificial fracturing,
the artificial fractures interpreted by imaging logs are developed in sandstones (Figure 1).
Because the average distance between the four wells is only 144.5 m, the distance between
wells is relatively small (Table 1), and the four wells have a single type of sedimentary
phase at the location of fracture development. Constrained by the scarcity of fracture data
after artificial fracturing, it is difficult for us to obtain statistical relationships between
artificial fractures and lithology and sedimentary phases, and therefore phase-controlled
fracture attribute modelling cannot be achieved. However, imaging logging fracture density
interpretation curves can be used as a necessary base data for fracture modelling (Figure 2).

In the study area, analyzing the statistical results of microseismic fracture monitoring
(Figure 3), the fracture strike is north-east oriented, the distribution of fracture strikes
is between 63.2◦ and 75.1◦, the average value of artificial fracture strikes is 68.7◦, the
distribution of fracture inclination angles ranges from 76◦ to 89◦, and the average value of
the artificial fracture inclination angles is 85.3◦ (Table 2).

Table 1. Imaging logging fracture interpretation data.

Well Name
Well

Spacing
Row

Spacing Formation
Depth Dip Strike

(m) (m) (m) (◦) (◦)

WJ1 192 93 Chang 61
1−2 1118.7 66.8 72.1

WJ2 109 35

Chang 61
1−2 1033.0 86.9 85.3

Chang 61
1−2 1038.7 79.9 114.3

Chang 61
1−3 1055.3 84.7 70.7

Chang 61
1−3 1057.8 77.2 68.8

WJ3 65 54

Chang 61
1−2 1039.9 86.4 77.0

Chang 61
1−2 1040.6 85.9 39.5

Chang 61
1−2 1041.0 82.3 56.7

Chang 61
1−2 1050.2 86.3 56.9

Chang 61
1−2 1051.7 86.3 50.0

Chang 61
1−3 1064.1 87.1 20.1

WJ4 212 63 Chang 61
1−3 1054.1 86.0 71.0

Average 83.0 65.2
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Table 2. Statistical table of microseismic monitoring data of the target layer in the study area.

Well Name
West Wing

Seam Length
(m)

East Wing
Seam Length

(m)

Fracture
Height (m)

Fracture
Azimuth (◦) Strike (◦)

WJA1 83.1 85.2 6.3 76 68.0
WJA2 90.1 74.0 6.6 88 75.1
WJA3 98.3 72.2 7.0 89 68.4
WJA4 74.8 92.6 5.8 88 63.2

Average 86.6 81 6.4 85.3 68.7

Microseismic fracture monitoring and imaging logging artificial fracture interpretation
are in good agreement, as reflected in their statistical results. Therefore, they can be used as
important condition parameters for random modelling of artificial fractures.

2.2.2. Deterministic Modelling Scheme Based on Seismic Fracture Prediction Data

Firstly, based on the 3D seismic data acquired after artificial fracturing in the study
area, the pre-stack seismic fracture prediction technique was used to obtain the artificially
fractured fracture intensity and azimuth data body. Then, based on the fracture intensity
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curves of the four wells, and using the fracture intensity predicted by seismic inversion
as the trend constraint, the Petrel deterministic fracture modelling technique was used to
establish the Scheme II fracture model.

Seismic attributes such as coherent, curvature, and ant bodies are commonly used in
the prediction of faults and fractures. This time, the pre-stack seismic fracture prediction
technique is chosen, which has more reliable prediction results and higher prediction
accuracy. Moreover, it is based on the wide-azimuth (OVT) seismic data, and then, based
on the anisotropy characteristics of seismic reflection energy, the fracture intensity is finally
predicted. When seismic waves propagate parallel to the direction of the fracture, the
amplitude of seismic wave reflection is the strongest; when seismic waves are directed
perpendicular to the direction of the fracture, the amplitude of seismic wave reflection
is the weakest. Elliptic fitting of seismic reflection amplitude with azimuth is used to
pre-stack seismic data. The long axis of the amplitude ellipse fitting represents the main
direction of fracture development. The larger the oblateness of the ellipse, the greater the
fracture development intensity. On the contrary, the smaller the oblateness of the ellipse,
the smaller the fracture development strength [14]. Therefore, using pre-stack 3D seismic
data with record offset, incident angle, and corresponding reflection intensity information,
the direction and intensity of cracks can be predicted.

The planar pattern of the prediction results of pre-stack seismic fracture intensity is
shown in Figure 4, where the anisotropy of warm shades (red and yellow) is large, which
indicates a high intensity of fracture development; and the opposite is true for cool shades
(blue and green). Fracturing construction wells are located in warm-toned areas, indicating
greater intensity of fracture development. Their distribution controls the distribution of
fractures after this artificial fracturing. The pre-stack seismic fracture prediction law is
consistent with the actual situation.

In this study, based on the pre-stack 3D seismic data acquired after the construction of
the artificial fracturing, the GeoEast five-dimensional seismic interpretation technology is
used to obtain information, such as the direction of the artificial fracture and the fracture
intensity (Figure 4). Combined with the imaging logging fracture intensity interpretation
curve, it can provide reliable fracture modelling data for Scheme II.
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2.2.3. Deterministic Modelling Scheme Based on Rock Mechanics Artificial Fracturing
Simulation Data

Firstly, based on the rock mechanics parameter model obtained from pre-stack seismic
inversion, combined with the actual construction parameters of artificial fracturing, Petrel
artificial fracturing simulation technology is used to simulate artificial fractures based on
rock mechanics. Then, based on the fracture intensity curves of the four wells, the artificial
fracture simulation results based on rock mechanics were used as the trend constraints,
together with the Petrel deterministic fracture modelling technique, and finally, the Scheme
II fracture model was established.

Three-dimensional data of rock mechanics parameters and in situ stress parameters
with high lateral resolution can be obtained from seismic data, mainly including elastic
modulus, Poisson’s ratio, brittleness index, horizontal stress difference and other seismic
prediction data, which can provide the necessary in situ stress model and rock mechanics
parameter model for hydraulic fracturing simulation (Figure 5).

The establishment of the rock mechanics model in the study area, and the well fractur-
ing model are set, and the fracturing simulation parameters such as proppant type and size,
fracturing fluid type, and pumping program are set according to the actual construction
parameters. The construction fitting is carried out according to the actual pumping program
of the well, and the fracturing fracture propagation model is simulated. The simulation of
the artificial fracturing fracture extension model guided by actual construction parameters
can be used as the prediction results of artificial fracture fracturing and fracture creation.
The simulation takes into account reservoir heterogeneity and stress anisotropy, and the
simulation results can depict a real complex fracture network [15].
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2.3. Optimal Fracture Modelling Scheme

Three artificial fracturing fractured reservoir geological models, which were estab-
lished by three different schemes, were used for numerical simulation in combination with
actual development history data. By comparing and analyzing the initial fitting rates, the
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fracked reservoir modelling scheme applicable to the study area is preferred [16,17], and
the method flow chart is shown in Figure 6.
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3. Results
3.1. Reservoir Matrix Attribute Model

Structural models based on geological stratification as the controlling condition, and
seismic data as the basis can better reflect the actual tectonic situation. Using discretized
data from lithological curves, a lithological model is established based on analysis of
the variation function. Using porosity, permeability, and oil saturation curve data, and
employing phase-controlled attribute modeling techniques, we establish a reservoir matrix
attribute model (Figure 7). Eight verification wells were selected, and these eight wells were
not involved in the establishment of the attribute model. At the location of the destination
layer, the values of porosity and permeability of the attribute model of these eight wells
were read, and the relative error between this value and the reservoir matrix attribute
model was calculated (Table 3). The statistical results show that the average relative error of
porosity is 4.33%, and the average relative error of permeability is 9.76%, which is relatively
small, indicating that the reservoir matrix property model is highly reliable.

Table 3. The error statistics of the wells used for validation.

Serial
Number

Well Name
of Validation

Porosity of
Well Data

(%)

Permeability
of Well Data

(md)

Porosity of
Reservoir

Matrix
Model (%)

Permeability
of Reservoir

Matrix
Model (md)

Relative
Error of

Porosity (%)

Relative
Error of

Permeability
(%)

1 W1 12.49 2.35 12.22 2.28 2.16 2.93
2 W2 13.66 1.31 12.86 1.42 5.86 −8.22
3 W3 13.68 0.65 13.03 0.77 4.75 −19.17
4 W4 13.43 1.01 13.63 1.11 −1.49 −9.40
5 W5 15.07 2.89 14.58 2.75 3.25 4.81
6 W6 13.54 0.48 12.73 0.54 5.98 −12.19
7 W7 14.38 2.19 13.32 1.91 7.37 13.08
8 W8 16.06 3.54 15.46 3.24 3.74 8.29

average 14.04 1.80 13.48 1.75 4.33 9.76
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3.2. Geological Model of Artificial Fractures
3.2.1. Random Interpolation Fracture Model Based on FMl Fracture Interpretation Data

The fracture density curve, combined with the spatially averaged statistical charac-
teristics of the fracture, is determined by imaging logging and microseismic statistics. On
this basis, using random modelling method, the DFN fracture prediction model of Scheme
I can be obtained (Figure 8). By analyzing the fracture prediction plane characteristics,
the direction of fractures in the study area is dominated by north-east direction, with the
average length of fractures being 168 m and the height of cracks being 6.5 m, which is in
line with the statistical characteristics of fractures in the study area.
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3.2.2. Deterministic Fracture Modelling Based on Seismic Fracture Prediction Data

From the fracture data predicted by the pre-stack seismic inversion, a DFN fracture
prediction model can be built for Scheme II (Figure 9). By the fracture prediction plane
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characteristics, the fracture direction is mainly in the north-east direction; the average
length of the fracture is 170 m, and the average height of the fracture is 7 m, which is
in line with the statistical characteristics of the fractures in the study area, and the plane
distribution law is locally different from Scheme I. Fracture intensity is higher in areas
where fracturing construction wells are distributed; however, in the northern part of the
study area, where fracturing construction wells are sparsely distributed, it has less fracture
intensity. Fracture distribution after artificial fracturing is controlled by the distribution
of fracturing construction wells, and the fracture prediction law is consistent with the
actual situation.
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3.2.3. Deterministic Fracture Model Based on Rock Mechanics Artificial Fracturing
Simulation Prediction Results

The artificial fracture prediction results obtained by Petrel’s artificial fracturing simu-
lation technology (Figure 10), combined with the imaging logging fracture density curves,
can provide fracture information for Scheme III, which establishes the artificial fracturing
fracture reservoir physical properties model. The predicted fracture model has an average
fracture length of 172 m and an average fracture height of 6.2 m. The fracture simulation
results are consistent with the microseismic monitoring statistics. Fracture simulation
results in a regular planar distribution, which is significantly controlled by the location of
the fracking construction wells.
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3.3. Optimization of Artificial Fracture Reservoir Geological Modeling Scheme in Tight Reservoir

Three crack models were developed for the three scenarios and their planar patterns
were analyzed. The overall law of their description of artificial fractures is consistent with
geological understanding, that is, the fracture direction is mainly north to east, and the
fracture length and height are in line with statistical law, which is based on the fracture
monitoring data.

At the same time, the fracture models established by the three scenarios in the predic-
tion of the plane details have obvious differences: Scenario 1 statistical data control under
the stochastic modelling fracture prediction results (Figure 8) are less correlated with the
distribution location of the fracturing construction wells. Therefore, the distribution density
characteristics of fractures do not change much. In the second scenario, in the fracture model
established by the pre-stack seismic inversion fracture prediction results (Figure 9), there is a
sparse area of fracture development in the north of the working area, which is consistent with
the sparse area of fracturing construction wells. However, at the same time, the predicted frac-
ture density in the north-west corner of the site is locally inconsistent with the distribution of
the fractured wells. Scenario III is the artificial fracturing simulation fracture model (Figure 8),
which is based on the seismic prediction of the in situ stress and rock lithology parameter
model, and the artificial fracture simulation results obtained by adopting the actual fracturing
construction parameters, which are not only in line with the statistical law of the distribution
of fracture planes, but also can accurately reflect the distribution of artificial fracturing fracture
and the distribution of the fracturing construction wells.

Three fractured reservoir geological models were established by the three schemes, and
their initial fitting rates for reservoir numerical simulation were compared and analyzed
(Figure 10). The fractured reservoir geological model established by the third modelling
scheme, which was based on the fracture prediction results of the artificial fracturing simu-
lation based on rock mechanics, had the highest initial historical fitting rate of 88.44%. The
first scheme is based on microseismic monitoring parameters. It is also based on the fracture
prediction information established using stochastic methods, and thus the fractured reservoir
geological model established, which has an initial fit rate of 75.76% for the numerical simu-
lation of the reservoir. The second scheme is based on the fracture prediction results from
pre-stack seismic data, and the initial fitting rate of the numerical simulation is 77.51%.

The three schemes establish three fractured reservoir geological models, and analyze their
initial fitting rates for numerical simulation of the reservoir (Figure 11). The third modelling
scheme is established based on the artificial fracturing simulation fracture prediction data of
rock mechanics, and it has the highest initial historical fit rate of 88.44%. The first scheme,
which is based on imaging logging interpretation data, using a stochastic method, established
fracture prediction information. It establishes a geological model of fractured reservoir, whose
initial fitting rate of reservoir numerical simulation is 75.76%. The second scheme, which is
based on pre-stack seismic fracture prediction data, establishes a reservoir geological model
whose reservoir numerical simulation initial fitting rate is 77.51% (Table 4).

Table 4. Statistical table of initial fitting rate of fractured reservoir models with different schemes.

Modeling
Scheme Model Data Source Modeling

Method
Fit Rate

(%)

Scheme I
Fracture intensity curves
and microseismic fracture
monitoring information

Stochastic
modeling 75.76

Scheme II
Fracture intensity curves
and microseismic fracture
monitoring information

Earthquake fracture
prediction

Deterministic
modeling 77.51

Scheme III
Fracture intensity curves
and microseismic fracture
monitoring information

Earthquake elastic
parameters and ground

stress prediction

Rock mechanics
fracturing simulation

Deterministic
modeling 88.44
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4. Discussion

Currently, there are fewer studies dedicated to the prediction and characterization of
artificial fractures, and through the results of this comparison of three types of artificial crack
prediction and description schemes, the reasons for the variability of the three prediction
schemes are initially discussed.

The initial fitting rate of the reservoir in Scheme I is low, which may be because the
method of fracture prediction used in this scheme is not applicable [18]. The well data in
the study area are not uniformly distributed, with only four fracture intensity datasets,
and the four distribution locations are concentrated, which cannot achieve more reliable
constraints such as phase control in random simulation. The artificial fracture is mainly
controlled by the distribution of construction wells; random algorithm cannot effectively
reflect the special law of artificial fracture plane distribution.

The initial fitting rate of the reservoir in Scheme II is relatively low, and it may be due to
the insufficient resolution of seismic fracture prediction adopted in Scheme II [19]. Artificial
fracture size and density are relatively small, affected by the resolution of seismic data,
although the plane law of seismic fracture prediction results is accurate but its resolution is
relatively low.

The reason for the relatively high fitting rate of Scheme III is, firstly, that the crack
prediction method can reflect the specificity of the planar distribution of artificial cracks.
The fracture prediction is based on the artificial fracture simulation method, which uses
the actual engineering parameters, pre-stack seismic elasticity, and in situ stress inversion
prediction results as the trend control. Secondly, the prediction results of fracture length,
width, height, etc., of the artificial fracturing simulation are controlled by microseismic
fracture monitoring data, which can reflect the accuracy of the actual artificial fractures.
These may be some of the reasons why the program is suitable for the prediction of
artificial fractures.

The method of obtaining fracture information data after artificial fracturing is limited,
and due to the lack of actual data in this research area, there are still some imperfections in
this study, which are expected to be gradually improved by subsequent studies, specifically
the following points:

1. Any fracture prediction results can be used as constraint data for fracture modelling,
combined with fracture intensity curves to build a fracture model. In this study, only
three methods have been used for comparison, and when data are abundant, more
fracture modelling schemes can be established for comparative studies.
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2. In this study, the role of the interlayer in controlling the development of artificial
fractures was not considered. In the next study, it is necessary to include the thickness
information of the interlayer in the modelling of artificial fractures, and a more
accurate model of artificial cracks will be obtained.

3. The study is limited by the actual geological and objective conditions. The results and
conclusions of the study are only applicable to geological research areas that have
similar geological and objective conditions as the research area.

5. Conclusions

This study compares and analyzes the initial fitting rates of the fractured reservoir
models of different schemes. Option 3, a fractured reservoir geological model based on rock
mechanics fracturing simulation, which can characterize the fractured reservoir features in
post-low-permeability reservoirs, is preferred. The following understandings are obtained
during the research process:

(1) Based on different data sources and fracture prediction methods, there are various
modeling schemes for fracture reservoir geological models. Due to the differences in
the geological conditions of the target layer, the applicability of each modeling scheme
is also different.

(2) By comparing and analyzing the fitting rates of different schemes, the best geological
modelling scheme for fractured reservoirs in the destination layer of the study area
was preferred.

(3) Three fracture scenarios were analyzed, in which the deterministic fracture modelling
method was established based on the fracture intensity curves, using the predicted
results of the artificial fracturing simulation as constraints, and it is the most suitable
method for the description of the post-artificial fracturing fractures in the study area.
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