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Abstract: Offshore oil and gas fields pose significant challenges due to their lower accessibility
compared to onshore fields. To enhance operational efficiency in these deep-sea environments, it is
essential to design optimal fluid production conditions that ensure equipment durability and flow
safety. This study aims to develop a smart operational solution that integrates data from three offshore
gas fields with a dynamic material balance equation (DMBE) method. By combining the material
balance equation and inflow performance relation (IPR), we establish a reservoir flow analysis model
linked to an AI-trained production pipe and subsea pipeline flow analysis model. We simulate
time-dependent changes in reservoir production capacity using DMBE and IPR. Additionally, we
utilize SLB’s PIPESIM software to create a vertical flow performance (VFP) table under various
conditions. Machine learning techniques train this VFP table to analyze pipeline flow characteristics
and parameter correlations, ultimately developing a model to predict bottomhole pressure (BHP) for
specific production conditions. Our research employs three methods to select the deep learning model,
ultimately opting for a multilayer perceptron (MLP) combined with regression. The trained model’s
predictions show an average error rate of within 1.5% when compared with existing commercial
simulators, demonstrating high accuracy. This research is expected to enable efficient production
management and risk forecasting for each well, thus increasing revenue, minimizing operational
costs, and contributing to stable plant operations and predictive maintenance of equipment.

Keywords: offshore gas fields; machine learning; DMBE; production forecasting

1. Introduction

Globally, energy demand continues to rise steadily. According to the latest analysis
by Statista, global natural gas consumption surged by 4.6% from 3832.1 billion cubic
meter (BCM) in 2018 to 4010.2 BCM in 2023 [1]. This reflects a substantial increase of
18.9% compared with the 3372.1 BCM in 2013, indicating a significant upward trend.
Concomitantly, interest in offshore oil and gas fields is growing alongside existing onshore
production sites [2,3]. Unlike onshore facilities, which are relatively easier to maintain,
production systems in subsea environments present complex challenges for maintenance
and repair [4,5]. Therefore, designing optimal fluid production systems and operating real-
time risk monitoring systems are crucial for ensuring the stability and safety of equipment.

In response to these challenges, smart operation technologies for gas fields, often
referred to as digital oil field (DOF) technologies, are actively being developed [6]. These
technologies leverage information and communications technology (ICT) to enhance pro-
duction efficiency and safety by utilizing data collected from sensors attached to various
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facilities [7,8]. Additionally, the oil and gas industry is increasingly exploring the applica-
tion of machine learning based on big data, with AI techniques being employed for tasks
such as fluid flow analysis in reservoirs and pipelines, production forecasting, and optimal
network design [9,10]. The market research firm Markets and Markets predicts that the
DOF industry will grow at an average annual rate of 6.3%, reaching approximately USD
43 billion by 2029 (Figure 1).
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Petroleum development projects inherently face higher uncertainties than other re-
source development sectors, often leading to significant changes in initial development
plans due to various challenges [12,13]. Gas fields are typically designed for production
periods exceeding ten years, and alterations in development strategies can necessitate
additional drilling and maintenance of both reservoirs and production facilities, ultimately
impacting development and operational costs.

A recent study proposed a simplified analytical solution derived in real-time space,
showing promising results in both onshore and offshore field cases [14]. However, such
solutions often involve complex transformations and numerical inversions, which can
introduce uncertainties. In the Volve Field case study in the North Sea, the Capacitance
Resistance Model Injector Producer (CRMIP) model and automated seismic analysis were
used to optimize well placement and predict production [15]. The complexity of these
models can reduce interpretability, making it difficult to understand the underlying factors
driving the predictions. Various prediction methods, such as acoustic emission, fiber optic
sensing, infrared thermography, mass-volume balance, and pressure point analysis, have
their own strengths and weaknesses. However, after evaluating key factors like accuracy,
ease of use, and operational flexibility, dynamic modeling with machine learning stands
out as the most effective [16]. Unlike mass-volume balance or pressure point analysis,
which are limited to steady-state conditions, dynamic modeling adapts to both steady
and transient states, offering superior accuracy and flexibility in real-time production
environments [16–18].

To achieve successful gas field operations, it is essential to generate optimal devel-
opment and maintenance plans through accurate analysis and diagnostics tailored to the
target field [19]. Given the increasing complexity of offshore gas field management and
the importance of accurate production forecasting, this study focuses on developing a
machine learning-based solution to optimize production and ensure operational stability. A
reservoir flow analysis model was developed using the dynamic material balance equation
(DMBE), which integrates the mass balance method with the inflow performance relation
(IPR). This model is further enhanced with an artificial intelligence (AI) component that
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simulates production tubing and subsea pipeline flows. The integrated solution includes
a rate allocation algorithm that predicts flow capacity for each production process and
pipeline over time under normal operating conditions. This approach aims to establish a
proactive maintenance solution capable of rapidly analyzing the flow characteristics of the
entire production system. It is expected to enable quick calculations of production factors
(such as pressure and temperature) for each production element, without relying on costly
commercial software. Additionally, any abnormal signals generated during production can
be swiftly identified, contributing to stable plant operations and proactive maintenance of
equipment.

2. Theoretical Background and Method
2.1. Development of Analysis Method and the Change in Production Capacity of Reservoir

When production occurs through multiple wells, the reservoir pressure continuously
declines [20]. The pressure drop pattern for each well varies due to the formation’s het-
erogeneity and fluid properties, leading to changes in production capacity over time [21].
Variations in permeability and porosity of the reservoir cause uneven pressure depletion,
gradually shifting the IPR curve downward as reservoir pressure decreases. Additionally,
as gas composition changes or condensates form, the pressure-flow relationship adjusts,
leading to further shifts in the IPR curve. This can be expressed through the IPR, which
mathematically represents the relationship between reservoir pressure and flow rate and
shows how the flow rate changes according to various flowing bottomhole pressures
(FBHP) [22,23]. In gas fields, the IPR typically displays non-linear characteristics, as shown
in Figure 2. Natural flow conditions can be determined at the intersection of the IPR
and the tubing performance relationship (TPR) [24]. In Figure 2 it can be observed that
the IPR curve shifts leftward and downward over time due to the reduction in reservoir
pressure from production, explaining the decline in output over time as a shift in the
intersection point.
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voir depletion.

In gas fields, simplified backpressure equations, such as Equation (1), are frequently
used [25]. However, for more accurate analysis, more complex equations, like Equation (2),
are preferred when pressures are comparable.

Backpressure equation:

q = C
(

P2
R − P2

w f

)n
(1)
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where, q = Gas flow rate (SCF/day), C = Performance coefficient (SCF/day/psi2), PR = Reser-
voir pressure (psia), Pwf = Flowing bottomhole pressure (psia) and n = exponent.

Compressible fluids under the pseudo steady-state flow condition:

Qg =
kh

(
P2

R − P2
w f

)
1422T

(
ln re

rw
− 0.75 + s

) (2)

where, Qg = Gas flow rate (MSCF/day), k = Permeability (md), T = temperature (◦R),
re = Drainage radius (ft), rw = Wellbore radius (ft) and s = Skin factor.

For the analysis of the production flowline, pressure drops due to friction, gravitational
effects, and other factors must be considered. For tubing, if either the FBHP or the wellhead
pressure (WHP) is fixed, the pressure drop of fluid flowing through the tubing can be
calculated using various charts or correlations, allowing the pressure at the other end to be
determined [23]. The relationship between these flow pressures and flow rates is known as
the TPR or flowline performance curve (FPC). A typical relationship for vertical flowlines
is shown in Equation (3). The method follows the iterative approach described by Katz
et al. [26], in which the compressibility factor is determined at the average pressure to
ensure accurate pressure drop estimates.

Tubing performance relationship equation:

q = 200000

[
sD5(P2

in − esP2
wh

)
γgTzH fM(es − 1)

]0.5

(3)

where, D = Tubing diameter (inch), Pin = Flowing tubing intake pressure (psia), Pwh = Flow-
ing wellhead pressure (psia), γg = Gas gravity temperature (◦R), z = Average gas compress-
ibility factor, H = Vertical depth (ft), s = 0.0375γg H/Tz.

Moody friction factor:

fM =

[
2log

(
3.71
ϵ/D

)]−2
(4)

where, ϵ = Absolute pipe roughness (in inches).
As previously mentioned, as production continues, the IPR curve shifts downward

and to the left as reservoir pressure decreases, changing the intersection between the
IPR and TPR over time. Since the IPR curve represents inflow-performance behavior
at a specific point in time, linkage analysis with the material balance equation (MBE) is
required to simulate the changing production capacity of oil wells over time [27]. The
MBE treats the reservoir as a single tank and analyzes the average pressure, reserves, and
productivity of the reservoir based on the conservation of mass for fluids entering and
leaving the tank [28]. For gas fields, the MBE is a function of average reservoir pressure
and cumulative gas production (Gp, SCF), and it incorporates the gas compressibility factor
(z). This relationship is shown in Figure 3 and Equation (5), where it is represented as a
linear function of p/z and Gp [29]. The average reservoir pressure can be derived from
shut-in pressure recovery data during production stoppages.

MBE for gas reservoir:
P
z

=
Pi
zi

− GPPi
Gzi

(5)

where, P = Reservoir pressure (psia), Pi = Initial reservoir pressure (psia), zi = Initial gas
compressibility factor, G = Initial gas cap gas (SCF).

L. Mattar et al. have introduced a new concept called the flowing material balance
equation (FMBE), which calculates initial gas in place (IGIP) using sandface flow pressure
under constant production rates [29]. However, since most production wells do not main-
tain constant production rates over extended periods, the DMBE is applied. The DMBE can
be expressed by the following Equations (6)–(9) [30].
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Pseudo Steady-State Flow:

Pin − Pw f =
qt

co N
+ bpssq (6)

Cumulative Production:
qt = NP (7)

MBE:
Pi − PR =

NP
co N

(8)

Combine Equations (6)–(8), and re-arrange:

PR = Pw f + bpssq (9)

This relationship shows how varying production pressures affect the IPR. Over time,
the total production (NP) increases, allowing p/z to be derived. Based on this derived p/z,
the reservoir pressure can be recalculated, and by repeating this process, changes in the
production capacity of the well over time can be predicted.
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2.2. Development of In-Pipe Flow Prediction Model Using Artificial Intelligence

Artificial Neural Networks (ANNs) simulate the brain’s network of neurons to create
models, with deep learning specifically referring to ANNs that employ multiple layers [31].
For effective deep learning, large amounts of high-quality data are essential to create
more accurate AI algorithms [32]. In recent years, machine learning techniques have been
increasingly applied across various industries [33]. This study focused on predicting flow
characteristics in production pipelines using a vertical flow performance (VFP) table, which
represents the relationships among tubing head pressure (THP), water-gas ratio (WGR),
oil-gas ratio (OGR), bottomhole pressure (BHP), and flow rate (Q). The goal was to develop
an analysis method capable of predicting abnormalities that deviate from normal operating
conditions by examining the correlations among THP, WGR, OGR, Q, and BHP.

Machine learning in this study was performed using TensorFlow 1.12.0, a Python-
based library developed by Google [34,35]. The learning process proceeded as follows:
first, parameter ranges were selected for each well and pipeline, resulting in an average of
80,000 datasets per flowline. Various techniques were then examined to identify the optimal
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AI learning approach for training on the VFP tables. Recurrent neural networks (RNNs)
were excluded from this study since the data points were independent and non-sequential.
Instead, the study compared the learning accuracy of three methods: Multilayer perceptron
(MLP) + Regression, Autoencoder + Regression, and Support vector regression (SVR).
The variables used for each method, such as flow rate, pressure, and other operational
conditions, and the structure of the neural networks are shown in Figures 4–6.
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The total learning dataset for each flowline was split into 75% for training, 15% for
validation, and 10% for testing. To address variations in input data size and speed up the
optimization process, data normalization was performed using a range from −1 to 1, as
shown in Equation (10).

Normalization = 2 × input − min
max − min

− 1 (10)

The model evaluation method confirmed that the predicted values fell within a range
of ±20 psi using root mean square error (RMSE) to measure the difference between the
predicted and actual values. Additionally, to avoid overfitting, the order of batch data
was shuffled with each learning iteration. This approach helped ensure that the model
generalized well and did not memorize the training data.

MLP, which achieved the highest accuracy, is a neural network with one or more
intermediate (hidden) layers between the input and output layers, as shown in Figure 7.
MLPs are feedforward networks, in which connections run from the input layer through the
hidden layers to the output layer, without feedback from the output layer to the input layer.



Energies 2024, 17, 5268 7 of 21
Energies 2024, 17, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 5. Neural network structure and parameters for auto-encoder + regression method. 

The total learning dataset for each flowline was split into 75% for training, 15% for 

validation, and 10% for testing. To address variations in input data size and speed up the 

optimization process, data normalization was performed using a range from −1 to 1, as 

shown in Equation (10). 

Normalization = 2 ×
𝑖𝑛𝑝𝑢𝑡 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
− 1 (10) 

The model evaluation method confirmed that the predicted values fell within a range 

of ±20 psi using root mean square error (RMSE) to measure the difference between the 

predicted and actual values. Additionally, to avoid overfitting, the order of batch data was 

shuffled with each learning iteration. This approach helped ensure that the model gener-

alized well and did not memorize the training data. 

MLP, which achieved the highest accuracy, is a neural network with one or more 

intermediate (hidden) layers between the input and output layers, as shown in Figure 7. 

MLPs are feedforward networks, in which connections run from the input layer through 

the hidden layers to the output layer, without feedback from the output layer to the input 

layer. 

Figure 5. Neural network structure and parameters for auto-encoder + regression method.

Unlike a single-layer perceptron, MLP can analyze the nonlinear characteristics of
input and output by utilizing these hidden layers, thereby improving predictive perfor-
mance and overcoming the limitations of a single-layer perceptron. The accuracy of MLP
or Autoencoder + Regression models generally depends on the number of hidden layers
and nodes within those layers. Using the grid search method, we conducted repeated
experiments to find the optimal number of hidden layers and nodes.

The performance of SVR, in contrast, depends on setting the appropriate hyperpa-
rameters, such as kernel type, gamma, penalty, and epsilon. In this study, SVR training
on the VFP table was conducted by adjusting the remaining hyperparameters using the
radial basis function (RBF). However, many overfitting issues arose, leading to suboptimal
results. As a result, the MLP method was ultimately selected and used for AI training. This
model selection process was vital in ensuring that the AI could handle the complexities
of the data while maintaining high predictive accuracy, especially in dynamic produc-
tion environments. The outcomes of each machine learning technique are presented in
Tables 1–3.



Energies 2024, 17, 5268 8 of 21
Energies 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 6. Structure and parameters for support vector regression (SVR) method. The asterisk (*) 

indicates the downward direction. 

 

Figure 7. Optimized neural network structure for multilayer perceptron (MLP). 

Unlike a single-layer perceptron, MLP can analyze the nonlinear characteristics of 

input and output by utilizing these hidden layers, thereby improving predictive perfor-

mance and overcoming the limitations of a single-layer perceptron. The accuracy of MLP 

or Autoencoder + Regression models generally depends on the number of hidden layers 

and nodes within those layers. Using the grid search method, we conducted repeated ex-

periments to find the optimal number of hidden layers and nodes. 

The performance of SVR, in contrast, depends on setting the appropriate hyperpa-

rameters, such as kernel type, gamma, penalty, and epsilon. In this study, SVR training 

on the VFP table was conducted by adjusting the remaining hyperparameters using the 

radial basis function (RBF). However, many overfitting issues arose, leading to suboptimal 

results. As a result, the MLP method was ultimately selected and used for AI training. This 

Figure 6. Structure and parameters for support vector regression (SVR) method. The asterisk (*)
indicates the downward direction.

Energies 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 6. Structure and parameters for support vector regression (SVR) method. The asterisk (*) 

indicates the downward direction. 

 

Figure 7. Optimized neural network structure for multilayer perceptron (MLP). 

Unlike a single-layer perceptron, MLP can analyze the nonlinear characteristics of 

input and output by utilizing these hidden layers, thereby improving predictive perfor-

mance and overcoming the limitations of a single-layer perceptron. The accuracy of MLP 

or Autoencoder + Regression models generally depends on the number of hidden layers 

and nodes within those layers. Using the grid search method, we conducted repeated ex-

periments to find the optimal number of hidden layers and nodes. 

The performance of SVR, in contrast, depends on setting the appropriate hyperpa-

rameters, such as kernel type, gamma, penalty, and epsilon. In this study, SVR training 

on the VFP table was conducted by adjusting the remaining hyperparameters using the 

radial basis function (RBF). However, many overfitting issues arose, leading to suboptimal 

results. As a result, the MLP method was ultimately selected and used for AI training. This 

Figure 7. Optimized neural network structure for multilayer perceptron (MLP).

Table 1. Results of multilayer perceptron (MLP) model.

VFP Table
Index

1st Hidden
Node

2nd Hidden
Node

3rd Hidden
Node Test Data RMSE ±20 Range

Count
±20 Range Count/

Total Data

1

512 1024 512

6241 5.6952 6163 0.9876
2 6761 5.0745 6689 0.9893
3 7411 12.4004 6985 0.9425
4 4941 6.9936 4786 0.9688
5 7001 10.8435 6677 0.9538
6 6751 11.4112 6445 0.9548
7 6881 4.9926 6812 0.9901
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Table 2. Results of auto-encoder method.

VFP Table
Index

1st Hidden
Node

2nd Hidden
Node

3rd Hidden
Node Test Data RMSE ±20 Range

Count
±20 Range Count/

Total Data

1

512 1024 512

6241 5.6952 6163 0.9876
2 6761 5.0745 6689 0.9893
3 7411 12.4004 6985 0.9425
4 4941 6.9936 4786 0.9688
5 7001 10.8435 6677 0.9538
6 6751 11.4112 6445 0.9548
7 6881 4.9926 6812 0.9901

Table 3. Results of support vector regression (SVR) method.

VFP Table
Index

Hyperparameters Test
Data RMSE

±20 Range
Count

±20 Range Count/
Total DataKernel Gamma (γ) Penalty (C) Epsilon (ε)

1 RBF

1 0.1 5 × 10−3

6241

18.25427 1923 0.308124
1 1 5 × 10−3 16.73165 2098 0.336164
1 10 5 × 10−3 30.73826 1142 0.182983
1 100 5 × 10−3 16.33457 2149 0.344336
10 0.1 5 × 10−3 31.97001 1098 0.175933
10 1 5 × 10−3 29.62285 1185 0.189873
10 10 1 × 10−3 29.52318 1189 0.190514
10 100 5 × 10−3 15.98496 2196 0.351867

100 0.1 5 × 10−3 26.63355 1318 0.211184
100 1 5 × 10−3 30.26115 1160 0.185868
100 10 5 × 10−3 16.10967 2179 0.349143
100 1000 5 × 10−3 15.98496 2196 0.351867
5 10 2 × 10−4 30.36587 1156 0.185227
8 10 2 × 10−4 29.54800 1188 0.190354

As shown in the Tables 1–3, the goal was to predict the VFP table and BHP under
specific flow conditions using the trained models. A predicted value within 20 psi of the
actual value was considered a successful result. Both the MLP and Autoencoder methods
achieved high prediction accuracy rates of nearly 97%. However, learning was less effective
at the lower ends of the input values across all four variables. Through this process, it was
demonstrated that machine learning models can predict pipeline flow characteristics with
high accuracy, rivaling the results of existing pipeline flow simulators.

2.3. Building a Gas Field Optimal Operating Solution Using Rate Allocation Algorithm

Due to the reservoir’s heterogeneity and fluid characteristics, the flow behavior of
individual production flowlines can vary, even within the same gas field [25]. Therefore,
applying rate allocation techniques is essential for accurately analyzing production across
various flowlines. While gas production is influenced by several factors, the primary
factor affecting flow rates—assuming reservoir and fluid properties remain constant—is
the pressure at the top of the manifold [22]. When reservoir pressure is high, an adjustment
at the manifold is applied to control the production rate [36]. In such cases, factors such
as tubing depth, gas specific gravity, and pressure loss due to friction must be considered
when gas flows through vertical production lines [37].

As production continues, reservoir pressures and other properties evolve, making it
crucial to integrate and analyze the characteristics of each production system component to
maintain optimal production conditions. This is especially important in manifolds where
multiple wells and pipelines form a network. When extracting gas, production control
must account for both economic factors and the reservoir’s operational conditions. The
production rate is largely determined by the pressure differential between upstream and
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downstream points [38]. Since managing reservoir pressures poses economic and technical
challenges, the common approach is to regulate pressure at the manifold.

In this study, we developed a production forecasting model for the entire production
system by combining flow prediction models which were trained using IPR, DMBE, and
machine learning techniques with yield distribution methods. The flowchart for this process
is shown in Figure 8.
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The model was designed to regulate the production rate of each well by calculating
the necessary physical properties, simulating the IPR changes as production continues, and
incorporating fluid material balance. Machine learning data was used to replace the TPR
for more accurate predictions.

3. Results and Discussion
3.1. Model Accuracy

The accuracy of the machine learning model was assessed by comparing the predicted
flow rates and BHP against values obtained from the commercial Pipesim™ (https://www.
software.slb.com/software-news/software-top-news/pipesim/pipesim-2017-1 accessed
on 3 September 2018) steady-state multiphase flow simulator. The properties of the gas
wells used for simulating each field are detailed in Table 4.

Table 4. Key reservoir and wellbore characteristics for simulated offshore gas wells.

Well
Reservoir
Pressure

(psi)

C
(Backpressure

Eqn.)

n
(Backpressure

Eqn.)

Reservoir
Temperature

(◦F)

Reservoir
Depth

(ft)

A 5293 2.216 × 10−5 1 165.50 14,633
B 4800 3.106 × 10−5 1 165.00 12,253
C 5200 1.857 × 10−5 1 165.56 10,565

https://www.software.slb.com/software-news/software-top-news/pipesim/pipesim-2017-1
https://www.software.slb.com/software-news/software-top-news/pipesim/pipesim-2017-1
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A virtual system was constructed using this model, which consisted of three gas wells,
pipelines, chokes, and a manifold that gathers the gas produced and sends it to the platform,
as illustrated in Figure 9. Well JUMPER (a pipeline) is a very short section, assumed to have
minimal impact on the overall production process. Artificial intelligence learning data was
generated for the production lines of wells A, B, and C, as well as for the pipelines running
from the manifold to the platform. The gas fields used in this study are currently producing
gas from three wells connected to a single manifold. Steady-state flow rates, BHP, THP,
WGR, and OGR for each well were measured over several years and these values were
matched precisely using the PIPESIM model. Using this model, we generated data under
various operating conditions, resulting in the creation of 80,000 datasets.
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Based on the simulation results, the material balance graphs for each gas well were
plotted, along with the pressure-to-z relationship. These are shown in Figures 11–14. The
resulting FMBE graph appears nearly linear. Given that the z-factor changes with pressure,
an additional property calculation algorithm was included to reflect this variation. With
FMBE, it is possible to calculate changes in reservoir pressure as a function of cumulative
gas production. When combined with the IPR, this allows for changes in production
capacity to be forecast while accounting for decreasing reservoir pressure.

Although most gas platforms are equipped with flowmeters for each well, several
factors contribute to errors in the values measured [39]. Consequently, the exact production
volume of each flowline is not always known, leading to operational challenges.

In this study, the previously described method and a Python script were used to
develop a rate allocation algorithm capable of distributing the optimal output for each
production process. By leveraging the machine learning data, the model was able to detect
and respond to abnormal conditions in platform operations. The AI and algorithm-based
system calculated the optimal output for each production process, verifying its accuracy by
comparing the results with those from a commercial simulator.

Mean absolute error (MAE) was used to assess the model’s accuracy. MAE is calculated
from the mean of the absolute differences between predicted and actual values. It provides
an intuitive measure of error and is commonly used to assess models for which minimizing
the difference between predicted and actual values is critical. The closer the MAE value is to
0, the closer the predictions are to the actual values. The formula is as follows Equation (11):

MAE =
1
n∑|ŷ − y| (11)

where, n = Number of points, ŷ = Prediction value and y = True value.
The flow rate estimates for the three gas wells, based on specific cumulative production,

are shown in Figures 15–18 and Tables 5–8 below.
Figure 15 and Table 5 show the comparison between simulated and estimated flow

rates for Well A. As observed, the predicted flow rates closely match the simulated values,
with only minor deviations across the production period. The trend line indicates that the
flow rate steadily decreases from an initial rate of approximately 72 MMSCF/D to 58 MM-
SCF/D as cumulative gas production increases. This decline in flow rate is consistent with
the reservoir depletion expected over time, which behavior the model captures accurately
with minimal error.
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Table 5. Results of Well A: Simulated vs. Estimated production rates and bottomhole pressures.

Gp
(MMSCF)

Well A
Pressure (psi)

Well A Q
(Simulated)
(MMSCF/D)

Well A Q
(Estimated)

(MMSCF/D)
MAE

10,000 5149.83 72.57 73.40

0.9257

20,000 5027.16 70.96 72.03
30,000 4907.93 69.37 70.51
40,000 4791.82 67.80 69.00
50,000 4678.57 66.24 67.20
60,000 4567.92 64.70 65.97
70,000 4459.66 63.17 64.40
80,000 4353.59 61.67 63.00
90,000 4249.55 60.16 60.10

100,000 4147.38 58.67 58.50

Table 6. Results of Well B: Simulated vs. Estimated production rates and bottomhole pressures.

Gp
(MMSCF)

Well B
Pressure (psi)

Well B Q
(Simulated)
(MMSCF/D)

Well B Q
(Estimated)

(MMSCF/D)
MAE

10,000 5028.64 73.67 72.90

0.702

20,000 4922.46 72.24 72.01
30,000 4818.78 70.82 69.90
40,000 4717.40 69.42 68.44
50,000 4618.14 68.03 67.92
60,000 4520.84 66.65 65.40
70,000 4425.37 65.28 64.37
80,000 4331.58 63.93 63.90
90,000 4239.37 62.58 62.20

100,000 4148.62 61.24 59.80

Table 7. Results of Well C: Simulated vs. Estimated production rates and bottomhole pressures.

Gp
(MMSCF)

Well C
Pressure (psi)

Well C Q
(Simulated)
(MMSCF/D)

Well C Q
(Estimated)

(MMSCF/D)
MAE

10,000 4987.72 71.68 71.40

0.475

20,000 4882.52 70.22 69.91
30,000 4779.74 69.78 69.20
40,000 4679.19 67.36 66.80
50,000 4580.70 65.94 65.40
60,000 4484.12 64.54 64.10
70,000 4389.30 63.16 63.90
80,000 4296.13 61.78 62.22
90,000 4204.49 60.41 60.90

100,000 4114.27 59.05 59.42

Similarly, Figure 16 and Table 6 present the comparison for Well B, for which the
simulated and estimated flow rates also show a close correlation. In this case, the flow rate
starts around 73 MMSCF/D and decreases to approximately 61 MMSCF/D over time. The
accuracy of the model’s predictions for Well B further confirms its robustness in handling
varying reservoir conditions, with most deviations within an acceptable margin of error.

Figure 17 and Table 7 illustrate the same comparison for Well C, where the flow rate
begins at 71 MMSCF/D and declines to around 59 MMSCF/D. The estimated values are
almost identical to the simulated results, demonstrating the model’s high precision in
predicting the production performance of this well.
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Table 8. Total simulated and estimated flow rates.

Gp
(MMSCF)

Total Q (Simulated)
(MMSCF/D)

Total Q (Estimated)
(MMSCF/D) MAE

10,000 217.92 217.70

0.6269

20,000 213.42 213.95
30,000 209.97 209.61
40,000 204.58 204.24
50,000 200.21 200.52
60,000 195.89 195.47
70,000 191.61 192.67
80,000 187.38 189.12
90,000 183.15 183.20

Each well exhibited some variability in its predicted flow rates. These differences can
be attributed to the trajectory of the production wells connected to the single manifold. Well
A was drilled more vertically than the others, resulting in relatively higher productivity.
The differing trajectories lead to slight variations in production performance.

Figure 18 and Table 8 consolidate the flow rates for all three wells, showing the com-
bined simulated and estimated flow rates. The total flow rate starts near 218 MMSCF/D
and decreases to 183 MMSCF/D. The strong alignment between the simulated and pre-
dicted values across all wells highlights the model’s overall accuracy and its potential
applicability for predicting total production in complex gas fields.

3.2. Flow Rate and Bottomhole Pressure Trends

The model successfully identified and predicted the natural decline in flow rates
associated with reservoir depletion over time. Figure 19 illustrates the predicted flow rate
trends for Wells A, B, and C. For Well A, the flow rate decreased from an initial value of
72.57 MMSCF/D to approximately 58.67 MMSCF/D over the course of the study. This
trend aligns with the typical behavior observed in gas wells for which sustained production
leads to gradual declines in flow rates due to pressure depletion.
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Variations in production behavior across Wells B and C were also notable, with flow
rate trends reflecting differences in reservoir pressure and initial production conditions.
These insights are critical for operators, as understanding these trends allows for better
long-term planning and resource management.

In addition to flow rates, the model provided accurate forecasts of BHP, which are
essential for assessing reservoir health and operational efficiency. Figure 20 demonstrates
the BHP trends for each well throughout the production period. For Well A, the BHP
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declined from 5149 psi to 4147 psi, highlighting the effects of continued gas extraction on
reservoir pressure dynamics.
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Figure 20. Estimated bottomhole pressure (BHP) trends of each well change over time.

The steady decline in BHP observed across the wells indicates a uniform depletion
pattern, reinforcing the need for careful pressure management to prevent issues such as gas
locking or equipment failure. Effective monitoring of BHP is crucial for maintaining safe
operational conditions, and the model’s accuracy in predicting these values enhances its
applicability for operational decision-making.

Future research could focus on incorporating dynamic parameters, such as changes
in fluid composition and temperature variations, to further improve the model’s accuracy.
Additionally, applying the model to more complex reservoir systems, including those
with multi-phase flows or significant heterogeneity, will enhance its generalizability and
applicability across diverse gas field operations.

3.3. Implications, Limitations, and Future Work

The machine-learning-based approach developed in this study shows great promise
for optimizing production forecasting and enhancing real-time decision-making in gas
field operations. By utilizing field data such as flow rates, BHP, THP, WGR, and OGR, the
model can quickly detect unexpected flow and issue alarms during steady-state production,
improving both operational efficiency and predictive maintenance.

However, the model has certain limitations. It may not fully capture the complexities
of flow dynamics, particularly under multiphase flow or highly heterogeneous reservoir
conditions. The differences between our model’s results and those from PIPESIM stem
from the inherent limitations of the machine learning approach, as do PIPESIM’s nonlinear
characteristics. However, the overall impact of these differences remains minimal.

Future research should focus on incorporating dynamic parameters such as fluid
composition and temperature variations to enhance the model’s accuracy in handling
evolving reservoir conditions. Expanding the model to account for multiphase flow and
applying it to unconventional or deepwater reservoirs will further broaden its practical
utility. Additionally, validating the model with real-time production data is essential to
ensure its robustness in real-world applications.

4. Conclusions

Efficient production management is key to maximizing profits and minimizing opera-
tional costs in gas field operations. This includes the proactive detection of maintenance
needs and potential risks in operating gas fields. The aim of this study was to develop a
production prediction solution capable of responding to various issues in real time. To this
end, we tested data from three gas wells scheduled for production to predict changes in
production rates and BHP. A deep learning-integrated model was proposed to estimate pro-
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duction flow rates for each well, utilizing the initial pressure and the expected cumulative
gas production profile. The analysis yielded the following conclusions:

(1) When comparing the results of the commercial software with the deep learning model,
the minimum, maximum, and average error rates of the total flow rate were 0.04%,
2.35%, and 1.5%, respectively. This indicates that the model’s predictions closely
matched actual values.

(2) As production progressed, different production profiles emerged based on the gas
field’s IPR. This demonstrates the necessity of adjusting the top-side pressure during
production to properly distribute the flow rate and achieve optimal production.

(3) The findings of this study are expected to assist in the optimal allocation of production
rates in future gas field operations. Using production data and BHP profiles under
normal operating conditions, any real-time deviations beyond a certain threshold can
be flagged as danger signals, allowing for immediate response. This can be utilized for
stable plant operations and predictive maintenance of facilities, while also improving
workforce efficiency in areas currently reliant on manual labor.

(4) To achieve more accurate analyses, it is essential to address limitations such as the
availability of diverse training data and potential overfitting issues in certain ma-
chine learning models. Increasing the volume of training data, carefully selecting AI
models, and cross-validating multiple models will significantly improve predictive
performance.

In addition to providing a highly accurate machine learning model for production
forecasting, this study offers practical insights into optimizing gas field management. The
proposed model can be integrated into existing DOF infrastructures, enhancing real-time
decision-making and operational efficiency. By reducing reliance on costly commercial
software and enabling autonomous analysis, this approach has the potential to lower
operational costs and improve the longevity of gas field infrastructure.
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