
Citation: Evstatiev, B.I.; Trifonov, D.T.;

Gabrovska-Evstatieva, K.G.; Valov,

N.P.; Mihailov, N.P. PV Module

Soiling Detection Using Visible

Spectrum Imaging and Machine

Learning. Energies 2024, 17, 5238.

https://doi.org/10.3390/en17205238

Academic Editor: Philippe Leclère

Received: 10 September 2024

Revised: 12 October 2024

Accepted: 18 October 2024

Published: 21 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

PV Module Soiling Detection Using Visible Spectrum Imaging
and Machine Learning
Boris I. Evstatiev 1,* , Dimitar T. Trifonov 1, Katerina G. Gabrovska-Evstatieva 2, Nikolay P. Valov 1

and Nicola P. Mihailov 1

1 Faculty of Electrical Engineering, Electronics, and Automation, University of Ruse “Angel Kanchev”,
7004 Ruse, Bulgaria; dtrifonov@uni-ruse.bg (D.T.T.); npvalov@uni-ruse.bg (N.P.V.);
mihailov@uni-ruse.bg (N.P.M.)

2 Faculty of Natural Science and Education, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria;
kgg@ami.uni-ruse.bg

* Correspondence: bevstatiev@uni-ruse.bg

Abstract: During the last decades photovoltaic solar energy has continuously increased its share in
the electricity mix and has already surpassed 5% globally. Even though photovoltaic (PV) installations
are considered to require very little maintenance, their efficient exploitation relies on accounting for
certain environmental factors that affect energy generation. One of these factors is the soiling of the
PV surface, which could be observed in different forms, such as dust and bird droppings. In this
study, visible spectrum data and machine learning algorithms were used for the identification of
soiling. A methodology for preprocessing the images is proposed, which puts focus on any soiling of
the PV surface. The performance of six classification machine learning algorithms is evaluated and
compared—convolutional neural network (CNN), support vector machine (SVM), random forest (RF),
k-nearest neighbor (kNN), naïve-Bayes, and decision tree. During the training and validation phase,
RF proved to be the best-performing model with an F1 score of 0.935, closely followed by SVM, CNN,
and kNN. However, during the testing phase, the trained CNN achieved the highest performance,
reaching F1 = 0.913. SVM closely followed it with a score of 0.895, while the other two models
returned worse results. Some results from the application of the optimal model after specific weather
events are also presented in this study. They confirmed once again that the trained convolutional
neural network can be successfully used to evaluate the soiling state of photovoltaic surfaces.

Keywords: soiling; photovoltaic; convolutional neural network (CNN); machine learning; imaging;
classification

1. Introduction

The installed photovoltaic (PV) power is constantly increasing worldwide and even
though it is only available during the daytime, its share in the energy mix has become
significant. One of the reasons for this is that in many cases PV installations require very
little maintenance to operate, which is very appropriate for many small and medium-
sized applications. Nevertheless, if the generated power, and therefore profit, are to be
maximized, these facilities require regular maintenance.

The experience gained over the last decades showed that the long-term exploitation of
a photovoltaic installation could face many potential problems, whose timely identification
could save a lot of trouble and expenses for the plant operators. Such faults include module
mismatch caused by uneven aging; micro-cracks, often caused by mechanical stress; degra-
dation; and hotspots caused by shading, soiling, and uneven aging [1–3]. Other factors
causing the abovementioned problems include manufacturing inconsistencies, tempera-
ture fluctuations, long UV exposure, extreme weather events, incorrect installation, and
snow [1,4,5]. Some of the abovementioned factors can only be identified and acknowledged,
while others, such as shading and soiling, can be mitigated. The most direct approach to
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this is the application of different Maximum Power-Point Tracking (MPPT) algorithms,
utilized by the contemporary inverters and solar controllers [6,7].

Soiling is known to be a problem for the operation of photovoltaic installations, which
could significantly lower the power produced. Different studies have reported reductions
ranging between 4% and 20% [8–12], which greatly depends on the geographic region
and the available local impacts. This problem is especially important in desert climates,
where the daily soiling rate could surpass 0.5% [10]. This rate is lower in regions with
other climates and often has a seasonal character. For example, photovoltaic installations
located near agricultural areas are known to receive a lot of soiling after the land has been
plowed [13]. Similarly, pollutants created in urban and industrial areas and the presence of
many birds or even snails can cause many problems for PV installation operators [14–16].

To handle this problem, PV surface cleaning is used in mid- and large-scale installa-
tions. Different cleaning methods exist, such as manual cleaning, tractors, robots, sprinklers,
etc. [17–19], but all of them are relatively expensive. Therefore, the cleaning schedule should
be carefully considered to ensure the maintenance costs do not surpass the potential energy
gains. Different approaches exist for cleaning maintenance, based on power prediction and
weather events, among others. A study in Palestine investigated the optimal frequency for
cleaning PV panels [20]. The weekly cleaning of panels was compared with several other
schedules—two-weekly, monthly, two-monthly, six-monthly, and annually. The results
showed that the difference between weekly and two-weekly cleaning led to an output
power difference varying between 0.51% during the winter months and 3.22% during the
summer months. On the other hand, the difference between weekly and annual cleaning
created a 13.1% increase in power production in favor of the weekly one.

In [21] the performance ratio of a PV installation was used for optimizing the schedul-
ing of cleaning procedures. The Seasonal Autoregressive Integrated Moving Average with
eXogenous regressors (SARIMAX), Autoregressive integrated moving average (ARIMA),
and Long Short-Term Memory (LSTM) models were investigated, out of which the first
returned the highest R2 metrics (92%). Other authors tried to optimize the PV cleaning
schedule by comparing the actual and predicted PV power [22]. The proposed approach
was based on the geographic location, the forecasted temperature, and the PV system
specification. In [9], a model was developed that supports the decision-making process
when large-scale PV installations should be cleaned based on the environmental conditions.
Different soiling loss factors, rainfall characteristics, manual cleaning characteristics, and
dust events were accounted for to create an empirical model. The validation was performed
using different sensors, and, according to the authors, it achieved a 0.71% mean absolute
error. However, the cleaning frequency requirements are different for different climate
conditions and very often depend on certain instantaneous weather events such as rain
storms, sand storms, and local pollution [23–25].

Several approaches exist for identifying problems with PV installations, which are
based on different spectrum images, electrical, and meteorological data. In [26], a dataset of
currents, voltages, temperatures, irradiation levels, and fault labels was used to predict five
states of a PV installation—normal condition, degradation, short-circuit fault, open-circuit
fault, and partial shading. The trained convolutional neural network (CNN) achieved a
95.20% overall accuracy and the accuracy for the different classes varied between 86.95%
and 100%. Similarly, in [27], artificial intelligence (AI) for fault detection in a Saudi Arabian
PV system was used. The input parameters used for the trained artificial neural network
(ANN) included the maximum power, open-circuit voltage, short-circuit current, maximum
power voltage, maximum power current, solar radiation, and ambient temperature. The
classification included the following categories: no fault, partial shading, line-to-line fault,
open-circuit fault, degradation fault, bridge fault, bypass diode fault, and hybrid fault. The
optimal ANN achieved a 99.9% average performance, with the individual class success
rates varying between 99.6% and 100%.

The diagnosis of PV installations can also be implemented using different spectrum
images, such as infrared and electroluminescence. In [28], infrared images and machine
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learning (ML) algorithms (quadratic discriminant analysis, naïve-Bayes, k-nearest neighbor,
bagging ensemble, and support vector machine) were used to identify faulty and non-faulty
hotspots over photovoltaic surfaces. The highest F1 score was achieved with the support
vector machine (SVM), which reached 91%. Infrared imaging was also used in [29] to iden-
tify different PV surface faults, such as cracks, accumulated sand, soiling, covered modules,
short-circuit modules, overheated bypass diode, and normally functioning modules. The
authors developed a hybrid CNN–ML model, which achieved an overall accuracy of 88%
and an F1 score varying between 74% and 97% for the different classes. UAV-obtained
thermal imaging was used in [30] for fault detection and diagnosis of PV systems. The
algorithms used to identify bypass diode faults and hotspots included neural networks,
random forest (RF), k-nearest neighbor (kNN), and gradient boosting. All models achieved
a similar F1 score, ranging between 0.930 and 0.941, with kNN having the highest perfor-
mance. UAV-obtained infrared imaging was also used in [31] to investigate the automated
identification and localization of defects on photovoltaic installations. The study used
the You Only Look Once (YOLO) convolutional neural network to detect situations such
as “disconnected substring”, “hot spot”, “disconnected string”, and “short circuit”. The
obtained F1 varied between 0.42 and 0.899 for the different classes.

Another approach for fault identification is based on the electroluminescence phe-
nomenon. In this case, the PV module is externally powered during night-time and its
luminescence is observed. The main disadvantage of this method is that PV panels should
be disconnected while examined. This approach was applied in [32] together with different
types of CNN to identify several types of PV surface defects. The optimal model achieved
an accuracy of 96.17%.

Different approaches also exist for the identification of soiling. The first one is based
on the prediction of the photovoltaic energy yield. In [33], a regression model was created
that predicted the energy yield based on the so-called soiling ratio, which is the ratio
between the performance of a soiled PV panel and the performance of the same panel
without soiling. The performance was evaluated using the Nash–Sutcliffe efficiency (R2)
and Mean Absolute Error measures. Optimal results were obtained with the Gaussian
process regression, reaching R2 = 0.98 during the training phase and 0.86 during the testing
phase. In [34], clustering analysis and artificial neural networks were used to analyze
the yield of photovoltaic installations. The goal was to detect and identify defects and
degradation in the PV modules using a wide range of features such as irradiance, relative
humidity, wind velocity, ambient temperature, string current, string voltage, string power,
module temperature, and yield. In another study, a hybrid LSTM-KNN algorithm was
proposed to predict the PV power output and power losses based on the day number,
sunshine duration, humidity, temperature, solar radiation, and power output [35]. The
trained model achieved a coefficient of determination of 0.9963 during the validation stage
and 0.9822 during the testing stage.

Another approach in soiling analysis is the evaluation of power losses. In [11], artificial
intelligence was applied to estimate the soiling losses of a PV installation. The following
input parameters were used: temperature of the panel, short-circuit current, global irradi-
ation, relative humidity, ambient temperature, atmospheric pressure, and solar altitude.
The trained artificial neural network achieved a correlation coefficient of R 0.91. Another
study tried to predict the soiling losses of PV modules using UAV-obtained RGB images [8].
The proposed method was based on the increased brightness of soiled PV surfaces, which
was used to calculate the transmission loss of the soiling layer. The study also considered
the irradiation at the moment of measurement and the viewing point. Similarly, in [23] the
soiling losses were estimated based on 479 RGB images and a machine-learning regression.
The trained model achieved an R2 equal to 0.98, which indicates it can be used to predict
soiling loss using images made under similar conditions. In [36], the soiling losses were
evaluated using a combination of images of the PV surface and time series with solar
radiation as input. The power loss was analyzed by splitting it into 16 and 21 categories
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and the performance of different CNN models was evaluated. The optimal ones achieved
accuracies of 77% and 66%, respectively, and F1 scores of 71% and 64%, respectively.

Two main approaches exist for the identification of soiling on the PV surface. The
first one is based on different electric and environmental data. Several machine learning
algorithms were used in [37] to predict the necessity for cleaning the photovoltaic panels
based on the arrays’ voltage and current. Two categories were used: “Cleaning” and
“No cleaning”. Furthermore, four models were implemented based on logistic regression
(LR), SVM, ANN, and RF. The highest classification accuracy (>90%) was obtained for the
RF model. Similarly, in [38], raw photovoltaic solar energy data and machine learning
techniques were used for identifying soiling in Cyprus. The study utilized unsupervised
k-means clustering to perform a daily soiled/non-soiled classification.

Soiling can also be identified using RBG imaging. In [39], different methods for
semantic segmentation based on supervised and unsupervised machine learning algorithms
were investigated. The achieved F1 score for recognizing PV panel soiling varied between
83% and 85%, and the achieved accuracy was up to 98%. A total of 2231 RGB images was
used in [40] to train a convolutional neural network for assessing the dusting of PV panels
in Bangladesh. All randomly shaped original images were resampled to 227 × 227 px
and were classified into “clean” and “dirty” classes. The average precision obtained
was 98.2%, and the obtained precision for clean and dirty panels was 97.6% and 95.7%,
respectively. In [41], a soiling recognition algorithm for application in automated PV surface
cleaning robots was presented. Different approaches were used, such as segmentation
and thresholding, to estimate masks of panels with different levels and distribution of
dirtiness (uniform and non-uniform). The study reported a precision of up to 90%. Other
authors trained a neural network for recognizing PV panels soiling based on RGB images
and the MobileNetV2 pre-trained network [42]. They reported an accuracy of up to 97%
with a validation loss of 9.7%. The study concluded that the output of the CNN was highly
dependent on the quality of the images. In [43], satellite- and UAV-obtained images from
12 countries around the world were used. They were preprocessed using rotation and
were classified into several categories: bird droppings, cement, cracks, soiling, and clean
panels. Several neural networks were trained with different backbones (VGG19, MobileNet,
IneptionV3, ResNet50, and EfficientNetB0). The highest precision, recall, F1 score, and
accuracy were achieved by the VGG19-based model.

Another approach is the simultaneous identification of shading and soiling. In [44],
a dataset of images with panels was used that had been exposed to various problems
including soiling and shading. VGG-16 and VGG-19 architectures were applied for training
CNNs. The obtained accuracies were 97% and 99%, and after considering the precision
and recall, the obtained F1 scores were 0.85 and 0.89, respectively. Similarly, in [45], RGB
images were analyzed to assess soiling and partial shading problems. A CNN was trained
using several images, which allowed the authors to achieve an accuracy of 73%.

Other potentially related approaches to the investigated problem include the recog-
nition of the PV installation extents, which might be required as a preliminary step for
creating analysis masks. In [46], several machine learning algorithms (SVM, RF, and NB)
for the detection of photovoltaic installations were used, relying on satellite data (Sentinel
1, Sentinel 2, Planetscope) and different indices (Normalized Difference Vegetation Index,
Normalized Difference Water Index, and Photovoltaic Spectral Index). All algorithms
returned a satisfactory accuracy, although SVM and RF were the best-performing, with
accuracies of above 95%. A similar approach was demonstrated in [47], where aerial images
were analyzed using different tools of the GRASS GIS v.8.2 software.

The performed analysis shows that soiling can take different forms and its influence on
photovoltaic installations greatly depends on its properties and chemical composition. In
other words, the soiling rate, color, and impact depend on the specific geographic location
and local dusting factors. To the best of our knowledge, no such studies exist for Bulgaria
and the region of Ruse in particular. Many authors identify soiling based on energy yield
reduction, infrared spectrum, and visible spectrum images, and when image processing is
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used, segmentation and deep learning are the common approaches. The literature review
showed that few authors tried to solve this problem using the classification approach in
combination with image processing. Moreover, in most cases, the performance of a single
machine-learning algorithm or of different versions of the same algorithm was investigated.
Our analysis also showed that limited comparative results exist on the performance of
different classification algorithms for the identification of clean and dirty PV panels. The
above-mentioned indicates that a knowledge gap can be identified in this area.

Therefore, this paper aimed to propose and test a methodology based on the classifi-
cation approach, which categorizes PV modules as either clean or dirty. It should rely on
ground-based or UAV-based RGB images and different machine-learning algorithms. This
study also aimed to compare their performance and identify the optimal algorithm for the
proposed methodology.

2. Materials and Methods
2.1. Location and Means of the Study

The experimental photovoltaic park used in this study is located in the city of Ruse,
Bulgaria, on the territory of the University of Ruse “Angel Kanchev”, geographic coordi-
nates 43.853388283689526, 25.969217923215588 (Figure 1). Ruse is located on the boundary
with Romania and is 60 km away from its capital Bucharest. It is characterized by relatively
cold winters and hot summers. The average monthly temperatures vary between −2 ◦C
in January and 24.1 ◦C in July, and the average maximum monthly temperatures between
1 ◦C in January and 30 ◦C in July. The average monthly precipitation is between 36 mm and
80 mm, though during recent years the rainfall has decreased dramatically in the summer
and early autumn months of July to September. The maximum solar irradiance ranges
between 522 W.m−2 in the winter and 1162 W.m−2 in the summer. The lowest number of
sunny days is in January (7.6) and the highest in August (10.9), and the number of days
with partial cloudiness varies between 19.5 and 25 in the different months. The number of
days with precipitation varies between 9.2 in the autumn and 15.4 in June. The average
annual relative humidity ranges between 60% and 80%, and the average wind speed at the
site of the PV installation is 0.38 m.s−1. The presented meteorological data were obtained
from [48] and from a Vantage Pro2 meteorological station by Davis Instruments (Hayward,
Charlotte, CA, USA).

Two main soiling factors exist in the region. On one hand, the Ruse region is an agri-
cultural area, which, combined with the climate, also creates a soiling on the photovoltaic
modules, especially during the summer and early autumn. On the other hand, there are
many industries in the city such as chemical plants, factories for aluminum components,
granite tiles, and faience, among others.

The PV Park Kanev is an experimental facility of the University of Ruse with a
cumulative installed power of 12.6 kWp. It includes three strings with 12 BSM350P-72
polycrystalline panels by Bluesun Solar Co. Ltd. (Shushan District, Hefei, China). They
were installed in 2022 and have never been cleaned since then.

In this study, we relied on the Orange Data Mining v.3.36 software [49], developed and
maintained by the University of Ljubljana (Ljubljana, Slovenia). It is a free data processing
tool available for Microsoft Windows, Mac OS, and other operating systems. Orange
provides a wide range of instruments for classification, clustering, testing, validation,
visualization, and others. Furthermore, its functionality can be extended with Python
scripts, which makes it an excellent choice for implementing machine learning experiments.
For the abovementioned reasons, it was chosen as the main instrument of our research, as
it fully met the requirements of this study.
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Step 1. The surface of the selected photovoltaic modules is cleaned.
Half of the PV panels (18) are cleaned early in the morning (between 7 and 8 AM)

according to the scheme presented in Figure 3. This task is implemented manually and it
is assumed the corresponding photovoltaic surfaces will remain clean for the next couple
of days.
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Step 2. Multitemporal photos of each photovoltaic surface are made.
After the corresponding PV panels are cleaned, photos of all PV panels are taken using

a camera. This scenario is repeated numerous times during the day at different astronomic
hours, from early morning until late evening. Previous studies have shown that the angle
of view and the sun’s position could influence the ability to quantify soiling [50]. Therefore,
the idea is to ensure numerous images under various lighting conditions.

In the current study, this step was implemented with on-the-ground means; however,
in general cases this could also be achieved using cameras mounted on unmanned aerial
vehicles or satellites.

Step 3. Image preprocessing.
The image preprocessing is aimed at preparing training and validation datasets and

includes the following subtasks:

1. Preliminary filtering of the images is performed and those with inappropriate quality
are removed;

2. The original PV module images are manually classified as either dirty or clean.
3. Furthermore, they are divided into training and validation datasets.
4. From the created datasets, 500 × 500 px images of the photovoltaic surfaces are

cropped. When extracting the image fragments, the following requirements are
defined:

a. They should contain the area of at least one PV cell.
b. They should not contain areas not part of the PV surface.

Previous studies have shown that color is an important feature for improving the
performance of machine learning algorithms [51]. During the preliminary investigations
and analysis, it was noticed that soiling contrasts better on the red channel of the photos.
Therefore, the following subtasks were performed to focus on the dirty fragments of the
PV panels:

5. The value of the image red channel is doubled.
6. The obtained image is converted to a multichannel format, where each channel (red,

green, and blue) is represented with 256 shades of gray.
7. Finally, only the red channel (represented as gray with 256 shades) is saved for

further analysis.
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Step 4. Training machine learning models.
Several machine learning algorithms were selected for comparison: convolutional

neural network, support vector machine, k-nearest neighbor, random forest, decision
tree (DT), and naïve-Bayes (NB). The reason for choosing them was that from previous
studies they are known to provide good results when dealing with photovoltaic surface
analysis and image recognition [28,29,37,52]. Next, the prepared image datasets were
represented with a vector of numbers using Google’s Interception v3 deep neural network.
Furthermore, the hour of the day (taking values from 0 to 23) was added as an additional
feature, representing the hour in which the photo was taken. The reason for this is that
the reflectance of the sun over the photovoltaic surfaces might significantly change the
way they look. Finally, the selected features were fed to the 6 machine-learning models for
training and validation.

Step 5. Performance assessment of the trained models.
The performance of each model is assessed to obtain the optimal one. This is achieved

using several metric indicators, whose meaning is explained below:

• Accuracy—measures the overall correctness of the model:

Accuracy =
True positives + True negatives

Total number of samples
(1)

• Precision—measures the quality of positive predictions:

Precision =
True positives

True positives + False positives
(2)

• Recall—measures the quality of false negative predictions:

Recall =
True positives

True positives + False negatives
(3)

• F1 score—balances between the precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

(4)

3. Results and Discussion
3.1. Conduction of the Experimental Study and Preprocessing of the Obtained Images

Two experimental studies were conducted at the PV Park Kanev on 7 June 2024 and
4/5 July 2024, according to the schedule, presented in Table 1. Additional photos of the
PV panels were taken on 6 July and 8 July. A total of 828 pictures were taken, and after
filtering out those with low quality, 402 images were selected for training purposes, out of
which 184 were of clean and 218 were of dirty PV modules from the 7 June, 4 July, and 5
July datasets.

Two additional datasets were created after different weather events:

- On 9 June 2024 a weather event occurred, creating dust soiling. Therefore, photos of
all PV panels were taken on 10 June 2024.

- On 21 July 2024 a storm occurred with 9 mm rainfall, measured with a Vantage
Pro2 meteorological station by Davis Instruments (Hayward, Charlotte, CA, USA).
Therefore, photos of all PV panels were taken on 22 July 2024.

The photos of the PV modules were taken using different mobile phone cameras from
approximately 2 m distance, as shown in Figure 4. It was decided to photograph each
module individually, as this would make it easier to pre-process and analyze the datasets.
Next, according to the developed methodology, all photos were manually classified as
either clean or dirty and 500 × 500 px fragments were cropped from them. Considering
the significant number of images, the extraction process was automated with a Corel
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Photopaint batch process (script). To make sure the extracted fragments corresponded to
the defined requirements (they should contain the area of at least one PV cell and should
not contain areas that are not part of the PV surface), they were observed by an operator.
Those that did not meet these requirements were processed manually.

Table 1. Schedule of the performed experiment.

No. Date Star Time Action

1

7 June 2024

7:00 PV panels cleaning

2 8:00 Make photos of all PV panels

3 9:00 Make photos of all PV panels

4 10:00 Make photos of all PV panels

5 11:00 Make photos of all PV panels

6 13:00 Make photos of all PV panels

7 14:00 Make photos of all PV panels

8 15:00 Make photos of all PV panels

9 16:00 Make photos of all PV panels

10 17:00 Make photos of all PV panels

11 18:00 Make photos of all PV panels

12 19:00 Make photos of all PV panels

13 10 June 2024 08:00 Make photos of all PV panels

14
4 July 2024

18:00 PV panels cleaning

15 19:00 Make photos of all PV panels

16

5 July 2024

8:00 Make photos of all PV panels

17 12:00 Make photos of all PV panels

18 18:00 Make photos of all PV panels

19

6 July 2024

8:00 Make photos of all PV panels

20 12:00 Make photos of all PV panels

21 18:00 Make photos of all PV panels

22

8 July 2024

8:00 Make photos of all PV panels

23 12:00 Make photos of all PV panels

24 18:00 Make photos of the cleaned PV panels

25 22 July 2024 16:00 Make photos of all PV panels
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All images were further preprocessed according to the proposed methodology by
doubling their red channel, converting them to multichannel, and exporting only the red
greyscale channel. Examples from the preprocessing of dirty and clean PV panel fragments
are presented in Figure 5.
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Table 2. Optimal parameters of the machine learning algorithms.

No. Algorithm Parameters

1 CNN

Neurons in hidden layers—200
Activation—ReLu
Solver—L-BFGS-B
Regularization—0

Maximal number of iterations—200
Replicable training—Checked

2 SVM

SVM type—SVM
Cost (C)—0.50

Regression loss epsilon (ε)—0.20
Kernel—Polynomial

g—auto
c—3.00
d—3.0

Numerical tolerance—0.0010
Iteration limit—200

3 kNN
Number of neighbors—8

Metric—Euclidean
Weight—Uniform

4 RF
Number of trees—23

Replicable training—checked
Do not split subsets smaller than—5

5 DT

Induce binary tree—checked
Min. number of instances in leaves—12
Do not split subsets smaller than—10
Limit the maximal tree depth to—100

Step when majority reaches—95%

6 NB N/A

The “hour of the day” feature was extracted from the images’ filenames using the
“Formula” component in the Orange Data Mining tool. It was implemented as a number
variable, whose value was estimated using the following Python v.3.11 script:

int(image_name[13 : 15]) (5)

The six algorithms were evaluated using the “Test and Score” component. It was set
up to use cross-validation with the number of folds set to 5. This means that 4/5 of the
dataset would be used for training and 1/5 for validation. The obtained evaluation metrics,
with and without the hour of the day included as an additional feature, are presented in
Table 3. It can be seen that when the hour of the day was not included, the best-performing
algorithm was random forest with F1 = 0.935, followed by SVM with 0.933 and CNN with
0.928. On the other hand, if the hour of the day was added as an additional feature, the
best-performing algorithm was CNN, with F1 = 0.938, followed by SVM with 0.933 and
random forest with 0.915. In other words, this additional feature did not have a significant
impact on the accuracy of the models, even though it led to small changes and reordered
their rank in terms of performance. It can also be seen that the SVM model was practically
not influenced by this additional feature.
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Table 3. Evaluation metrics from the training of the six models with and without the “hour of the
day” feature.

Model Classification
Accuracy

Average
Precision Average Recall F1 Score

Without “hour of the day” as an additional feature

RF 0.935 0.936 0.935 0.935

SVM 0.933 0.933 0.933 0.933

CNN 0.928 0.928 0.928 0.928

kNN 0.920 0.922 0.920 0.921

Tree 0.871 0.872 0.871 0.871

NB 0.856 0.860 0.856 0.856

With “hour of the day” as an additional feature

CNN 0.938 0.938 0.938 0.938

SVM 0.933 0.933 0.933 0.933

RF 0.915 0.916 0.915 0.915

kNN 0.903 0.905 0.903 0.903

Tree 0.871 0.872 0.871 0.871

NB 0.856 0.860 0.856 0.856

It should be noted that if an “hour of the day” feature is added, it might also be
necessary to add a “month of the year” feature because of the different lighting conditions
of the PV panels throughout the year. This, as well as the lack of significant difference in
the accuracy of the top performing models (CNN and SVM) with and without the “hour of
the day” feature, allows us to conclude that it was better not to use it, unless the training
dataset was significantly larger and included numerous images for each hour of the day,
for each month of the year, and under different environmental conditions. Therefore, from
now on, this study only considers the trained models without the additional “hour of the
day” feature.

Furthermore, from the obtained results it can be seen that all of the tested algorithms
performed reasonably well; nevertheless, the DT- and NB-based ones performed slightly
worse with an F1 score below 0.9, and were therefore not considered in the further analysis.

If compared with previous studies, the obtained results position themselves quite
well. In [39], different deep learning algorithms for identifying random-form soiling on the
PV surface were compared. The best-performing ones were based on U-net and achieved
accuracies of 95.81% and 98.10%, and F1 scores of 85.48% and 84.05%, respectively. Similarly,
image segmentation was used in [42]; although this was with a MobileNetV2-based model
for identifying different types of soiling. The authors claimed a 97% accuracy, though they
agreed that their 50-image dataset was quite small. Furthermore, they also stated that the
F1 metric should be used to bring more insightful information, though their study did not
provide this.

Similarly, in [40], a SolNet CNN for distinguishing between clean and dirty panels was
trained, which achieved an accuracy of 98.2%. The precision for identification of clean and
dirty surfaces was 97.6% and 95.7%, respectively, though no recall or F1 score was reported.
In [43], different CNNs were trained to detect soiling, cracks, bird drops, and other factors
influencing the PV surface. The VGG19 backboned model provided the highest accuracy
and F1 score of approximately 99%. In [44], panels under the influence of shadows, soiling,
and bird droppings were also identified with an accuracy of 99%. The detection of normal
panels achieved a precision, recall, and F1 of 100%, 75%, and 86%, respectively. On the other
hand, the identification of faulty panels reached 80%, 100%, and 89%, respectively. Slightly
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poorer results were obtained in [45], where the identification of soiling, grass breakage, and
cracks achieved a 73% accuracy.

A summary of the comparison performed is presented in Table 4. It can be seen
that most of the previous studies achieved a higher accuracy, though this is known to be
misleading, especially when imbalanced datasets are used. Therefore, the F1 score is a more
reliable metric, and, out of the reviewed articles, only [43] achieved a higher performance.
It can be noted though, that in [43] a larger dataset was used, which might explain the
better results. Furthermore, in [40,42,45], no information was provided about precision,
recall, or the F1 score.

Table 4. Comparison of the obtained results with previous studies.

Study Model Accuracy F1 Score

Cruz-Rojas et al. [39] U-net-based CNN 95.81%
98.10%

85.48%
84.05%

Selvi et al. [42] MobileNetV2 CNN 97% N/A

Onim et al. [40] SolNet CNN 98.2% N/A

Shaik et al. [43] VGG19-based CNN 98.6% 99%

Yanboiy et al. [44] VGG19 based CNN 99% 89%

Cavieres et al. [45] Custom CNN 73% N/A

Ours

Interception v3 + RF
Interception v3 + SVM
Interception v3 + CNN
Interception v3 + kNN

93.5%
93.3%
92.8%
92.0%

93.5%
93.3%
92.8%
92.1%

3.3. Testing of the Machine Learning Models with Previously Unused Images

Next, the four best-performing models were tested with a different dataset, which
was not used during the training phase. It contained 61 images of clean PV panels and
151 images of dirty PV panels, extracted from the 7 June, 10 June, 6 July, and 8 July datasets.
The results from the testing process are presented with confusion matrices for the CNN,
SVM, RF, and kNN models in Table 5, Table 6, Table 7, and Table 8, respectively.

Table 5. Confusion matrix from the testing of the trained CNN model.

Predicted Metrics

A
ct

ua
l

Clean Dirty ∑ Precision Recall F1

Clean 59 2 61 0.776 0.967 0.861

Dirty 17 134 151 0.985 0.887 0.934

∑ 76 136 212 0.925 0.910 0.913

Table 6. Confusion matrix from the testing of the trained SVM model.

Predicted Metrics

A
ct

ua
l

Clean Dirty ∑ Precision Recall F1

Clean 59 2 61 0.738 0.967 0.837

Dirty 21 130 151 0.985 0.861 0.919

∑ 80 132 212 0.914 0.892 0.895
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Table 7. Confusion matrix from the testing of the trained RF model.

Predicted Metrics

A
ct

ua
l

Clean Dirty ∑ Precision Recall F1

Clean 56 5 61 0.659 0.918 0.767

Dirty 29 122 151 0.961 0.808 0.878

∑ 85 127 212 0.874 0.840 0.846

Table 8. Confusion matrix from the testing of the trained kNN model.

Predicted Metrics

A
ct

ua
l

Clean Dirty ∑ Precision Recall F1

Clean 59 2 61 0.615 0.967 0.752

Dirty 37 114 151 0.983 0.755 0.854

∑ 96 116 212 0.877 0.816 0.824

It can be noticed that the precision metrics for clean panels and the recall metrics for
dirty panels were relatively lower in all confusion matrices. This behavior was caused by
two factors:

- The testing dataset was imbalanced, i.e., the ratio between clean and dirty panels was
approximately 1 to 3.

- The successful identification rate for dirty panels varied between 11% and 24% for the
different models.

It can be seen that the highest average precision, recall, and F1 were obtained for the
CNN model, with 0.913, 0.910, and 0.913, respectively. It was closely followed by the SVM,
whose metrics were 0.914, 0.892, and 0.895, respectively. A closer look into the confusion
matrices shows that CNN performed slightly better when identifying dirty panels and had
equal performance with the SVM when identifying clean panels.

The other two models showed noticeably lower performance during the testing phase.
The RF model achieved an average F1 score of 0.911 and showed a worse identification
performance for both classes. The kNN model achieved the worst F1 score (0.824). It
had the same performance for clean panels as CNN and SVM; however, its identification
rate for dirty panels was more than twice as bad as CNN’s. The obtained results show
the following:

- All four models deal well with the identification of clean panels (56–59 out of 61 correct
identifications).

- Their performance with dirty panels was different, though identifying dirty panels
was their primary goal.

The obtained performance indicators show that the number of images used during
the training phase (184 of clean and 218 of dirty panels) was sufficient for training high-
performing CNN and SVM models with the proposed methodology. This was confirmed by
the high F1 scores obtained with both the training and testing datasets. On the other hand,
the significant decrease in the F1 score for RF and kNN during the testing phase (from
0.935 to 0.846 and from 0.921 to 0.824, respectively) indicates that these algorithms require
a larger training dataset to improve their performance. Nevertheless, considering that the
F1 score decreased between the training and testing phases for all four evaluated models,
all of them could benefit from a slight increase in the volume of the training dataset.

A closer analysis of the incorrectly identified dirty panels by the CNN model showed
that in many cases (8 out of 17) there was a reflection of the sun on their surface, as shown
in Figure 7. A reflection of the sun can also be observed in one of the two incorrectly
identified clean PV panels. This indicates that in theory the model performance could be



Energies 2024, 17, 5238 15 of 20

further improved if the angle of images made is carefully chosen, depending on the hour
of the day and the meteorological conditions.

Energies 2024, 17, x FOR PEER REVIEW 15 of 20 
 

 

- Their performance with dirty panels was different, though identifying dirty panels 
was their primary goal. 
The obtained performance indicators show that the number of images used during 

the training phase (184 of clean and 218 of dirty panels) was sufficient for training high-
performing CNN and SVM models with the proposed methodology. This was confirmed 
by the high F1 scores obtained with both the training and testing datasets. On the other 
hand, the significant decrease in the F1 score for RF and kNN during the testing phase 
(from 0.935 to 0.846 and from 0.921 to 0.824, respectively) indicates that these algorithms 
require a larger training dataset to improve their performance. Nevertheless, considering 
that the F1 score decreased between the training and testing phases for all four evaluated 
models, all of them could benefit from a slight increase in the volume of the training da-
taset. 

A closer analysis of the incorrectly identified dirty panels by the CNN model showed 
that in many cases (8 out of 17) there was a reflection of the sun on their surface, as shown 
in Figure 7. A reflection of the sun can also be observed in one of the two incorrectly iden-
tified clean PV panels. This indicates that in theory the model performance could be fur-
ther improved if the angle of images made is carefully chosen, depending on the hour of 
the day and the meteorological conditions. 

 
Figure 7. Examples of incorrectly identified dirty panels: sample panel 1 (a); sample panel 2 (b); 
sample panel 3 (c). 

3.4. Case Studies After Specific Weather Events 
The optimal CNN model was tested on two datasets, which were obtained after two 

specific weather events: 
- Case study 1: A dust soiling occurred on 9 June 2024, which made all panels dirty 

(Figure 8). 
- Case study 2: a 9 mm rain storm occurred on 21 July 2024, which had a positive effect 

on the soiling state of all PV panels (Figure 9). 

Figure 7. Examples of incorrectly identified dirty panels: sample panel 1 (a); sample panel 2 (b);
sample panel 3 (c).

3.4. Case Studies after Specific Weather Events

The optimal CNN model was tested on two datasets, which were obtained after two
specific weather events:

- Case study 1: A dust soiling occurred on 9 June 2024, which made all panels dirty
(Figure 8).

- Case study 2: a 9 mm rain storm occurred on 21 July 2024, which had a positive effect
on the soiling state of all PV panels (Figure 9).
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Figure 9. Examples of the PV surface condition on 22 July 2024 after a 9 mm rain: (a) a relatively dirty
panel; (b) a relatively clean panel.

Therefore, on the next day, pictures of all 36 PV panels were taken. The two datasets
were processed according to the proposed methodology and were fed to the optimal CNN
model. The obtained results are summarized in Table 9. In the first scenario, after a soiling
weather event, the trained neural network identified 31 out of 33 PV panels as dirty. This
means that only 6% of them were classified as clean. Such results indicate that a cleaning
procedure was likely required by the time the photos were taken and could lead to an
increase in the PV installation’s energy yield.

Table 9. Summary of the results from the two case studies.

Case Study
Number of Classified Images Clean PV Panels

Ratio, %As Clean As Dirty Total

1 2 31 33 6.1%

2 32 4 36 89%

On the other hand, the results for the second scenario showed that 32 out of 36 PV
panels (including those identified as dirty on 8 July 2024) were identified as clean, i.e.,
the share of the clean panels was approximately 89%. Such metrics allow us to make the
following conclusions:

- By the time the photos were taken it was most likely not necessary to implement a
cleaning procedure for the photovoltaic installation.

- The relatively strong rainstorm reduced the soiling of the PV modules.

3.5. Applicability of the Obtained Results

While the obtained results with the trained CNN are quite promising, it is important
to discuss its applicability for remote diagnostics on a larger scale. Making on-the-ground
photos of a large PV park would not be appropriate as this would require a amount of time
and workforce. As previous studies have shown large-scale monitoring can be implemented
with UAV-obtained images. However, in this situation, depending on the flying height and
the lens angle of the camera, each image will contain numerous PV modules. Therefore, to
apply the proposed methodology, the following options exist:
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1. The UAV could be operated at a low height. This would allow appropriate image
quality even with a lower-resolution camera.

2. The UAV could be operated at medium height. This way more PV panels could be
captured at once; however, this implies the need to use more expensive cameras with
a higher resolution.

In both situations, the obtained photos will likely contain numerous PV panels, so
additional preprocessing would be required. The extraction of images with an appropriate
size could be implemented using the following methodology:

1. The extent of the available PV modules on each photo is recognized. This could be im-
plemented by training an object-based deep learning model for PV panel identification.

2. A square fragment of the image is cropped from each identified PV module.
3. The dimensions of each image fragment are reduced to 500 × 500 px.

Another important aspect is the number of analyzed PV modules. When it comes to
large-scale PV installations, taking pictures of all available modules might be difficult. An
appropriate approach would be to divide the facility into zones and to take a limited number
of photos in each zone. This way, the decision making on whether a cleaning procedure is
required could be made for each zone independently using the available images.

4. Conclusions

In this study ground-based visible spectrum imaging and machine learning were used
to identify soiling on photovoltaic installations. All images were preprocessed following
the proposed methodology to focus on the available soiling. This included doubling the
red channel, converting the image to multichannel, and exporting the modified grayscale
red channel for further analysis. Thereafter, the images were manually classified into clean
or dirty categories and were divided into training and testing datasets. The performance of
six machine learning algorithms was evaluated.

During the training and cross-validation phase, a total of 402 images was used. The
best-performing model was RF, followed by SVM, CNN, kNN, DT, and NB. They achieved
an F1 score of 93.5%, 93.3%, 92.8%, 92.1%, 87.1%, and 85.6%, respectively. The first four mod-
els showed similar evaluation metrics and were further investigated using 212 previously
unused testing images. During this phase, the models were reordered and the trained
convolutional neural network achieved the best performance, with an average F1 score
of 91.3%. It was closely followed by the SVM model with 89.5%. Even though the RF
model was the best-performing one during the validation phase, it achieved a significantly
lower F1 score (84.6%) using the testing dataset. The F1 metric of the kNN model was even
lower (82.4%), though it kept its ranking. These results allow us to conclude that deep
learning performs slightly better when identifying PV surface soiling in comparison to
other machine learning algorithms.

Even though in the current study ground-based images were used, the application of
UAV-obtained images for medium- and large-scale facilities is fully applicable. The pro-
posed methodology could be applied to support the decision-making process for operators
of PV installations. It could help them decide when the solar panels require cleaning so
that their profit is maximized.

No threshold value was proposed in this study regarding when cleaning is required
because, as previous studies have observed, this strongly depends on the specifics and
characteristics of soiling in the corresponding region. To do this, the results of this paper
should be correlated with the local soiling losses, the prices of energy, and the cleaning
procedure. Such investigations are important for the region of Ruse and Bulgaria and are
an object for future studies.
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