
Citation: Sun, Y.; Jian, H.; Xiong, P.;

Zhou, L. An Experimental Study of

Boiling Heat Transfer and Quench

Front Propagation Velocity During

Quenching of a Cylinder Rod in

Subcooled Water. Energies 2024, 17,

5236. https://doi.org/10.3390/

en17205236

Academic Editors: Rajib Mahamud,

John Boland, Ali Ashraf and

Roxana Bujack

Received: 9 September 2024

Revised: 8 October 2024

Accepted: 17 October 2024

Published: 21 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Experimental Study of Boiling Heat Transfer and Quench
Front Propagation Velocity During Quenching of a Cylinder Rod
in Subcooled Water
Yuanyang Sun 1, Huanyan Jian 2, Ping Xiong 1,* and Linglan Zhou 1

1 Key Laboratory of Fluid and Power Machinery, Xihua University, Pidu District, Chengdu 610039, China;
syy19102826702@sina.com (Y.S.); 0120240026@xhu.edu.cn (L.Z.)

2 School of Computer Science and Engineering, Southwest Minzu University, Shuangliu District,
Chengdu 610225, China; uestc_hyjian@sina.com

* Correspondence: xiongp0808@sina.com

Abstract: In this study, a quenching experiment was conducted at atmospheric pressure to investigate
the flow and heat-transfer characteristics of cylindrical rods made from SS, FeCrAl, and Zr-4 under
various subcooling degrees (∆Tsub). The inverse heat-conduction problem (IHCP) method and image-
processing technique were utilized to determine the surface temperature and heat flux, vapor film
thickness, and quench front propagation. The results show that smaller solid kρcp and larger ∆Tsub

result in relatively more efficient quenching boiling heat transfer, thinner vapor film thickness, and
greater quench front propagation velocity. The quench front originates at the bottom of the test
specimen and becomes progressively larger in velocity with time. It eventually converges with
the downward-propagating quench front in the upper middle of the test specimen. Moreover,
at the beginning of quench front propagation, the SS and FeCrAl test specimens have a constant
velocity region. However, because the Zr-4 test specimen has a small kρcp, the velocities gradually
increase from the onset of quench front generation. Furthermore, the measured average quench front
velocities are consistent with the experimental datum from the literature. However, the predicted
model proposed by Duffey underestimates the propagation velocity due to ignoring the cooling effect
of film boiling.

Keywords: quenching; subcooled water; heat transfer; quench front; propagation velocity

1. Introduction

Quenching is a rapid cooling technique employed across various industrial applica-
tions [1,2], including heat treatment during steel manufacturing [3–5] and post-accident
cooling of nuclear fuel following a loss of cooling accident (LOCA) [6,7]. During the initial
stage of pressurized water reactor reflooding, film boiling manifests on the surface of fuel
rods. As the surface temperature drops, the vapor film first breaks at the bottom of the
fuel rods and travels upward, forming the quench front [3,8,9]. Upstream of the quench
front, the fuel rods are enveloped by a vapor film with low thermal conductivity. Transition
and nuclear boiling only occur downstream of the quench front on the surface of fuel rods,
and the heat transfer efficiency is significantly improved [10]. Therefore, the quench front
propagation velocity is a key parameter used to characterize the cooling efficiency of reactor
reflooding during reflooding in a loss of cooling accident.

In recent decades, researchers have extensively investigated the boiling heat-transfer
phenomenon during quenching. Early in the 1970s, Piggott et al. [11] conducted a quench-
ing experiment on stainless steel and zirconium alloy tubes and found that the zirconium
alloy tube cooled faster than the stainless steel tube. Fan et al. [12], Ebrahim et al. [13],
Fu et al. [14], Dhir et al. [15], and Freud et al. [16] studied the quenching process of var-
ious metallic materials in deionized water at different subcooling degrees (∆Tsub) and
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constructed a relationship formula between the ∆Tsub and the minimum film boiling tem-
perature (Tmin). Li and Zhang et al. [17–19] used deposition and chemical-etching methods
to prepare the surfaces with different surface wickability to investigate their impact on the
quenching process. The experimental findings show that the etched specimens exhibited
an absence of a stable film-boiling phase compared to unmodified surfaces, while the
transitional boiling phase increased, and the critical heat flux (CHF) and Tmin increased
with a higher surface wickability capacity. Park and Lotfi et al. [20,21] studied the effects
of nanofluids on quenching boiling, finding that compared to pure water, the film boiling
heat flux and cooling rate of nanofluids are lower. Fan and Li et al. [12,22,23] studied
the impact of surface wettability on quenching boiling, finding that improving surface
wetness can enhance heat exchange efficiency during the quenching process. Particularly,
superhydrophilic surfaces, with a nearly zero static contact angle, can significantly increase
the quenching rate and the critical heat flux.

Numerous studies have been extensively investigated to reveal the influence of high-
temperature materials, coolant types, and the coolant subcooling degree on the quench
front propagation velocity. Ni et al. [24] studied the fluctuating velocity of the quench front
on the surface of a heated sphere under the forced convection condition. The propagation of
the quench front is influenced by the sphere temperature, liquid flow rate, and the coolant
subcooling. Gupta et al. [25] conducted single-jet impingement quenching experiments
using deionized water, Al2O3, and SiO2 nanofluids, respectively. Compared to deionized
water, the quench front propagation velocity of Al2O3 and SiO2 nanofluids increased by 44%
and 103%, respectively. Lee et al. [26] found that surface roughness had a negligible impact
on the propagation velocity in rewetting experiments. Ohtake et al. [27] investigated the
collapse of vapor film during film boiling on a highly superheated surface. The results show
that the propagation velocity decreases with the drop in the localized cold spot temperature.

Scholars have established the empirical relationship of the quench front velocity
based on experimental data and theoretical derivation. Murao et al. [28], Xu et al. [29],
Piggott et al. [11,30], Yamanouchi et al. [31], and Duffey et al. [32] established empirical
relations of the propagation velocity. By analyzing the heat conduction of the quenching
surface, Duffey et al. [32] derived a theoretical solution of the propagation velocity, assum-
ing that the heat transfer is zero in the film boiling region while considering it to be constant
in the nucleate boiling phase. Piggott et al. [30] considered the impact of pressure and the
coolant subcooling degree on the propagation velocity using reflooding experiments in
narrow channels and derived the corresponding formula. Murao et al. [28] obtained an
empirical relationship of the propagation velocity under flow experiment. The predictive
accuracy of the relationship was within ±20%, compared with the experimental values of
Piggott et al. [30]. Xu et al. [29,33,34] studied the thermal characteristics of plate-type fuel
elements in narrow rectangular channels and proposed an analytical model of quench front
based on energy balance, which showed good consistency with experimental values.

In this work, quenching experiments were performed with different materials (SS,
FeCrAl, and Zr-4) and the coolant subcooling degree. Utilizing the inverse heat-conduction
problem (IHCP) method, this research sheds more light on the heat-transfer characteristics
of quenching boiling. Furthermore, the image-processing technique, which involves pro-
cessing visual images to determine the vapor film thickness, is employed to explore the
boiling heat transfer modes and the vapor film fluctuation behavior during quenching. The
variation of quench front propagation with the subcooling degree and material of the test
specimen are analyzed based on the reconstructed full-scale transient 2-D vapor film image.

2. Experimental Apparatus and Test Specimen

Figure 1 illustrates the quenching experimental apparatus, which mainly consists of a
radiant furnace to heat the test specimen, a stepping motor to move the hot test specimen, a
quartz glass quenchant pool, and a data acquisition system to obtain visual and temperature
acquisition. Detailed parameters of these devices are described in our previous work [35].
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Figure 1. Experimental apparatus of quenching.

The test specimen, measuring 10 mm in diameter and 65 mm in length, is made
of 316L stainless steel (SS), accident tolerant fuel (ATF) cladding materials (FeCrAl), or
Zircaloy-4 (Zr-4) material. Table 1 displays the thermophysical properties of these materials.
A micro-hole with a length of 40 mm and a diameter of 0.65 mm is arranged 2 mm away
from the cylindrical surface for the installation of the thermocouple. The test specimens
are sanded with sandpaper to achieve an average surface roughness of 0.2 micrometers.
Prior to conducting the quenching experiment, the polished surfaces of the specimens
are cleansed in a water bath using an ultrasonicator to eliminate any dust particles. The
quenchant pool used in this study has dimensions of 250 mm × 200 mm × 200 mm, which
is larger than the dimensions of the test specimen (diameter of 10 mm, length of 65 mm).
During the boiling process, the test specimen is placed at the center of the quenchant pool,
fully meeting the experimental requirements for the size of the quenchant pool [36].

Table 1. Material properties values of test specimen [37–39].

Material Properties Values

SS
Density ρ = 7900 [kg/m3]
Specific heat capacity cp = 467.081 + 0.253T − 7.317 × 10−5T2 [J/(kg·◦C)]
Thermal conductivity k = 12.877 + 2.575 × 10−2T − 1.045 × 10−5T2 [W/(m·◦C)]

FeCrAl
Density ρ = 7250 [kg/m3]

Specific heat capacity cp(T) = 432.926 + 0.852T − 1.867 × 10−3T2

+2.982 × 10−6T3 [J/(kg·◦C)]

Thermal conductivity k(T) = 10.776 + 1.521 × 10−2T − 7.223 × 10−7T2 [W/(m·◦C)]

Zr-4
Density ρ = 6550 [kg/m3]
Specific heat capacity cp(T) = 283.631 + 0.1024T [J/(kg·◦C)]
Thermal conductivity k(T) = 13.289 − 4.363 × 10−3T + 8.982 × 10−6T2 [W/(m·◦C)]

Before the quenching experiments, 5 L of deionized water is heated to the target
temperature using a Joule heating rod. The test specimen is positioned at the central
location of the radiative heating furnace and heated to about 600 ◦C. When the temperatures
of the specimen and water reach the desired points and remain stable, the specimen is
plunged into the quenchant pool via the stepping motor, and the quenching is triggered.
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The visualized boiling behavior and temperature variations are recorded using a high-
speed camera and thermocouple, respectively. The acquisition frequency of the high-speed
camera is set as 250 fps with a resolution of 1024 pixels × 1024 pixels. The acquisition
frequency of the K-type thermocouple is set as 50 Hz. The quenching experiment ends
when the experimental test specimen temperature falls below 100 ◦C. To achieve the best
picture effect, it is essential to adjust both the intensity of incident light and exposure
duration from the high-speed camera and add the LED light source as a supplement.

3. Data Reduction

In order to capture the morphology evolution of the vapor film, high-speed videos
are used to measure the boiling behavior during the quenching process. In this study, an
advanced image processing technique is used to reconstruct a full-scale transient 2-D vapor
film image and obtain the quantitative parameters of quench front propagation. Figure 2
illustrates the calculation procedures of the reconstructed vapor film.
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(1) The original images to be processed are selected in sequence and imported into
MATLAB 2016a software, as shown in Figure 2a.

(2) The selected original RGB color images need to be converted to grayscale images,
and the cropping tool is used to crop to the region of interest, as illustrated in Figure 2b.
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(3) Grayscale images are transformed into binary images using a thresholding tool
with binary options. The value of the intensity threshold, depending on the brightness,
degree of focus, and contrast of the shooting process, is set as 125 in this experiment. The
final binary images are shown in Figure 2c. In this step, to more accurately detect the
vapor–liquid interface, the small holes in the binary image will be filled.

(4) Then, the Laplacian Gaussian filter is used to detect and identify the edge of the
processed binary image, as shown in Figure 2d—that is, the liquid–vapor interface of
quenching boiling.

(5) According to the pixel size of the test specimen in the image, the pixel ratio can be
obtained. The pixel ratio equals the diameter (10 mm) of the test specimen divided by the
number of pixels. The pixel size of the vapor film for each frame image is determined by
calculating the pixel difference between the detected edge of the vapor film and the test
specimen. Finally, using the pixel ratio in the image, the vapor film thickness is determined
by converting pixel distances to millimeter distances, as shown in Figure 2e. In the current
setup, the measurement resolution of the video data is 0.075 mm per pixel. Therefore, the
accuracy of the vapor film thickness obtained through the image-processing technique
is ±0.075 mm.

(6) Finally, the film thickness images identified in each frame are integrated for the
quenching duration to generate the morphology evolution images. Consequently, a re-
constructed 2-D topology vapor film that varies with time and the axial direction can be
achieved, as shown in Figure 2f.

4. Results and Discussion
4.1. Boiling Heat-Transfer Characteristics

To avoid the influence of surface-mounted thermocouples on the quenching phe-
nomenon, the thermocouples are positioned at a distance of 2 mm from the cylindrical
surface. Subsequently, the surface temperature and heat flux can be determined using
the IHCP method, as outlined in our previous work [40]. Figure 3 shows the quenching
temperature curves and quenching boiling curves of three materials under different ∆Tsub.

The quenching temperature curve shifts leftward, and the duration of the quenching
is reduced with the increase in ∆Tsub, as shown in Figure 3a. During the film-boiling phase,
as the ∆Tsub increases, the absolute value of the slope of the quenching temperature curve
gradually increases, indicating that as the temperature of subcooled water decreases, the
film-boiling process is enhanced. As the quenching process continues, the absolute values
of the slopes of the temperature curves for SS, FeCrAl, and Zr-4 further increase, entering
the transition boiling phase until reaching the position of maximum absolute slope value.
Afterward, the slope of the temperature curve gradually decreases as the quenching process
enters the nucleate boiling phase. Figure 3b shows the corresponding boiling curve. With
the increase in ∆Tsub, the boiling curve exhibits a noticeable shift toward the upper right
corner. As ∆Tsub increases, heat transfer is enhanced during the film-boiling phase. This
phenomenon primarily arises from the thinner vapor film thickness at higher ∆Tsub, and the
heat conduction resistance of the vapor film is reduced. Therefore, its heat transfer capacity
is somewhat enhanced. However, due to the inherently low thermal conductivity of the
vapor film, its overall heat transfer capacity remains relatively low. Figure 4 illustrates
the variation of the critical heat flux (CHF), temperature of the critical heat flux (TCHF),
and Tmin with ∆Tsub during quenching. It can be seen that CHF, TCHF, and Tmin almost
increase linearly with the increase in the coolant ∆Tsub. When ∆Tsub increases from 5 ◦C
to 25 ◦C, the CHF, TCHF, and Tmin of the three materials nearly increase by approximately
1.2, 0.6, and 1 times, respectively.

Regarding the heat transfer performance of different materials, the quenching duration
time of FeCrAl, SS, and Zr-4 materials decreases successively, as shown in Figure 3a. This
is because the material thermophysical properties kρcp of FeCrAl, SS, and Zr-4 materials
gradually decline. More energy will be released for FeCrAl material with larger kρcp at the
same temperature gradient. Consequently, the FeCrAl sample exhibits a longest quenching
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duration time. However, owing to the inherently low thermal conductivity resistance of the
vapor film, the surface heat flux of film-boiling stage is almost the same for all three materials.
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4.2. Visualization Results

Figures 5–7 depict the quenching boiling visualization for SS, FeCrAl, and Zr-4 spec-
imens at different ∆Tsub, respectively. During the film-boiling stage, under low ∆Tsub
conditions (∆Tsub = 5 ◦C), the vapor film is thicker, and the Kelvin–Helmholtz instability
wave fluctuations is larger. As the coolant ∆Tsub increases, the vapor produced on the
surface condenses rapidly, resulting in a reduction in vapor film thickness. Moreover,
higher ∆Tsub also leads to the shortening of the film’s boiling duration. This is because
a thinner vapor film accelerates the collapse of the vapor film. The surface vapor film
motion states of the three materials are identical during the film-boiling phase. However,
the duration of film boiling and the time for generating vapor bubbles for FeCrAl, SS,
and Zr-4 test specimens decrease sequentially. This is because the ρkcp value of the three
materials decreases progressively. The experience temperature of materials with a smaller
ρkcp value changes more rapidly, resulting in faster surface cooling rates. As time proceeds,
the vapor film of film boiling collapses, and rewetting starts at the bottom of the test spec-
imen, forming a quench front, which moves up along the wall of the test specimen with
an apparent velocity, as indicated by the red arrows in Figures 5–7. Under low ∆Tsub, the
vapor bubbles formed in the nucleate boiling zone are larger and propagate upwards under
the action of buoyancy, causing disturbances to the vapor film of the upper film-boiling
stage. However, due to the rapid condensation under the high subcooling, the disturbance
to the film boiling area on the upper location of quench front is reduced.

4.3. Quench Front Propagation

To investigate the morphology of the vapor film and analyze the propagation veloc-
ity of the quench front during quenching, the advanced image-processing technique is
employed to reconstruct the full-scale transient 2-D vapor film. Figures 8–10 show 3-D
contour plots of the vapor film thickness for SS, FeCrAl, and Zr-4 materials under various
coolant ∆Tsub, respectively. The red arrow line is used to highlight the path of the quench
front. The observation reveals that the quench front initially emerges from the bottom of
the specimen and subsequently expands upward. After propagating to a certain distance, a
downward-propagating quench front appears at the upper end of the specimen. Finally,
the upward-propagating quench front and downward-propagating quench front converge
in the middle-upper position. With the increase in coolant ∆Tsub, the merging position of
the upward-propagating and downward-propagating quench fronts moves closer to the
upper end of the specimen.
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ent ∆Tsub.

Figure 11 illustrates the temporal variation of the upward-propagating quench front
position in the test specimen of the three materials under different ∆Tsub. Under low ∆Tsub,
the quench front position varies approximately linearly with time. Conversely, under high
∆Tsub, the quench front position follows an upward parabolic trend over time, indicating a
gradual acceleration of the propagation velocity. In addition, by comparing the changes
of the quench front position under different ∆Tsub, the slope of the quench front curve
increases with the increase in ∆Tsub, suggesting that a higher ∆Tsub, corresponds to a more
rapid change in propagation velocity.

To quantitatively analyze the variation of the propagation velocity with the axial
location and quenching time for the three materials, the partial derivatives of the quench
front position with respect to time for each material in Figure 11 are calculated. The results
are shown in Figures 12–14. The propagation velocity accelerates with the increase in
∆Tsub. Under low coolant ∆Tsub, the quench front of the SS, FeCrAl, and Zr-4 test specimen
gradually propagated upwards from the bottom at velocities of 3.4 mm/s, 3.0 mm/s, and
4.4 mm/s. Finally, it converged with the upper quench front at velocities of 4.3 mm/s,
4.0 mm/s, and 6.8 mm/s, with a relatively gradual rate of increase. In comparison, under
high coolant ∆Tsub, the quench front propagation velocity significantly increases. This is
because under high ∆Tsub, the vapor film thickness in film boiling is thinner, causing the
precursor cooling effect (the cooling effect of the film boiling regime upstream of the quench
front position) to become more pronounced. In addition, the Tmin used to maintain stable
film boiling increases under high ∆Tsub, which is conducive to the upward propagation
of the quench front region. When the coolant ∆Tsub is 25 ◦C, for SS, FeCrAl, and Zr-4
test specimens, the quench front propagation velocity increases from the initial 4.4 mm/s,
3.7 mm/s, and 6.8 mm/s to the final 12.3 mm/s, 8.1 mm/s, and 22.5 mm/s, showing an
approximate 2–3 times increase.
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For the SS and FeCrAl test specimen, there is a constant velocity region for the propa-
gation velocity at the beginning of the propagation. This is primarily because the surface
temperature of the rod is relatively high, and the precursor cooling effect is weak, which in-
hibits the rapid growth of the propagation velocity. Only when the quench front propagates
upward to a certain position does the propagation velocity increase significantly. Addition-
ally, it can be observed that as ∆Tsub increases, the constant velocity region progressively
shortens. However, there is no constant velocity region in the Zr-4 test specimen, and the
quench front gradually increases from the beginning of its generation. This is because
compared with SS and FeCrAl materials, Zr-4 material has smaller kρcp, the total energy
contained in the cylinder is smaller, and the surface temperature is more easily reduced.

4.4. Analyzing Quench Front Propagation: Experimental Data vs. Duffey’s Model

The prediction of the propagation velocity holds significant importance in elucidating
the underlying principles governing flow behavior and heat transfer performance during
quenching. Duffey and Porthouse [32] analyzed surface heat transfer in a high-temperature
test specimen and obtained a theoretical solution for the quench front propagation velocity
based on two-dimensional analysis.
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u =
2h(Tmin − Tl)

πρwcp,w(Tini − Tl)

[
1 − 4

π2 Bi
(Tmin − Tl)

(Tini − Tl)

]−0.5

(1)

where Bi is the Biot number, which is equal to hR/kw. ρw and cp,w represent the density and
specific heat capacity of the test specimen. Tini and Tl represent the initial heated surface
temperature and the coolant temperature, respectively. h represents the heat transfer
coefficient in the wetted area. Piggott and Porthouse [11] conducted theoretical analysis
and proposed that the heat transfer coefficient of the boiling surface is related to the heated
surface temperature. They derived the heat transfer coefficient for the quench front phase
as follows.

h =

∫ Tmin
Tsat

q(T)dT∫ Tmin
Tsat

(T − Tsat)dT
(2)

As depicted in Figures 12–14, when the quench front propagates in the upper part
of the test specimen, its propagation velocity exhibits a significant increase. Hence, the
average velocity of lower part of test specimen below 20 mm is used to represent the
measured average propagation velocity. Figure 15 presents a comparison of the average
propagation velocity at different ∆Tsub for three materials using Duffey’s correlation and
the experimental data. Compared with SS and FeCrAl materials, the average propagation
velocity of Zr-4 material is higher. This is because Zr-4 material has smaller thermophysical
properties parameters (kρcp), which leads to a faster cooling rate on the downstream surface
of the quench front and accelerates the rewetting process. Li et al. [23], Kim et al. [41],
and Kang et al. [42] studied quenching heat transfer and the propagation velocity on the
surface of a vertical cylinders and obtained the average propagation velocity. As depicted
in Figure 15, the experimental values of the propagation velocity demonstrate a close
alignment with the literature data.
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tion and experimental value [23,41,42].

Compared with the experimental data, Duffey’s correlation underestimates the prop-
agation velocity. This discrepancy primarily arises because Duffey’s correlation ignores
the cooling effect of film boiling on the upstream of the quench front and simplifies it to
the adiabatic surface, resulting in the predicted propagation velocity being lower than the
experimental value. In addition, Tmin, the predicted propagation velocity, is affected by
various parameters, including thermophysical properties, surface morphology, ∆Tsub, and
so on [43–45]. For different experimental conditions, there may be some differences in the
measurement of Tmin, which leads to a difference in the predicted propagation velocity.
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5. Conclusions

This study involves an experimental analysis of boiling heat transfer and quench
front propagation velocity of SS, FeCrAl, and Zr-4 test specimens under different coolant
subcooling during quenching. To ascertain the surface temperature and heat flux of the test
specimen, the IHCP method was utilized. Using advanced image-processing technology, a
full-scale transient 2-D steam film reconstruction is performed, and the propagation of the
quench front is captured. Based on precedent in the Section 4, the principal findings are
as follows,

(1) The increase in the coolant subcooling degree notably improves the heat transfer
efficiency. When the coolant subcooling ∆Tsub increases from 5 ◦C to 25 ◦C, the Tmin and
critical heat flux increase significantly, corresponding to an increase of nearly 1 times and
1.2 times, respectively.

(2) Based on the visualization results, with increasing coolant subcooling, the vapor
film thickness becomes thinner, and the oscillations gradually weaken. The quench front
first originates at the bottom of the test specimen, propagates upward with increasing
velocity over time, and finally converges with the downward-propagating quench front in
the upper middle of the test specimen.

(3) As the coolant subcooling degree increases, the quench front propagation velocity
accelerates noticeably. Due to the relatively weak precursor cooling effect, the SS and
FeCrAl test specimens with higher kρcp exhibit a constant velocity region during the initial
propagation of the quench front. In contrast, zirconium-4 alloy, which has a lower kρcp,
shows a higher propagation velocity.

(4) The measured average quench front velocities are consistent with the experimental
datum from Li, Kim, and Kang. However, the predicted model proposed by Duffey
underestimates the propagation velocity, primarily due to ignoring the cooling effect of
film boiling.
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