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Abstract: This work utilizes the particle swarm optimization (PSO) for optimal sizing of a
solar–wind–battery hybrid renewable energy system (HRES) for a rural community in Rivers State,
Nigeria (Okorobo-Ile Town). The objective is to minimize the total economic cost (TEC), the total
annual system cost (TAC) and the levelized cost of energy (LCOE). A two-step approach is used.
The algorithm first determines the optimal number of solar panels and wind turbines. Based on the
results obtained in the first step, the optimal number of batteries and inverters is computed. The
overall results obtained are then compared with results from the Non-dominant Sorting Genetic
Algorithm II (NGSA-II), hybrid genetic algorithm–particle swarm optimization (GA-PSO) and the
proprietary derivative-free optimization algorithm. An energy management system monitors the
energy balance and ensures that the load management is adequate using the battery state of charge
as a control strategy. Results obtained showed that the optimal configuration consists of solar panels
(151), wind turbine (3), inverter (122) and batteries (31). This results in a minimized TEC, TAC and
LCOE of USD 469,200, USD 297,100 and 0.007/kWh, respectively. The optimal configuration when
simulated under various climatic scenarios was able to meet the energy needs of the community
irrespective of ambient conditions.

Keywords: feasibility; hybrid; power; homer; solar; wind

1. Introduction

The global energy landscape is undergoing a significant transformation driven by the
main goal of reducing greenhouse gas emissions and ensuring energy security. A promising
solution to this is the deployment of Hybrid Renewable Energy Systems (HRESs). These
systems combine multiple sources of renewable energy, such as solar, wind, and hydro, to
provide a reliable and sustainable power supply.

As of September 2023, Nigeria’s electricity production reached 8415 GWh [1]. However,
the country’s national electricity grid has been unstable, with more than 200 collapses in the
last nine years, often leading to widespread blackouts, with the national rate of electricity
access being just 58% [1]. The extension of the grid to rural areas is often unfeasible due to
factors such as challenging terrains, remote locations, high supply costs, low consumption
rates, low household incomes, poor road infrastructure, and scattered consumer settlements.
As a result, many rural inhabitants depend on alternative sources like diesel generators
for their electricity needs. However, this solution comes with its own set of problems,
including noise pollution, greenhouse gas emissions, and high maintenance and fuel
costs. In response to increasing environmental concerns, there is a push for the Nigerian
electrical power industry to turn to cleaner sources for electricity generation. These sources,
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which include wind, solar, biomass, small hydro, and geothermal, are locally available,
environmentally friendly, free, and unlimited. However, the intermittent nature of RE
sources, which often necessitates system oversizing and the use of large energy storage
devices, can lead to substantial investment costs.

In terms of HRES sizing, numerous studies have been conducted over the years. Aga-
jie et al. [2] investigated the optimal design and mathematical modeling of a hybrid solar
PV–biogas generator system with energy storage. Their study focused on multi-objective
function cases to enhance the system’s economic viability, reliability, and environmental
impact. Adewuyi et al. [3] explored a multi-objective mix generation planning approach
considering utility-scale solar PV systems and voltage stability, specifically for Nigeria,
highlighting the importance of integrating solar PV to improve voltage stability and overall
system reliability. Al-Masri et al. [4] developed an optimal energy management strategy for
a hybrid photovoltaic–biogas energy system using multi-objective grey wolf optimization.
They aimed to optimize the system’s performance and cost-effectiveness. Xu et al. [5] pro-
posed an improved optimal sizing method for wind–solar–battery hybrid power systems,
focusing on enhancing the reliability and efficiency of hybrid systems through better sizing
strategies. Al-Masri et al. [6] examined the impact of different photovoltaic models on
the design of a combined solar array and pumped hydro storage system with the aim of
optimizing the system’s performance and cost-effectiveness. Similar studies also utilize con-
ventional strategies (like analytical, numerical, iterative, and probabilistic methods) [7–10].
Artificial intelligence techniques like Grey Wolf Optimization (GWO), PSO, Cuckoo Search
Algorithm (CSA), GA, Ant Colony Optimization (ACO), and Artificial Bee Colony (ABC)
have also been explored. For instance, Al-Masri et al. [11] explored the optimal allocation of
a hybrid photovoltaic–biogas energy system using multi-objective feasibility-enhanced par-
ticle swarm algorithm. They focus on improving system reliability and cost-effectiveness.
Sultan et al. [12] introduced an improved artificial ecosystem optimization algorithm for the
optimal configuration of a hybrid PV/WT/FC energy system. It aims to enhance system
performance and efficiency. Ukoima et al. [13] presented a modified multi-objective particle
swarm optimization (m-MOPSO) for the optimal sizing of a solar–wind–battery hybrid
renewable energy system with a focus on improving the system’s efficiency and reliability.
Diab et al. [14] explored the sizing of a hybrid solar/wind/hydroelectric pumped storage
energy system in Egypt using different meta-heuristic techniques with the aim of enhancing
system performance and cost-effectiveness. Alotaibi et al. [15] designed a smart strategy
for sizing a hybrid renewable energy system to supply remote loads in Saudi Arabia fo-
cusing on optimizing system performance and cost-effectiveness. Iturki and Awawad [16]
minimized costs of a standalone hybrid wind/PV/biomass/pump-hydro storage-based
energy system with the aim of enhancing the system performance and reducing the cost.
Other studies also explored AI techniques for optimal sizing [17–21]. Furthermore, hybrid
methods like GA-PSO, Simulated Annealing–Tabulated Search, and GA-ABC are also the
focus of recent studies. For example, Fadli and Purwoharjono [22] investigated optimal
sizing of a PV/diesel/battery hybrid microgrid using a multi-objective bat algorithm.
Shi et al. [23] addressed size optimization of stand-alone PV/wind/diesel hybrid power
generation systems. Javed and Ma [24] conducted a techno-economic assessment of a hy-
brid solar–wind–battery system using a GA-ABC algorithm, focusing on optimizing system
performance and cost-effectiveness. Emad et al. [25] explored the techno-economic design
of a hybrid PV/wind system with battery energy storage for a remote area. Hatata et al. [26]
proposed an optimization method for sizing a solar/wind/battery hybrid power system
based on the artificial immune system with a focus on improving system performance
and cost-effectiveness. Askarzadeh and Coelho [27] introduced a novel framework for
optimizing grid-independent hybrid renewable energy systems, focusing on a case study
in Iran. Li et al. [28] presented the optimal design and techno-economic analysis of a
solar–wind–biomass off-grid hybrid power system for remote rural electrification in West
China. They aim to improve system reliability and cost-effectiveness. Goswami et al. [29]
developed a grid-connected solar–wind hybrid system with reduced levelized tariff for
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a remote island in India. The utilization of computer software like HOMER, Transient
System Simulation Tool and General Algebraic Modeling System is also in the limelight.
Aziz et al. [30] investigated the optimal sizing of standalone hybrid energy systems for
rural electrification in Iraq. They considered sensitivity analysis to enhance system per-
formance and reliability. Kumar and Channi [31] designed a PV–biomass off-grid hybrid
renewable energy system (HRES) for rural electrification. They analyzed techno-economic
and environmental aspects of the proposed system. Hashem et al. [32] explored optimal
placement and sizing of wind turbine generators and superconducting magnetic energy
storage in a distribution system. They aimed to improve system efficiency and reliability.
Duchaud et al. [33] investigated multi-objective particle swarm optimization for sizing a
renewable hybrid power plant with storage. They addressed factors such as cost, reliability,
and environmental impact. Rezk et al. [34] sized a stand-alone hybrid PV–fuel cell–battery
system for desalinating seawater at Saudi NEOM City. They considered energy sustain-
ability and water production. Donado et al. [35] developed a multi-objective optimization
tool for configuring renewable hybrid energy systems. They explored various energy
sources and system configurations. Generally, these studies use a variety of indicators to
evaluate HRES performance. These indicators can be economic (levelized cost of energy,
net present cost, total annualized cost, reliability-based (loss of power supply probability
(LPSP) and loss of load probability), environmental (like life cycle assessment, life cycle
emission and carbon footprint of energy), or social (social acceptance, job creation index,
human development index).

From the reviewed literature, most of the research papers focused solely on system
sizing or energy control. A successful energy management system must be combined with
a suitable sizing method. The aim of this study is to develop a comprehensive approach
to the operation of HRES, integrating optimal sizing, energy balance, load management,
and control strategy. The optimal sizing of HRES is crucial to ensure that the system can
meet the energy demand at the lowest possible cost. Energy balance involves managing
the supply and demand of energy within the system, ensuring that energy production
matches consumption. Load management strategies are used to control and optimize
the operation of the HRES, improving its efficiency and reliability. Finally, the control
strategy is essential for the stable and efficient operation of the HRES, managing the
interaction between different energy sources and the load. Optimal sizing, energy balance,
load management and control are separate but interconnected facets of the same Hybrid
Renewable Energy System (HRES). A system that is optimally sized but lacks energy
balance, load management and control will not operate efficiently.

Our optimal sizing model identifies the least costly structure of the HRES. The model
is then combined with an Energy Management System (EMS) algorithm, which guarantees
optimal energy scheduling during system operation. The combination of these two systems
will result in a mutual model that guarantees energy reliance at the lowest possible cost.
This study employs PSO to achieve this. It is a widely recognized optimization algorithm
that stands out due to its numerous benefits compared to other similar algorithms. Its
advantages encompass its simplicity, the fact that it does not require derivatives, its use
of a limited number of parameters, which eases the tuning process, its ability to be easily
parallelized, and its insensitivity to scaling, meaning that the performance of PSO remains
largely unaffected by the scaling of design variables. The performance of the PSO is
then compared with results obtained from the hybrid GA-PSO, NGSA-II, and proprietary
derivative-free optimization algorithms.

This study contributes the following:

1. Development of a comprehensive HRES optimization model that integrates optimal
sizing, energy balance, load management, and control strategy into a single model.
This model ensures that the system can meet the energy demand at the lowest possible
cost while maintaining efficiency and reliability.

2. Utilization of the PSO for optimal sizing of a solar–wind–battery hybrid renewable
energy system (HRES) and comparing the performance of PSO with hybrid GA-
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PSO, NGSA-II, and proprietary derivative-free optimization algorithms, providing a
detailed analysis of the trade-offs between cost and performance for different opti-
mization methods.

3. Evaluation of the economic indicators (TEC, TAC, LCOE) and performance metrics
(reliability) of the proposed HRES configurations.

The limitation of this study is the following:

1. The study does not consider the detailed electrical network model. Hence, this study
does not consider issues related to voltage stability, power quality, inverter power
and network losses.

The remainder of this paper is structured as follows. Section 2 outlines the materials
and methods, Section 3 presents the results and discussion, and Section 4 concludes
the paper.

2. Materials and Methods

Matlab 2020a and HOMER v3.16.2 were used in running the simulations. Firstly, the
PSO was used to find the optimal number of solar panels and wind turbines. The results
obtained are then used to compute the number of batteries and inverters required. The
overall results are then compared with results obtained from the hybrid GA—PSO, NGSA-II
and proprietary derivative-free optimization algorithm. Finally, the optimal configurations
are then simulated under various weather conditions to evaluate the general performance
under varying conditions. The research framework is shown in Figure 1.
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2.1. Description of Okorobo-Ile Town and Load Profile

Okorobo-Ile is a remote village situated in the South-South region of Nigeria, at the
boundary between the Rivers and Akwa-Ibom States. The village has a population of about
6,700 people, spread across approximately 600 households. It includes essential community
facilities such as schools, churches, and a town hall. Most residents leave their homes
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in the morning and return in the evening. The community’s total daily energy demand
(TED) is 656.36 kWh, with a peak load of 99.12 kW and a total daily load of 678 kW. A
comprehensive technical analysis of the community’s load demand and profile is available
in [36]. Figure 2 illustrates the community’s load profile.
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2.2. Resource Data

The solar data for the site were sourced from the NASA solar energy radiation database,
as depicted in Figure 3. Wind speed data were collected through hourly measurements
from January 2020 to January 2023 using a UNI-T Bluetooth digital anemometer installed
at a height of 10 m. Figure 4 illustrates the wind speed plot for the site.
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2.3. Mathematical Model of the HRES
2.3.1. PV Panels

The hourly output power of a PV module is defined as [38,39]:

Ppv(t) = G(t)× A × η (1)

G(t) represents the hourly solar irradiance at the site, as shown in Figure 1. The area of
the panel is denoted by (A) (1 m2), and (η) is the solar panel efficiency (20%). In this study,
it is assumed that the PV modules are equipped with a maximum power point tracking
(MPPT) system, and temperature effects are disregarded. If (x(1)) is the number of PV
modules to be optimized, the total PV power can be calculated as follows:

Ppv = x(1)Ppv (2)

2.3.2. Wind Turbine

Several formulas exist for the power output of a wind turbine. In this study, we use
the following formula:

Pw(v) =


0 v ≤ vc&v ≥ vf

Pr × v3−v3
c

vr3−v3
c

vc ≤ v ≤ vr

Pr vr ≤ v ≤ vf

 (3)

In this study, (v) represents the wind speed at the wind turbine’s hub. (Vc) is the cut-in
speed, (Vr) is the rated speed, and (Vf) is the cutoff speed. The wind turbine has a rating
of 25 kW, with a rated speed of 3 m/s and a cut-in speed of 2 m/s. The conversion of the
measured wind speed at a given height to the turbine hub speed is performed using the
power law.

v = vmeasure ×
(

hhub
hmeasure

)α

(4)

The exponent law coefficient, (α), varies depending on factors such as the season,
nature of the terrain, time of day, elevation, temperature, wind speed, and various thermal
and mechanical mixing parameters. When specific site data are unavailable, (α) is typically
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assumed to be 0.14, while for windy locations, (α) is taken as 0.25. If (x(2)) represents
the number of wind turbines to be optimized, the total wind power can be calculated
as follows:

Pw = x(2)Pw (5)

2.3.3. Number of Inverters

In this study, the calculation of the number of inverters is primarily based on the
peak load. This is because the inverter must be capable of handling the highest power
demand the system will encounter at any given time to prevent overloading. To account
for potential future system expansion, a small margin above the calculated peak load is
included to ensure reliability. The algorithm follows these steps to compute the number
of inverters:

Determine the HRES peak power.
Determine the peak load from the load profile.
Compare the peak load from the load profile with the peak power generated by the

HRES. The higher value is considered the peak power.
Add a safety margin of 23% for reliability and future load expansion.
Assuming each inverter has a rating of 1 kW and an efficiency of 95%, the number of

inverters, (x(3)), is calculated as follows:

x(3) =
peak_power

inverterrating × inverterefficiency
(6)

2.3.4. Number of Batteries

The energy generated by the HRES can be used to meet the community’s needs during
production hours. Any surplus energy can be stored in batteries for use when renewable
sources are not generating power, such as at night or during low-wind periods.

The following steps are used by the algorithm to compute the number of inverters.
Determine the daily energy generated by the HRES.
Energy storage required = daily energy demand − daily energy generated.
Add a safety margin of 23% for reliability and future load expansion.
Assuming that the rating of one battery is 72 kW, dod is 80%, inverter efficiency is

90%, 0.85 is battery efficiency, and 23% is the safety factor, then the number of batteries,
x(4), is given as:

x(4) =
(dailyenergygenerated − dailyenergydemand)

safetyfactor × dod × batterycapacityxbatteryefficiency × inverterefficiency
(7)

2.4. Optimization Problem Formulation
2.4.1. Decision Variables

In this study, the considered decision variables are:
Number of PV panels—x(1);
Number of wind turbines—x(2);
Number of inverters—x(3);
Number of batteries—x(4).

2.4.2. Objective Function

The objective of this study is to minimize the total economic cost (TEC) of the HRES.
The TEC is defined as:

TEC(x(1),x(2),x(3),x(4)) = TAC+ TC + I_C − SV (8)

(TAC) is the Total Annual Cost;
(TC) is the Tax Cost;
(I_C) is the Insurance Cost;
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(SV) is the Salvage Value.
The Total Annual Cost is given by:

TAC = C_C + C_OM + C_R (9)

C_C is the annualized capital cost;
C_OM is the operation and maintenance cost;
C_R is the annualized replacement cost.
The annualized capital cost is calculated as:

C_C = IC × CRF (10)

(IC) is the Total Initial Cost;
(CRF) is the Capital Recovery Factor.
The total initial cost IC is given by:

IC = x(1). Capital cost per solar panel + x(2). Capital cost per wind turbine +
x(3). Capital cost per inverter + x(4). Capital cost per battery.

(11)

The capital recovery factor, CRF is defined as:

CRF =
discountrate × (1 + discountrate)projectlife

(1 + discountrate)projectlife−1 (12)

(r) is the discount rate;
(n) is the project life.
The operation and maintenance cost (C_OM) is given by:

C_OM = x(1). Operation maintenance cost per solar panel + x(2).
Operation maintenance cost per wind turbine + x(3).
Operation and maintenance cost per inverter + x(4).

Operation maintenance cost per battery

(13)

The annual operation and maintenance cost does not include the capital recovery
factor. It is generally considered a fixed cost associated with the operation and maintenance
of the system.

The annualized replacement cost (C_R) is given by:

C_R = RC × CRF’ (14)

(RC) is the Replacement Cost;
(CRF’) is the modified Capital Recovery Factor.
The replacement cost (RC) is given by:

RC = x(1). Replacement cost per solar panel + x(2).
replacement cost per wind turbine + x(3).

replacement_cost_inverter + x(4). replacement cost per battery
(15)

The modified capital recovery factor is defined as:

CRF’ =
discountrate × (1 + discountrate)

projectlife
2

(1 + discountrate)
projectlife

2 −1
(16)

This assumes that the project components need to be replaced halfway through the
project life.
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The annualized tax cost is given as:

TC = tax rate × (IC − SV) (17)

A tax rate of 30% is used in this study.
The salvage value (SV) at the end of the project life is given as:

SV =
0.2 × IC

(1 + discountrate)projectlife (18)

This assumes that salvage value is 20% of component cost.
I_C is the annual insurance cost and is given as:

I_C = insurance rate × IC (19)

An insurance rate of 5% is used in this study.

2.4.3. Constraint

The constraint used in this study is given below.
The first constraint is as follows: Xkmin ≤ Xk ≤ Xkmax, k ϵ [PV panels, wind turbines].
Xk = integer, k ϵ [PV panels, wind turbines]
This constraint defines the minimum and maximum limits for the number of solar

panels and wind turbines to minimize land costs. In this study, the maximum number of
solar panels and wind turbines was set at 165 and 3, respectively, while the minimum was
set at 50 and 0, respectively.

The second constraint is as follows: Daily power generated ≥ daily load profile.

2.4.4. Technique for Optimization

This study uses Particle Swarm Optimization (PSO), which is an algorithm inspired
by the social behavior of species like birds or fish that move in groups to reach a shared
objective. It is an algorithm that falls under the domain of swarm intelligence, which
is a subset of artificial intelligence. In the context of PSO, a swarm of particles, each
symbolizing a potential solution, explores the solution space of a problem to identify the
most optimal solution. The movement of each particle is dictated by its own best-known
position and is also steered towards the best-known positions in the search space, which
are updated as other particles discover better positions. This heuristic method is designed
to guide the swarm towards the most optimal solutions. This is shown in Figure 5. The
result of the optimization technique is then compared with the hybrid GA-PSO, NGSA-
II and the proprietary derivative-free algorithm used in HOMER. The hybrid GA-PSO
algorithm leverages the strengths of both the genetic algorithm (GA) and Particle Swarm
Optimization (PSO). By initializing the GA with data from the PSO, the GA starts with a
strong foundation, helping it to avoid local optima and enhance its search efficiency.

2.5. Energy Balance, Control and Load Management

For energy balance, the algorithm calculates the energy balance at each time step by
subtracting the load (energy demand) from the total DC power generated by the wind and
solar sources. This balance determines whether there is excess or insufficient generation. If
there is excess generation, the surplus energy is stored in the battery. If there is insufficient
generation, energy is drawn from the battery. This process ensures that the energy produced
matches the energy consumed, thus maintaining a balance. The battery state of charge
control part of the algorithm monitors the state of charge (SOC) of the battery based on the
energy balance. If there is excess generation, the battery is charged up to its capacity. If
there is insufficient generation, the battery is discharged, but not below a minimum SOC.
This control mechanism ensures that the battery is used optimally, prolonging its life and
ensuring that it can provide power when needed. In the load management section, if there
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is still a remaining load after accounting for the total DC power and the battery, the diesel
generator is used. The amount of generation from the diesel generator is controlled to meet
the remaining load, but within the generator’s capacity and minimum load. This ensures
that the load is met at all times. The diesel generator was included in the algorithm to see if
it is possibly needed. The diesel generator control controls the diesel generator’s operation
to prevent rapid changes in its output. This is performed by limiting the ramp rate, which
is the change in generation from one time step to the next. This control mechanism can
prevent potential damage to the generator due to rapid changes in load.
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The energy balance, control and load management are achieved with the follow-
ing steps:

1. Calculate total DC power: This is calculated by adding the power output from the
WT and PV panels.

2. Calculate the energy balance (E_b): This is calculated by subtracting the load profile
(the energy demand at time i) from the total DC power.

3. Update battery state of charge (SOC): Depending on the energy balance, the battery
SOC is updated as follows.

If there is excess generation (Energy_balance > 0), the energy is stored in the battery.
The amount of energy stored is limited by the battery’s power rating and charging efficiency.
The SOC is also limited to the battery’s capacity.

If there is insufficient generation (Energy_balance < 0), energy is drawn from the bat-
tery. The amount of energy drawn is limited by the battery’s power rating and discharging
efficiency. The SOC is also limited to a minimum SOC.
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If the energy balance is zero, the battery SOC remains unchanged.

4. Calculate remaining load: The remaining load is calculated by subtracting the total
DC power and the change in battery SOC from the load profile.

5. Possible diesel generator operation: If there is a remaining load, the diesel generator
is used. The amount of generation is limited by the generator’s capacity and its
minimum load. The generator’s ramp rate is also taken into account to limit the
change in generation from one time step to the next.

2.6. Technical Specifications for Optimization

The optimization algorithm minimizes the TAC while ensuring that the solution is
adequate in meeting the community’s energy demand. The selection process considers the
type, rating, and pricing of the Hybrid Renewable Energy Systems (HRESs). The technical
specifications are detailed in Table 1.

Table 1. Technical specifications for optimization.

Solar Panel Specification

Max power 1 kW
Dimension 1.8 × 1.0 m

Panel efficiency 19.3%
Panel temperature coefficient −0.005/◦C

Initial cost (IC) USD 1200/kW
O & M cost USD 10/kW

Replacement cost USD 1000/kW
Life span 20 years

Wind turbine

Rated power 25 kW
Cutin speed 5 m/s
Rated speed 12 m/s
Cutoff speed 25 m/s

Initial cost USD 5000/kW
O & M cost USD 500/kW

Replacement cost USD 5000/kW
Life span 20 years

Inverter

Rating 1 kW
Efficiency 95%

Battery

Rating 72 kWh
Depth of Discharge (dod) 80%

Efficiency 85%

Economic

Inflation rate 40%
Discount rate 30%

Tax rate 30%
Insurance rate 5%

Salvage 20% of IC

3. Results and Discussion
3.1. Result from Particle Swarm Optimization

The optimal configuration is composed of 154 PV modules, three wind turbines,
136 inverters and 31 batteries. Figure 6 shows the power generated from the optimal
configuration. The annual electrical energy produced by the system was 42.17 MWh, of
which 41.974 MWh is solar PV, and 196.59 kWh is from wind turbine. The minimized
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total economic cost (TEC) and the total annual cost are USD 476,731 and USD 301,947,
respectively. This results in an LCOE of 0.011 USD/kWh. The other cost associated with
the TEC was USD 174,784. The total operation and maintenance cost, total replacement cost
and total capital cost of the optimal system were found to be USD 219,772, USD 446,300
and USD 341,630, respectively. Figure 7 shows the optimized fitness function and Figure 8
shows a breakdown of the capital cost. The PV and wind turbine represented 37% and 30%
of the capital cost of the system, respectively. The number of wind turbines was limited
to a maximum of three (3) in the algorithm as a result of its high cost. Therefore, solar PV
and wind turbines are the critical components in the stand-alone HRES for the region. The
battery bank’s cost makes up 25% of the total capital cost, while the inverter cost accounts
for about 8%.
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3.2. Result from Hybrid GA—PSO

For the Particle Swarm Optimization (PSO) algorithm, a swarm size of 4 and a maxi-
mum of 50 iterations were used. The best solution from PSO is used as the initial population
for the GA. The Genetic Algorithm uses a population size of 20 and a maximum of 50 gen-
erations. After running the simulation, the result shown in Figure 9 indicates that after
the fifth generation, the TAC value plateaus, indicating that further generations did not
significantly improve the solution, and the optimal number of solar panels, wind turbines,
inverters, and batteries that minimizes the TAC was found early. The final solution is
the same as the result obtained from the PSO algorithm. This result validates the results
obtained from the PSO. The power generated is shown in Figure 10.
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3.3. Result from NGSA-II

The multi-objective GAII uses a population size of 4 and a maximum of 150 generations.
The simulation result indicates that 151, 3, 122 and 31 are the optimal sizes representing
the number of solar panels, wind turbines, inverters and batteries, respectively. The TEC,
TAC and LCOE are USD 469,200, USD 297,100 and 0.007/kWh, respectively. The result
is shown in Figure 11. The annual electricity produced by the system was 41.79 MWh.
This implies that this configuration has a deficit power of 0.38 MWh in comparison with
the result obtained from the PSO and GA-PSO. In terms of the TEC, TAC and LCOE,
there is a corresponding reduction of USD 7531, 4847 and 0.004/kWh, respectively, in the
multi-objective GA result when compared with the other two algorithms.
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3.4. Result from HOMER

Homer employs two different optimization algorithms. The first is a grid search
algorithm that simulates all possible system configurations within the defined search space.
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The newer optimizer in Homer uses a unique, derivative-free algorithm to identify the
most cost-effective system. Homer then provides a list of configurations ranked by their
net present cost (NPC), also known as the life-cycle cost.

Figure 12 shows the Homer model for optimization. The winning solution consists
of 166 kW PV panels (Generic flat plate PV), three wind turbines (Eocycle EO25 Class III),
29 batteries (20 kW–72 kWh Primus Power Energy Cell) and 123 kW converter.
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A summary of the optimal sizes is presented in Table 2. The table shows that each
algorithm provides slightly different solutions, balancing costs and energy production
differently. Particle Swarm Optimization (PSO) and the hybrid GA—PSO yield similar
optimal configurations, while Non-dominated Sorting Genetic Algorithm II (NGSA-II)
suggests slightly different component sizes. HOMER software recommends a larger PV
panel capacity.

Table 2. Summary of optimal sizes.

Algorithm PV Panels Wind
Turbines Inverters Batteries TEC/NPC

(USD)
LCOE

(USD/kWh)

PSO 154 3 136 31 476,731 (TEC) 0.01
GA-PSO 154 3 136 31 476,731 (TEC) 0.01
NGSA-II 151 3 122 31 469,200 (TEC) 0.007
HOMER

(Proprietary
Derivative-free)

166 3 123 29 615,664.95
(NPC) 0.16

Cost-wise, NGSA-II achieves the lowest total cost, while HOMER’s solution is costlier
but provides higher energy capacity. Balancing costs and performance is crucial in design-
ing an efficient HRES. The trade-offs are:

Cost Considerations: Lower costs are desirable, as they lead to better financial fea-
sibility and quicker return on investment. However, excessively minimizing costs may
compromise system reliability, energy production, and overall effectiveness.

Performance Considerations: High energy production and reliability are essential for
meeting demand and achieving sustainability goals. Overemphasizing performance might
lead to an expensive system that is not financially viable.

Given the available options, NGSA-II provides a good balance between cost and
performance, with a competitive LCOE and reasonable total cost. HOMER’s solution
has high performance but comes at a significantly higher cost. The solution from the
NGSA-II configuration is chosen due to its cost-effectiveness while maintaining satisfac-
tory performance.
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3.5. Performance Evaluation of Solution Under Various Ambient Conditions

This section details the performance analysis of energy balancing and load man-
agement. The analysis considers three weather conditions: average, poor, and good. It
evaluates four specific times of the day: 06:00 h (when most residents start their day),
12:00 h (typical office hours), 18:00 h (when residents return home), and 21:00 h (bedtime).
The simulation incorporates a PV array with 151 solar panels, three wind turbines, and a
battery array consisting of 31 batteries.

3.5.1. CASE 1: Average Weather Condition

A usual average weather condition for the region is depicted in Figure 13. From
Figure 14, the following is observed:
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At 6 h: The load demand is 77.27 kW, and the state of charge of the battery is 124 kWh.
The battery is supplying power to fulfill the load demand, as the PV and wind generation
are insufficient.
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At 12 h: The load demand is 55.3 kW. Both solar panel and wind generation are inade-
quate to meet the load, so the battery, with a state of charge of 214.9 kWh, is discharging to
cover the demand.

At 18 h: The load demand is 99.1 kW. Power generation from the PV is 0 kW. The wind
generation is 47.77 kW and the state of charge of the battery decreases from 367.4 kWh to
321.2 kWh as it discharges to meet the load.

At 21 h: The load is 59.14 kW. PV generation remains at 0 kW, wind generation is
74.4 kW, and the battery’s state of charge increases from 305.7 kWh to 319.5 kWh, indicating
that the wind generation is sufficient to meet the load without discharging the battery.

3.5.2. CASE 2: Poor Weather Condition

A typical poor weather condition for the region is depicted in Figure 15. From Figure 16,
the following was observed:
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At 6 h: At this time, the power generation from the PV and wind generation are
minimal. The state of charge of the battery is 124 kWh, indicating that it is discharging at a
high rate during this period.

At 12 h: At this time, the load demand exceeds the power generated from the PV
and wind facility. The state of charge of the battery remains at 124 kWh, showing that the
battery is discharging to meet the load.

At 18 and 21 h: The state of charge of the battery stays at 124 kWh, suggesting that it
continues to discharge to meet the load demand.

3.5.3. CASE 3: Ideal Weather Condition

A usual ideal weather condition for the region is depicted in Figure 17. From Figure 18,
the following was observed:
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At 6 h: The power generated from the PV and wind sources is 28.64 kW, which is
insufficient to meet the load demand of 77.1 kW. The state of charge of the battery decreases
from 319.1 kWh to 275.3 kWh, signifying that the battery is discharging to cater for the
load demand.
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At 12 h: At this time, there is surplus generation from the HRES, causing the battery’s
state of charge to increase from 458.8 kWh to 514.8 kWh as it continues to charge.

At 18 h: The power generated from the PV and wind sources cannot meet the load
demand. The state of charge of the battery drops slightly from 620 kWh to 596.9 kWh,
indicating that it is discharging to meet the load.

At 21 h: At this time, the power from the wind is sufficient to meet the load demand.
This causes the state of charge of the battery to rise from 597.7 kWh to 611.5 kWh. The
battery is not discharging, as the load demand is met by the wind generation.

Analyzing the battery’s state of charge across three different weather scenarios reveals
the following insights:

1. Case 1: The state of charge of the battery varies between 124 kWh and 367.4 kWh,
demonstrating that the HRES can handle the load under typical weather conditions.

2. Case 2: The state of charge of the battery remains mostly stable at 124 kWh, indicating
a high discharge rate due to insufficient generation from the PV and wind sources.
This indicates that the system struggles to meet the load demand in these times,
heavily dependent on the battery.

3. Case 3: The state of charge of the battery ranges from 257.3 kWh to 620 kWh. It
discharges when the power from the PV and wind sources falls short of the load
demand but stays fully charged when there is surplus power from the HRE system.
This shows that the system efficiently manages the load under this weather condition,
with the battery providing necessary backup.

Overall, this indicates that the EMS efficiently monitors and regulates the battery’s
state of charge under varying weather conditions.

4. Conclusions

In this study, a two-step methodology was employed to optimize and analyze a solar–
wind–battery hybrid energy system for Okorobo-Ile town in Rivers State, Nigeria, using
PSO. The optimization results demonstrated that the system, comprising a 151 kW PV
facility, three 25 kW wind turbines, 122 kW inverters, and thirty one 20 kWh batteries,
is sufficient to meet the community’s energy demand. The performance of the hybrid
renewable energy system varied considerably with weather conditions. Under favorable
weather conditions, the PV and wind sources could meet the power demand for a greater
part of the day, with excess power stored in the batteries. Conversely, in poor weather
conditions, the batteries discharge frequently to cater to the power demand. This analysis
underscores the critical role of weather conditions in the performance of HRE systems
and highlights the necessity for efficient energy storage systems to ensure a reliable power
supply under varying weather conditions.
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