Application of Two-Dimensional NMR for Quantitative Analysis of Viscosity in Medium–High-Porosity-and-Permeability Sandstones in North China Oilfields
Abstract
:1. Introduction
2. Sample and Methods
2.1. Crude Oil Samples
2.2. Natural and Artificial Rock Samples
2.3. Experimental Methods
2.3.1. Natural Rock Sample NMR Experiment
2.3.2. Artificial Rock Sample NMR Experiment
2.3.3. Full-Diameter Rock Core NMR Experiment
3. Results and Discussion
3.1. NMR Characteristics and Distribution Patterns of Crude Oil Samples with Different Viscosities
3.2. NMR Characteristics and Distribution Patterns of Natural and Artificial Rock Samples with Different Viscosities
3.3. Establishment of Crude Oil Viscosity Calculation Model
3.3.1. Oil Sample (Laboratory)
3.3.2. Field–Core Plug and Full-Diameter-Core Sample
3.3.3. Discrimination Diagram for Crude Oil Viscosity Based on Two-Dimensional (T1–T2) Maps
3.3.4. Fitting Formulas Based on Crude Oil Viscosity Categories
3.3.5. Classification of Crude Oil Viscosity Levels
4. Applied Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Zou, L.; Qiao, J.; Shi, C.; Liu, X. The influence of the viscosity of crude oil on liquid-dynamic noise characteristics in the volute shell of oil transfer pump. Measurement 2022, 197, 111285. [Google Scholar] [CrossRef]
- Sekar, M.; Ramesh, P.T.; Palanivelu, E. Combined Analysis of Heavy Crude Oil Viscosity and Stress Acting on the Buried Oil Pipelines. J. Pipeline Syst. Eng. Pract. 2021, 12, 04020059. [Google Scholar] [CrossRef]
- Al-Marhoun, M.; Nizamuddin, S.; Raheem, A.A.; Ali, S.S.; Muhammadain, A. Prediction of crude oil viscosity curve using artificial intelligence techniques. J. Pet. Sci. Eng. 2012, 86–87, 111–117. [Google Scholar] [CrossRef]
- Al-Maamari, R.S.; Houache, O.; Abdul-Wahab, S.A. New Correlating Parameter for the Viscosity of Heavy Crude Oils. Energy Fuels 2006, 20, 2586–2592. [Google Scholar] [CrossRef]
- Akkurt, R.; Vinegar, H.J.; Tutunjian, P.N.; Guillory, A.J. NMR logging of natural gas reservoirs. Log. Anal. 1996, 37, 33–41. [Google Scholar]
- Mardon, D.; Prammer, M.G.; Coates, G.R. Characterization of light hydrocarbon reservoirs by gradient-NMR well logging. Magn. Reson. Imaging 1996, 14, 769–777. [Google Scholar] [CrossRef]
- Logan, W.D.; Horkowitz, J.P.; Laronga, R.; Cromwell, D.W. Practical application of NMR logging in carbonate reservoirs. SPE Reserv. Eval. Eng. 1998, 1, 438–448. [Google Scholar] [CrossRef]
- Freedman, R. Advances in NMR Logging. J. Pet. Technol. 2006, 58, 60–66. [Google Scholar] [CrossRef]
- Zittel, R.J.; Beliveau, D.; O’Sullivan, T.; Mohanty, R.; Miles, J. Reservoir Crude Oil Viscosity Estimation From Wireline NMR Measurements—Rajasthan, India. SPE Res. Eval. Eng. 2008, 11, 545–553. [Google Scholar] [CrossRef]
- Xie, R.; Xiao, L. Advanced fluid-typing methods for NMR logging. Pet. Sci. 2011, 8, 163–169. [Google Scholar] [CrossRef]
- Gruber, F.K.; Venkataramanan, L.; Habashy, T.M.; Freed, D.E. Estimation of petrophysical and fluid properties using integral transforms in nuclear magnetic resonance. J. Magn. Reson. 2013, 228, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, H.; Nishikawa, Y.; Ikeda, I.; Miyazaki, K.; Takahara, N.; Sakamoto, Y.; Komai, T.; Narita, H. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement. J. Geophys. Res. Solid Earth 2008, 113, B07210. [Google Scholar] [CrossRef]
- Tan, M.; Zou, Y.; Zhou, C. A new inversion method for (T2, D) 2D NMR logging and fluid typing. Comput. Geosci. 2013, 51, 366–380. [Google Scholar] [CrossRef]
- Bauer, K.; Kulenkampff, J.; Henninges, J.; Spangenberg, E. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data. J. Geophys. Res. Solid Earth 2015, 120, 6001–6017. [Google Scholar] [CrossRef]
- Xie, R.; Xiao, L. The (T2, D) NMR Logging Method For Fluids Characterization. Chin. J. Geophys. 2009, 52, 1092–1100. [Google Scholar] [CrossRef]
- He, Z.; Ni, J. Measurement results and study of NMR and viscosity experiments on thick oil samples. J. Oil Gas (J. Jianghan Pet. Inst.) 2006, 28, 82–84. [Google Scholar]
- Kadkhodaie, A.; Rezaee, R.; Kadkhodaie, R. An effective approach to generate drainage representative capillary pressure and relative permeability curves in the framework of reservoir electrofacies. J. Pet. Sci. Eng. 2019, 176, 1082–1094. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Zhang, G.; Liu, S. Application of nuclear magnetic resonance logging technology in the evaluation of thick oil reservoirs in the Bohai Sea. J. Oil Gas 2009, 31, 64–67. [Google Scholar]
- Tan, M.; Wu, H.; Zhang, J.; Wang, K.; Mao, K.; Li, B.; Li, C. Influencing mechanics and correction method of nuclear magnetic resonance measurement in igneous rocks reservoir. J. Pet. Sci. Eng. 2022, 208, 109648. [Google Scholar] [CrossRef]
- Dlubac, K.; Knight, R.; Song, Y.; Bachman, N.; Grau, B.; Cannia, J.; Williams, J. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA. Water Resour. Res. 2013, 49, 1871–1886. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Y.; Wang, H.; Pan, Z.; Yan, D. Connectivity and permeability of Zhuhai tight sandstone heterogeneous reservoirs from western Pearl River Mouth Basin (China) by nuclear magnetic resonance. Appl. Geochem. 2022, 143, 105381. [Google Scholar] [CrossRef]
- Maliva, R.G.; Clayton, E.A.; Missimer, T.M. Application of advanced borehole geophysical logging to managed aquifer recharge investigations. Hydrogeol. J. 2009, 17, 1547–1556. [Google Scholar] [CrossRef]
- Plastino, A.; Gonçalves, E.C.; da Silva, P.N.; Carneiro, G.; Azeredo, R.B.d.V. Combining classification and regression for improving permeability estimations from 1H NMR relaxation data. J. Appl. Geophys. 2017, 146, 95–102. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Liu, D.; Zheng, S.; Sun, G.; Chang, Y. Shale pore size classification: An NMR fluid typing method. Mar. Pet. Geol. 2018, 96, 591–601. [Google Scholar] [CrossRef]
- Hu, F.; Zhou, C.; Li, C.; Xu, H.; Zhou, F.; Si, Z. Water spectrum method of NMR logging for identifying fluids. Pet. Explor. Dev. 2016, 43, 268–276. [Google Scholar] [CrossRef]
- Muhammad, A.; Azeredo, R.B.d.V. 1H NMR spectroscopy and low-field relaxometry for predicting viscosity and API gravity of Brazilian crude oils—A comparative study. Fuel 2014, 130, 126–134. [Google Scholar] [CrossRef]
- Yan, W.; Sun, J.; Cheng, Z.; Li, J.; Sun, Y.; Shao, W.; Shao, Y. Petrophysical characterization of tight oil formations using 1D and 2D NMR. Fuel 2017, 206, 89–98. [Google Scholar] [CrossRef]
- Yan, W.; Sun, J.; Golsanami, N.; Li, M.; Cui, L.; Dong, H.; Sun, Y. Evaluation of wettabilities and pores in tight oil reservoirs by a new experimental design. Fuel 2019, 252, 272–280. [Google Scholar] [CrossRef]
- Shi, Y.; Cai, W.; Liu, G.; Yuan, C.; Zhang, W.; Chuang, S.; Li, S.; Wang, S. Characteristics of two-dimensional nuclear magnetic resonance (NMR) mapping and evaluation method for pore fluids in shale oil reservoirs with full-diameter cores. China Oil Explor. 2023, 28, 132–144. [Google Scholar]
Viscosity (mPa·s) | Density (g/cm3) | Boiling Point (°C) | Sulfur Content (% w/w) | Asphaltene Content (g) |
---|---|---|---|---|
1.5 | 0.83 | 200–300 | 0.1 | 4 |
25 | 0.85 | 300–400 | 0.3 | 5 |
75 | 0.88 | 400–500 | 0.5 | 5 |
519 | 0.92 | 500–600 | 1.0 | 6 |
26,000 | 1.02 | 600–700 | 3.0 | 10 |
Sample | Length (mm) | Diameter (mm) | Volume (mL) | Dry Weight (g) | Helium Porosity (%) | Helium Permeability (×10−3 μm2) |
---|---|---|---|---|---|---|
7A | 42.52 | 25.06 | 20.98 | 47.01 | 15.5 | 23.39 |
9B | 42.88 | 25.07 | 21.17 | 46.04 | 17.2 | 140.09 |
11A | 42.31 | 25.12 | 20.97 | 39.26 | 27.8 | 305.90 |
13A | 42.12 | 25.11 | 20.85 | 39.10 | 28.3 | 377.04 |
14B | 41.66 | 25.13 | 20.66 | 39.49 | 27.4 | 500.16 |
Mesh Size | Equivalent Diamete (μm) | Equivalent Pore Diameter (μm) | Corresponding Particle Grade |
---|---|---|---|
60 mesh | 250 | 77 | Medium Sand |
120 mesh | 125 | 39 | Fine Sand |
180 mesh | 80 | 25 | Silt Sand |
Crude Oil Types | μ (mPa·s) | T2 (ms) | Viscosity Formulas for Crude Oil |
---|---|---|---|
Heavy oil | μ ≥ 150 mPa·s | T2 < 20 ms | |
Medium oil | 50 mPa·s < μ < 150 mPa·s | 20 ms < T2 < 40 ms | |
Light oil | μ ≤ 50 mPa·s | T2 > 40 ms |
Layer Number/Well | Midpoint of Layer (m) | TPI | Measured Viscosity (mPa·s) | Crude Oil Type | Visual Identification | T1/T2 | NMR Viscosity (mPa·s) |
---|---|---|---|---|---|---|---|
35/BQ-25 | 2193.6 | 0.52 | 25.99 | Light oil | Light oil | 1.57 | 23.48 |
36/BQ-25 | 2197.2 | 0.59 | 16.13 | Light oil | Light oil | 1.41 | 12.79 |
37/BQ-25 | 2198 | 0.57 | 27.35 | Light oil | Light oil | 1.55 | 22.12 |
14/BQ-10 | 1893.6 | 0.47 | 70 | Medium oil | Medium oil | 1.80 | 63.08 |
15/BQ-10 | 1897.2 | 0.44 | 75.6 | Medium oil | Medium oil | 1.87 | 80.07 |
16/BQ-10 | 1898 | 0.39 | 148 | Medium oil | Medium oil | 2.05 | 134.25 |
21/BQ-20 | 1989 | 0.31 | 502.3 | Heavy oil | Heavy oil | 2.44 | 390.7 |
22/BQ-20 | 1992 | 0.32 | 445 | Heavy oil | Heavy oil | 2.38 | 331.74 |
23/BQ-20 | 1999 | 0.32 | 581 | Heavy oil | Heavy oil | 2.50 | 450.11 |
24/BQ-20 | 2001 | 0.24 | 1268 | Heavy oil | Heavy oil | 2.87 | 1084.49 |
Layer Number/Well | Midpoint of Layer (m) | Crude Oil Type | Measured Viscosity (mPa·s) | NMR Viscosity (mPa·s) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
35/BQ-25 | 2193.6 | Light oil | 25.99 | 23.48 | 2.51 | 0.10 |
36/BQ-25 | 2197.2 | Light oil | 16.13 | 12.79 | 2.34 | 0.15 |
37/BQ-25 | 2198 | Light oil | 27.35 | 22.12 | 4.23 | 0.16 |
14/BQ-10 | 1893.6 | Medium oil | 70 | 63.08 | 6.92 | 0.10 |
15/BQ-10 | 1897.2 | Medium oil | 75.6 | 80.07 | −4.47 | −0.06 |
16/BQ-10 | 1898 | Medium oil | 148 | 134.25 | 13.75 | 0.09 |
21/BQ-20 | 1989 | Heavy oil | 502.3 | 390.7 | 111.60 | 0.22 |
22/BQ-20 | 1992 | Heavy oil | 445 | 331.74 | 113.26 | 0.25 |
23/BQ-20 | 1999 | Heavy oil | 581 | 450.11 | 130.89 | 0.23 |
24/BQ-20 | 2001 | Heavy oil | 1268 | 1084.49 | 183.51 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, S.; Wang, S.; Sun, J.; Cai, W.; Yu, W.; Dai, H.; Yang, W. Application of Two-Dimensional NMR for Quantitative Analysis of Viscosity in Medium–High-Porosity-and-Permeability Sandstones in North China Oilfields. Energies 2024, 17, 5257. https://doi.org/10.3390/en17215257
Zhang W, Li S, Wang S, Sun J, Cai W, Yu W, Dai H, Yang W. Application of Two-Dimensional NMR for Quantitative Analysis of Viscosity in Medium–High-Porosity-and-Permeability Sandstones in North China Oilfields. Energies. 2024; 17(21):5257. https://doi.org/10.3390/en17215257
Chicago/Turabian StyleZhang, Wei, Si Li, Shaoqing Wang, Jianmeng Sun, Wenyuan Cai, Weigao Yu, Hongxia Dai, and Wenkai Yang. 2024. "Application of Two-Dimensional NMR for Quantitative Analysis of Viscosity in Medium–High-Porosity-and-Permeability Sandstones in North China Oilfields" Energies 17, no. 21: 5257. https://doi.org/10.3390/en17215257
APA StyleZhang, W., Li, S., Wang, S., Sun, J., Cai, W., Yu, W., Dai, H., & Yang, W. (2024). Application of Two-Dimensional NMR for Quantitative Analysis of Viscosity in Medium–High-Porosity-and-Permeability Sandstones in North China Oilfields. Energies, 17(21), 5257. https://doi.org/10.3390/en17215257