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Abstract: Office buildings are responsible for about 35% of the total electricity in the US and over
70% of building energy consumption occurs during occupancy periods. Therefore, understanding
occupancy behavior is crucial for reducing building energy consumption. However, given the
stochastic nature of occupant behavior, identifying which occupancy parameters have the most
impact on energy consumption poses a considerable challenge. This study aims to investigate and
quantify the impact of various occupancy parameters on the energy performance of a US small-
sized office building using an EnergyPlus-based nationwide energy simulation. First, dynamic
occupancy schedules are created based on different occupancy parameters using an agent-based
model. Next, the generated dynamic occupancy schedules are integrated into a small office building
model from the Department of Energy’s prototypes. This creates a dataset of occupancy parameters
and building energy performance across various climate zones. Finally, various feature selection
and statistical analysis methods are applied to the generated dataset. This helps identify significant
occupancy parameters and quantify their impact on building energy performance across different
climate zones. According to the results of the study, buildings located in cool marine, mixed marine,
and warm marine climate zones had lower total energy consumption compared to other zones.
Additionally, feature selection methods identified “Occupant Density” as the primary significant
variable impacting energy consumption, across all climate zones. These findings offer valuable
insights into the influential occupancy parameters across various climate zones, highlighting the
importance of tailoring occupancy schedules to enhance energy efficiency. They provide practical
guidance that can be directly applied to optimize energy consumption and achieve significant energy
savings in small office settings with different weather conditions.

Keywords: building simulation; occupant behavior; energy consumption; dynamic occupancy schedules

1. Introduction

Office buildings account for about 35% of overall electricity consumption in the US [1].
Crucially, over 70% of building energy consumption occurs during occupancy periods,
underlining the importance of understanding and optimizing occupancy behavior for
improving building energy efficiency [2]. Analyzing the various occupancy parameters
and their impacts on building energy performance is essential for moving toward smart
and energy-efficient buildings [3]. Therefore, it is necessary to identify which occupancy
parameters have a significant impact on building energy performance and quantify their
impact on building energy consumption [4].

Some studies have focused on the role of occupant behavior in building energy per-
formance simulation and presented a review of the existing literature. For instance, Yan
et al. [5] reviewed the literature in terms of monitoring occupant behavior and collecting
the occupancy data, modeling occupant behavior, evaluating the occupancy models, and
integrating the models into building performance simulation tools. They emphasized the
importance of developing a standardized framework for describing and modeling occupant
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behavior in buildings. Yang et al. [6] explored occupancy sensing technologies and methods
for modeling occupant behavior in institutional buildings. They highlighted the challenges
associated with implementing occupancy sensing and monitoring in institutional buildings,
primarily because of the substantial number of occupants, their considerable variability,
and the diverse functions of these buildings for certain techniques and methodologies.
Norouziasl et al. [7] conducted a systematic review of the literature regarding modeling
and simulation tools for human-building energy-related interaction. They established a
framework for inputs and outputs in modeling occupant behavior and outlined the most
effective techniques for simulating occupant behavior in building energy performance.
Bäcklund et al. [8] focused on campus buildings, highlighting the evolving behaviors of
occupants influenced by smart building systems. Their semisystematic literature review
emphasized the significant impact of such systems on energy use, promoting a shift towards
more energy-aware behaviors. This research underscores the potential for integrating smart
systems into building management to optimize energy consumption and enhance educa-
tional environments. Additionally, Vosoughkhosravi et al. [9] provided a systematic review
of the use of the American Time Use Survey (ATUS) in modeling occupant behavior. In
this review, the authors investigated occupant behavior models and approaches developed
based on ATUS. They offered a comprehensive analysis of modeling methods, required
inputs and outputs, as well as the most practical occupant behavior methods.

Among the studies aiming to simulate occupant energy-related behavior, Chen et al. [10]
developed an agent-based occupancy simulator to simulate the stochastic behavior of
occupants, including occupants’ presence and movement. They employed a homoge-
neous Markov chain model to simulate the stochastic occupancy schedules for each office
room and the whole building. Then, the generated occupancy schedules were used in
the EnergyPlus and obFMU simulation to evaluate the impacts of occupant behavior on
building energy performance [11]. Putra et al. [12] also developed an agent-based model
(ABM) to study building occupant behavior during load shedding, simulating occupants’
adaptive actions and their impact on building energy consumption. In a similar study, Jia
et al. [13] investigated the impact of actual and modeled occupant behavior information
on building performance simulation. They used an agent-based modeling approach to
simulate occupant behavior and conducted a cosimulation with a building energy model.
Their study highlighted the significant influence of different occupant behavior inputs on
building energy performance. Another study by Parys et al. [14] focused on integrating
stochastic models of occupant behavior with dynamic building simulations. The authors
reviewed various methods for this integration, emphasizing the importance of accurately
modeling occupant behavior to improve the precision of energy performance predictions
in office buildings. By coupling dynamic building simulations with stochastic occupant
behavior models, the study aimed to address the variability and unpredictability of human
actions, which significantly impact energy consumption. This integrated methodology
helped in creating more realistic and reliable simulations, ultimately leading to better-
informed decisions for energy-efficient building design and operation. Almeida et al. [15]
also studied the uncertainty in occupant behavior in building energy models. They found
that energy consumption could vary significantly based on different occupancy schedules
and environmental preferences, highlighting the importance of accurate occupant behavior
modeling. In their 2019 study, Gunay et al. [16] developed an occupancy learning algo-
rithm for terminal heating units. They investigated how occupant behavior impacts the
energy performance of HVAC systems by utilizing both field data and simulation models.
Their findings highlighted the importance of accurately modeling occupant behavior to
optimize HVAC system performance and improve energy efficiency in buildings. In a
similar study by Li et al. [17], they explored the use of radio frequency identification (RFID)
technology to measure and monitor occupancy in buildings. The authors developed an
RFID-based system designed to provide real-time occupancy data, which can be used
to optimize HVAC operations. By accurately tracking the presence and movement of
occupants, the system allows for demand-driven HVAC control, which adjusts heating
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and cooling based on actual occupancy rather than predefined schedules. This approach
can significantly improve energy efficiency by reducing unnecessary heating or cooling of
unoccupied spaces, leading to potential energy savings and enhanced comfort for building
occupants. In addition, Chen et al. [18] proposed two stochastic Markov chain models
using real data to simulate the occupancy schedule in commercial buildings. These models
simplified transition probability calculations and offered occupancy-based energy models
for single-zone and multi-zone offices. Page et al. [19] developed an algorithm for sim-
ulating occupant presence in buildings using an inhomogeneous Markov chain model.
The model was then integrated with building energy simulation as an input to account
for future occupant behavior. By applying this model to occupancy data from private
offices, the study demonstrated the key aspects of occupant presence, including arrival and
departure times, and intermediate periods of absence in energy consumption patterns. A
number of studies have concentrated on enhancing energy efficiency in buildings through
improved occupancy modeling and predictive analysis. For instance, Oldewurtel et al. [20]
investigated the potential of using occupancy information to realize a more energy efficient
building climate control. In their research, a model predictive control (MPC) framework
was employed to assess the energy savings potential of office buildings with different
occupancy types. This comparative analysis considered different building types, HVAC
systems, seasonal variations, and occupancy patterns to evaluate their respective effects
on energy-saving potential. In another study, Rafsanjani et al. [21] conducted research on
the influence of occupants’ energy-consuming behaviors, such as arrival, departure and
electricity-use patterns, in commercial buildings and quantified their potential for energy
savings. The proposed study combined occupancy sensing with building energy data to
assess the feasibility of the developed approach in identifying occupant-specific energy con-
sumption information. Erickson et al. [22] addressed the inefficiencies of existing climate
control systems that rely on maximum occupancy numbers, often resulting in unnecessary
heating or cooling of infrequently used rooms. They utilized the occupancy data to develop
multivariate Gaussian and agent-based models for predicting occupancy patterns and then
implemented optimal control strategies to reduce the energy consumption of the HVAC
system. Recent developments in urban-building energy modeling (UBEM) underscore the
significant impact of occupant behavior on energy consumption within urban environ-
ments. Banfi et al. [23], in their comprehensive review, emphasized the limitations of static
occupant profiles often utilized in current modeling practices. Advocating for dynamic and
stochastic models, the study examines the integration challenges and the need for more
sophisticated occupant behavior models to enhance the accuracy and relevance of urban
energy simulations.

Existing research has primarily focused on the general effects of occupancy schedules
on building energy performance. However, these studies often do not fully explore the
influence of specific occupancy-related parameters, such as arrival and departure times,
lunch breaks, and the frequency and duration of meetings on energy consumption, partic-
ularly within office settings. This gap limits the applicability of such studies for creating
accurate, actionable energy management strategies tailored to routine human behaviors.
Moreover, the body of research considering occupancy schedules rarely extends its analysis
to compare these effects across diverse climatic conditions. The United States presents a
unique landscape with a wide range of climate zones, each presenting distinct challenges
and opportunities for energy management in office buildings. Comparative analysis across
different climate zones is crucial but has been rarely covered in the research literature. Gain-
ing insight into these differences is important. Understanding how occupancy schedules
influence energy consumption in different climates can significantly enhance the devel-
opment of localized, climate-specific energy conservation measures. Such detailed and
comparative research is critical not only for advancing theoretical knowledge but also for
informing policymakers and building managers. Tailored strategies could subsequently
be developed to optimize energy use in office buildings nationwide, potentially leading
to substantial reductions in energy costs and environmental impacts. This research gap
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presents a significant opportunity for a pioneering study that could set new directions for
future energy efficiency initiatives and policies.

To address the mentioned gaps, this study aims to analyze the impacts of different
occupancy parameters (e.g., the time occupants arrive at or leave the workplace, the time
and number of meetings, and the time and duration of lunch breaks, among others) on
energy consumption in office buildings across various climate zones in the US. In this
study, an agent-based model (ABM) [24] is used to generate dynamic occupancy schedules
from various sets of occupancy parameters to reflect stochastic occupancy behavior. In
addition, the small-sized office building in the Department of Energy prototype Commer-
cial Building Prototype Model (CBPMs) [25] is used for energy simulation. The generated
stochastic occupancy schedules, as well as the office model, are integrated into the Energy-
Plus simulation model to create a dataset of occupancy parameters and building end-use
energy performance in different climate zones in the US. This dataset is used to select
the most significant occupancy variables impacting building energy consumption using
feature selection techniques. Furthermore, this research provides key insights that are
invaluable for building designers, facility managers, and policymakers by delineating the
critical occupancy parameters that substantially affect energy consumption in office build-
ings. This knowledge authorizes stakeholders to formulate specialized, climate-responsive
strategies that not only optimize energy efficiency but also promote broader sustainability
goals. Additionally, a thorough comprehension of these occupancy influences is crucial
for crafting effective policies aimed at diminishing energy consumption and enhancing
the energy efficiency of design and operational practices in American office buildings.
By identifying these key parameters, the study equips stakeholders with the necessary
tools to implement strategic interventions that can lead to significant energy savings and
operational efficiencies, particularly in diverse climatic conditions across the United States.

2. Research Method

This study adopts a four-step methodology to analyze the impacts of different occu-
pancy parameters on energy consumption, as illustrated in Figure 1. First, several dynamic
occupancy schedules were created based on specific occupancy parameters using an agent-
based model. Then, the generated dynamic occupancy schedules are integrated into the
DOE prototype small-sized office building model. This prototype was developed by the
Pacific Northwest National Laboratory (PNNL) [26] and the US Department of Energy’s
Building Energy Codes Program (BECP) to estimate how changes in energy codes and
standards can lead to energy savings [27]. This prototype provides EnergyPlus IDF models
for different office buildings designed based on the energy codes (i.e., The American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2019
Energy Efficiency Standard for d Buildings Except Low-Rise Residential Buildings).

A nationwide energy simulation was conducted to generate a database of occupancy
parameters and building end-use energy performance in different US climate zones. Then,
the impact of different occupancy parameters on building energy performance was an-
alyzed using a sensitivity analysis and four different feature selection methods. In the
subsequent sections, this study investigates the occupancy parameters utilized to generate
the occupancy schedule. Next, the integration process of the occupancy schedule, consid-
ering various climate zones, into the EnergyPlus simulation model is elaborated. Finally,
this study presents the employed feature selection methods to analyze the outcomes of the
energy performance simulation and identify the most influential variables.
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2.1. Creating Occupancy Schedules

Occupancy in an office building can be defined with various parameters, such as the
time occupants arrive at or leave the workplace, the time and number of meetings, and the
time and duration of lunch breaks throughout the working hours for a specific day [28].
In the first step, different occupancy parameters are used to create various occupancy
schedules using an agent-based model. This simulation approach offers a significant
advantage over traditional case studies by allowing for the exploration of multiple scenarios,
thereby providing a more comprehensive understanding of how different occupancy
dynamics can influence building energy consumption. For this purpose, a web-based
occupancy simulator tool is used, which was developed by Lawrence Berkeley National
Laboratory (LBNL) [10]. The web-based occupancy simulator tool utilizes a Markov-chain
model to simulate occupant movements and generate stochastic schedules. This innovative
tool has been validated in real-world scenarios. The validation studies, as outlined in
research by Luo et al. [29], demonstrate the tool’s efficacy in accurately reflecting occupant
behavior in commercial buildings, thereby providing reliable data for building simulation
to optimize energy usage and operational efficiency. To closely mirror real-world occupancy
patterns, the occupancy schedule is crafted by meticulously integrating as many relevant
parameters as possible. The occupancy schedule can be generated by integrating the
occupancy parameters and office layout parameters in the web-based occupancy simulator
application. This simulator is a user-friendly application that uses a Markov Chain (MC)
model to simulate occupancy in buildings. It takes in high-level inputs on occupant density,
space area, event arrangements, etc., and simulates occupancy movements inside the
building to generate stochastic and dynamic occupancy schedules for each space. This
detailed simulation ensures that the generated occupancy schedules closely approximate
actual daily activities and interactions within office environments. The generated occupancy
schedule may vary daily, reflecting the inherent nature of occupants and their energy-related
behavior in office buildings. The output results of these schedules can be downloaded in
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CSV format to facilitate integration with energy simulation software, such as EnergyPlus
22.1.0 [30].

Table 1 presents the occupancy parameters utilized in this study to generate the
occupancy schedules (the parameters are selected based on the advancement of the current
LBNL occupancy simulator), including variable names, definitions, units, and values. As
illustrated in this table, three types of occupants are considered in the simulation: regular
staff, administrators, and managers. Each type of occupant has different arrival and
departure times, and the duration that each occupant type spends in various spaces varies.

Table 1. Considered occupancy parameters for the considered office building.

No. Variable Name Variable Definition Variable Unit Values *

1 Occupant_Density Number of people per area person/m2
1 = 0.05

* 2 = 0.06
3 = 0.10

4 = 0.14
5 = 0.20
6 = 0.30

2 Occupant_Percent
Percentage of each occupant type:
Regular
staff/Manager/Administrator

Percentage

* 1 = 40/30/30
2 = 20/40/40
3 = 30/35/35
4 = 50/25/25
5 = 60/20/20
6 = 50/10/40
7 = 45/20/35

8 = 35/40/25
9 = 30/50/20

10 = 50/40/10
11 = 45/35/20
12 = 35/25/40
13 = 30/20/50

3 Meeting_Count Number of meetings per day
(Min–Max) Count

1 = 1–3
2 = 2–4

* 3 = 3–5

4 = 4–6
5 = 5–7

4 Meeting_Attend Number of people per meeting
(Min–Max) People

1 = 2–4
2 = 3–5

* 3 = 4–6

4 = 5–7
5 = 6–8

5 Meeting_Duration
Probability of duration of meeting
for the following numbers (30, 60,
90, 120)

Percentage
1 = 5, 60, 20, 15
2 = 10,65, 15,10

* 3 = 15, 70, 10, 5

4 = 20, 65, 10, 5
5 = 25, 60, 10, 5
6 = 30, 55, 10, 5

6 Staff_Arriv_Depar Regular Staff:
Arrival time/Departure time Time

1 = 6:30/15:30
2 = 7:00/16:00

* 3 = 7:30/16:30

4 = 8:00/17:00
5 = 8:30/17:30

7 Admin_Arriv_Depar Administrator:
Arrival time/Departure time Time

1 = 7:00/16:00
2 = 7:30/16:30

* 3 = 8:00/17:00

4 = 8:30/17:30
5 = 9:00/18:00

8 Manag_Arriv_Depar Manager:
Arrival time/Departure time Time

1 = 8:00/16:30
2 = 8:30/17:00

* 3 = 9:00/17:30

4 = 9:30/18:00
5 = 10:00/18:30

9 Arriv_Depar_Vari Arrival/departure time variation Minutes
1= 0 min

2 = 15 min
* 3 = 30 min

4 = 45 min
5 = 60 min

10 Lunch_Time Lunch or short-term leaving start
time Time

1 = 11:00
2 = 11:30

* 3 = 12:00

4 = 12:30
5 = 13:00

11 Lunch_Start_Vari Lunch or short-term leaving Start
time variation Minutes

1= 0 min
2 = 15 min

* 3 = 30 min

4 = 45 min
5 = 60 min

12 Lunch_Duration Lunch or short-term leaving
duration Minutes

1 = 30 min
2 = 45 min

* 3 = 60 min

4 = 75 min
5 = 90 min
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Table 1. Cont.

No. Variable Name Variable Definition Variable Unit Values *

13 Lunch_duration_Vari Lunch or short-term leaving
duration variation Minutes

1 = 5 min
2 = 10 min

* 3 = 15 min

4 = 20 min
5 = 25 min

14 Staff_Room_Stay
(Regular Staff)
Percentage of time that occupants
stay in each space

Percentage

1 = 50, 20, 10, 10, 10
2 = 55, 20, 10, 10, 5
3 = 60, 15, 10, 10, 5

4 = 65, 15, 10, 5, 5

* 5 = 70, 10, 10, 5, 5
6 = 75, 10, 10, 5, 0

7 = 80, 10, 5, 5, 0

15 Admin_Room_Stay
(Administrator)
Percentage of time that occupants
stay in each space

Percentage

1 = 35, 10, 35, 10, 10
2 = 40, 10, 30, 10, 10
3 = 45, 10, 30, 5, 10
* 4 = 50, 10, 30, 5, 5

5 = 55, 10, 25, 5, 5
6 = 60, 10, 25, 5, 0
7 = 65, 10, 20, 5, 0

16 Manag_Room_Stay
(Manager)
Percentage of time that occupants
stay in each space

Percentage

1 = 35, 10, 40, 5, 10
2 = 40, 10, 35, 5, 10

3 = 45, 5, 35, 5, 10
* 4 = 50, 5, 35, 5, 5

5 = 55, 5, 30, 5, 5
6 = 60, 5, 30, 5, 0
7 = 65, 5, 25, 5, 0

17 Own_Stay_Duration Average stay time at
Own office Minutes

1 = 30 min
2 = 45 min

* 3 = 60 min

4 = 75 min
5 = 90 min

18 Other_Stay_Duration Average stay time at
Other offices Minutes

1 = 10 min
2 = 15 min

* 3 = 20 min

4 = 25 min
5 = 30 min

19 Meeting_Stay_DurationAverage stay time at
Meeting rooms Minutes

1 = 30 min
2 = 45 min

* 3 = 60 min

4 = 75 min
5 = 90 min

20 Auxiliary_Stay_DurationAverage stay time at
Auxiliary room Minutes

1 = 10 min
2 = 15 min

* 3 = 20 min

4 = 25 min
5 = 30 min

21 Outdoor_Stay_DurationAverage stay time at
Outdoor Minutes

1 = 10 min
2 = 20 min

* 3 = 30 min

4 = 40 min
5 = 50 min

22 Time_Step Simulation time step Minutes 1 = 5 min
* 2 = 10 min

3 = 15 min
4 = 20 min

* Baseline scenario.

In this study, the baseline scenario was established by considering the default values
for occupancy parameters according to the LBNL occupancy simulator tool [31] which
is also illustrated in Table 1. As an example, the average square meters per person in
the baseline scenario is 0.05 person/m2, and 40% of occupants in the baseline are regular
staff, 30% are administrators, and the other 30% of occupants are managers. To enhance
the realism of the simulation, occupancy schedules are meticulously generated in the
web-based occupancy simulator using the one-at-a-time (OAT) method [32] by varying
individual occupancy parameters while keeping the remaining parameters at their baseline
values. This process results in the creation of a total of 104 distinct annual occupancy
schedules for each office space. These schedules are designed to closely replicate real-
world occupant behavior, and will be used in EnergyPlus model to analyze the impact of
each parameter on building energy consumption with a simulation time step of 10-min as
illustrated in the baseline scenario.

2.2. Prototyped Office Building Case

This study used the US DOE Commercial Prototype. Building Models (CPBM) for
small offices to analyze the impact of various occupancy parameters. The prototype
includes the building model for different climate locations (16 US climate zones) based on
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ASHRAE Standard 90.1-2019 [33]. The small office has a rectangular shape layout with
a total area of 5500 ft2 (511 m2) and consists of five thermal zones (four perimeter zones
and one core zone), as illustrated in Figure 2. It has to be noted that one thermal zone can
have one or more subspaces, though the thermal condition is maintained the same for the
subspaces within the same thermal zone [34]. The office layout that is designed for this
study is as follows: Zones 1, 2, and 3 contain the individual office spaces, Zone 4 contains
the meeting room and lobby space, and the core zone contains the auxiliary and corridor
area. This layout is shown in Figure 2. The generated stochastic occupancy schedules for
spaces within each zone will be combined for use within that specific zone. For example,
the occupancy schedules for Office 1, Office 2, and Office 3 will be aggregated to form the
combined occupancy schedule for Zone 1.
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The small office model adheres to the energy efficiency standards established by
ASHRAE 90.1, with the specific version (e.g., ASHRAE 90.1-2019) determining the envelope
properties. For instance, the exterior wall U-value is approximately 0.057 Btu/h·ft2·◦F,
reflecting an insulation level consistent with an R-value of about 17.5 ft2·h·◦F/Btu. This
ensures that the building minimizes heat loss through the walls, contributing to overall
thermal performance. The roof has an even lower U-value, around 0.027 Btu/h·ft2·◦F
(equivalent to an R-value of approximately 37 ft2·h·◦F/Btu). This higher insulation level is
essential in reducing heat transfer and limiting heat gain from the environment, especially
in warmer climates where the roof is often exposed to direct sunlight. Windows in the
small office model are another important component of the building envelope. The U-value
for the windows is about 0.38 Btu/h·ft2·◦F. Additionally, the g-value, which indicates
the amount of solar radiation admitted through the glazing, is 0.30. This balance allows
beneficial daylight into the building while limiting unwanted solar heat gain, which can
significantly impact cooling loads during the summer months.

2.3. Integrated Energy Simulation Model

To investigate the impact of each occupancy parameter on building energy perfor-
mance, a total of 104 occupancy schedules were created to perform sensitivity analysis [35].
To incorporate occupancy schedules as inputs into the EnergyPlus model, a systematic
approach is followed. First, a total of 104 annual occupancy schedule files are formatted
as CSV files. These files are then organized within the EnergyPlus IDF project folder.
Subsequently, a custom Python script is developed to automate the EnergyPlus simula-
tion process. This script dynamically modifies the EnergyPlus IDF file, iterates through
the schedule files one by one from the designated folder, and stores the results of each
simulation in dedicated output folders, one for each unique occupancy schedule. This
automatic workflow ensures the systematic integration of occupancy schedules into the En-
ergyPlus model, offering an organized approach for conducting simulations and managing
their outputs.
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To account for the effect of climate zones on energy performance simulation,
16 International Energy Conservation Code (IECC) climate zones in the US are integrated
into EnergyPlus as well. These climate zones vary from “Very Hot Humid” to “Very Cold”
and “Arctic” climate zone [36]. Table 2 presents the list of the 16 climate zones in the
US, their climate zone ID, and the representative city. The energy performance of various
building energy systems is then simulated for each climate zone, considering the various
occupancy schedules. Finally, a dataset of 1664 data points (104 occupancy schedules and
16 climate zones) with 22 independent variables (occupancy parameter variables), and
various systems’ energy consumption variables consisting of heating, cooling, lighting,
equipment, and fans are generated. The generated dataset is used as input for feature
selection methods.

Table 2. US 16 climate zones [36].

No. Climate Zone Thermal Climate Zone Name Weather Location

1 1A Very Hot Humid Honolulu, HI, USA

2 2A Hot Humid Tampa, FL, USA

3 2B Hot Dry Tucson, AZ, USA

4 3A Warm Humid Atlanta, GA, USA

5 3B Warm Dry El Paso, TX, USA

6 3C Warm Marine San Diego, CA, USA

7 4A Mixed Humid New York, NY, USA

8 4B Mixed Dry Albuquerque, NM, USA

9 4C Mixed Marine Seattle, WA, USA

10 5A Cool Humid Buffalo, NY, USA

11 5B Cool Dry Denver, CO, USA

12 5C Cool Marine Port Angeles, WA, USA

13 6A Cold Humid Rochester, MN, USA

14 6B Cold Dry Great Falls, MT, USA

15 7 Very Cold International Falls, MN, USA

16 8 Subarctic/Arctic Fairbanks, AK, USA

2.4. Feature Selection and Model Evaluation

Feature selection is an important task in identifying variables that can significantly
impact the performance of the simulation model [37]. Previous studies on building energy
performance simulation have used different methods for feature selection, including expert
knowledge and judgment [38], correlation matrix [39], boosting tree algorithm to rank
variables [40], and linear and monotonic correlation [41], among others. The generated
dataset regarding different sets of occupancy schedules and climate zones is used as
input for the feature selection models to determine the significant independent variables
(occupancy schedules) to predict the dependent variables (energy consumption in different
climate zones). In this study, four feature selection methods are utilized to identify the
significant features regarding the dependent variables of building energy consumption:

• Multivariate linear regression (MVLR): A multivariate linear regression model ex-
presses a d-dimensional continuous response vector as a linear combination of pre-
dictor terms plus a vector of error terms with a multivariate normal distribution. The
“mvregress” function can be used to create a multivariate linear regression model [42].
While MVLR assumes linearity and can be influenced by multicollinearity and outliers,
these challenges—multicollinearity and the influence of outliers—are prevalent in
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many types of statistical modeling, not just in MVLR. We have addressed this by
careful variable selection and data preprocessing to minimize their impact.

• Least absolute shrinkage and selection operator (LASSO): LASSO constructs a dataset
with redundant predictors and identifies those predictors. The “LASSO” function finds
the coefficients of a regularized linear regression model using 10-fold cross-validation
and the elastic net method [43]. LASSO may prioritize simpler models potentially at
the cost of excluding some correlated predictors. However, this characteristic helps in
enhancing model interpretability and reducing overfitting, which are crucial for the
predictive robustness of the approach.

• Neighborhood component analysis (NCA) feature selection method: Neighborhood com-
ponent analysis (NCA) is a supervised learning algorithm for choosing features with the
goal of increasing the predictive power of regression and classification algorithms. The
“fscnca” and “fsrnca” functions of the Statistics and Machine Learning Toolbox perform
neighborhood component analysis feature selection with regularization to develop feature
weights for the objective function that reduces the average leave-one-out classification or
regression loss over the training data [44]. Despite NCA’s computational demand, it is cho-
sen for its effectiveness in smaller, well-defined datasets where feature interdependencies
are critical, aligning well with our study’s scope.

• Feature ranking method using the Relief algorithm: Relief is a feature selection tech-
nique that uses a filter-method approach to identify significant variables and is highly
sensitive to feature interactions. Each feature in Relief is given a feature score, which
can be used to rank and choose the highest scoring features for feature selection.
These scores can also be used as feature weights to direct further modeling. The algo-
rithm penalizes the predictors that result in different values to neighbors of the same
class, and rewards predictors that provide different values to neighbors of different
classes [45,46]. Although Relief’s performance may be affected by noisy data, it is
highly effective for datasets like ours where interaction among features is a signif-
icant factor. Proper parameter setting, based on extensive testing, ensures optimal
feature selection.

The results of the four feature selection (also known as feature ranking) methods for
various building energy systems (i.e., heating, cooling, lighting, equipment, and fans) are
identified. In addition, the identified significant features, as results of feature selection meth-
ods, are integrated into a multiple linear regression model to compute the corresponding
R-square values across different climate zones using the below equation:

R2 = 1 − SSR
SST

(1)

SSR = ∑(ŷi − y)2 (2)

SSE = ∑(ŷi − yi)
2 (3)

where R2, the coefficient of determination, is the proportion of the variation in the de-
pendent variable that is predictable from the independent variables. SSR is the sum of
squares of residuals, and SST is the sum of the distance the data are away from the mean
all squared [47,48]. This value is utilized to compare the performance of feature selection
methods, where a higher R2 value represents a better fitting of the algorithm, and, on
the other hand, a lower R2 value represents a larger discrepancy between the actual and
predicted results.

3. Results and Discussion
3.1. Building Energy Performance on Baseline Occupancy

In this study, the baseline scenario was established by considering the average occu-
pancy parameters. Figure 3 compares the baseline stochastic occupancy schedule with
ASHRAE Standard 90.1-2019 [49], and simulated occupancy. According to the results (for
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the baseline occupancy schedule), this small office building accommodates up to 56 (con-
sidering the minimum required space for each person in an office area, every office room
can occupy up to 7 occupants) occupants who typically arrive at the office around 8:00 a.m.
and depart around 5:00 p.m. As demonstrated in Figure 3, the occupancy schedule aligns
with the office schedule recommended by ASHRAE Standard 90.1-2019, demonstrating a
remarkable similarity to real-world occupancy patterns; however, the stochastic occupancy
schedule provides more realistic occupancy patterns in office buildings [28,49]. This close
alignment not only validates the simulation’s accuracy but also highlights its potential to
predict actual building usage with high fidelity. The occupancy levels fluctuate through-
out the day, with specific hours experiencing higher occupancy rates. Notably, between
9:00 a.m. and 11:00 a.m. and again from 2:00 p.m. to 4:00 p.m., the occupancy schedule
reaches its peak.
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Figure 3. Baseline occupancy schedule vs. ASHRAE schedule.

Figure 4 illustrates the baseline occupancy schedule of each zone. The core zone and
Zone 4, which include auxiliary, corridor, meeting room, and lobby, generally maintain
lower occupancy levels compared to other zones. In addition, as shown in Figure 4, Zones
1, 2, and 3, which contain the office spaces, have more occupants since the average time
spent by occupants in office spaces is longer than in other areas. It can be seen that the
number of occupants decreases at 12:00 p.m. due to the lunch break.
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Figure 4. The zone occupancy of the simulated office.

To illustrate the average energy consumption during different seasons, we selected
Tampa, FL (CZ 2A), as an example case due to the high building energy consumption
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in this climate zone. Figure 5 displays the average daily total electricity consumption of
the simulated office building (including the electricity consumption for lighting, heating,
cooling, equipment, and fans, in accordance with the baseline occupancy schedule) for the
hot–humid climate zone (2A), for spring (1 March to 31 May), summer (1 June to 31 August),
fall (1 September to 30 November), and winter (1 December to 28 February) seasons.
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Figure 5. Simulated energy consumption and baseline occupancy schedule in (a) spring, (b) summer,
(c) fall, and (d) winter seasons.

The graph reveals variations in the building’s energy consumption across seasons,
ranging from 1.5 to 13.5 kWh with respect to the baseline occupancy schedule. As shown,
the building exhibits lower energy consumption in winter and fall seasons compared to
summer and spring, primarily due to the need for higher cooling and air conditioning in
the hot–humid climate zone.

Figure 6 illustrates the energy performance of various building energy systems
(i.e., heating, cooling, lighting, equipment, and fans) in different climate zones. It can
be seen that the total building energy can range from 35,000 to 47,000 kWh. According to
this figure, buildings in 5C (cool marine), 4C (mixed marine), and 3C (warm marine) climate
zones have the lowest total energy consumption among the other climate zones. One reason
is the moderate and relatively stable temperatures characteristic of marine climates. The
absence of extreme temperature fluctuations reduces the demand for heating or cooling,
resulting in lower energy consumption. On the other hand, the energy consumption of
buildings in hot–humid climate zones is higher than in other climate zones. This is due to
the high demand for cooling and the necessity of using air conditioning, dehumidifying,
and circulating the air in these climate zones.
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Figure 6. Energy consumption of the simulated office buildings in various climate zones.

As shown in Figure 6, the energy consumption of heating and cooling is very sensitive
to climate conditions, resulting in significant variations. The average heating energy
consumption in Fairbanks, AK (CZ 8), exceeds 6000 kWh, while in hot climate zones
(e.g., 1A and 2A), heating energy consumption is negligible. In contrast, cooling energy
consumption accounts for a large share of energy consumption, roughly 17,600 kWh,
in very hot and humid climate zones and around 4400 kWh in cold climate zones. In
addition, the energy consumption of lighting systems is mainly determined by indoor
lighting needs, which are relatively consistent across various climate zones. Regardless of
the climate, buildings require lighting for adequate illumination, resulting in comparable
energy consumption for lighting systems. Similarly, the energy consumption of equipment,
such as office equipment and appliances, is influenced more by occupant behavior and
usage patterns rather than climate. Therefore, equipment energy consumption remains
consistent across all climate zones. Additionally, fan energy consumption is about 9000 kWh
with minimal variations in different climate zones. However, the demand for fans is slightly
higher in dry climates to circulate the air and create a perceived cooling sensation for
occupants, attributable to the low moisture content in the air in these dry climates.

The performance of the various end-use energy consumption in 16 climate zones
considering the baseline occupancy parameters is illustrated in Figure 7. According to
Figure 7a, heating electricity consumption is significantly high in humid climate zones (4A,
5A, and 6A). As shown in Figure 7b, cooling accounts for the largest share of electricity
consumption in office buildings in many climate zones, ranging from very hot (e.g., 1A)
to cool climate zones (e.g., 5B) compared to other end uses. Figure 7c,d demonstrate the
electricity consumption for lighting and equipment in various climate zones. Although
there are some slight differences regarding the comparison of lighting and equipment
between climate zones, the results for these categories suggest that climate zones do
not significantly impact lighting and equipment usage. This consistency across different
climates can be attributed to the standardized nature of lighting and equipment operation
in office settings. Unlike heating or cooling systems, which are directly influenced by
external temperature variations and climate-specific requirements, lighting and equipment
demands are predominantly driven by fixed office hours and internal activities that do
not vary substantially with climate. Lighting consumption is largely determined by the
daily work schedules that remain constant regardless of external weather conditions.
Similarly, the usage of office equipment such as computers, printers, and other peripherals
is aligned more closely with personnel presence and operational requirements rather than
environmental factors. This explains the relative uniformity in energy usage for these
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categories across various climate zones observed in the study. Lastly, Figure 7e displays the
electricity consumption for fans, revealing that dry climate zones (3B, 4B, and 5B) exhibit
the highest electricity consumption for fan usage.
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Our findings indicate significant variations in building energy consumption across
different climate zones, primarily driven by occupancy patterns and climatic conditions.
This observation aligns with Chen et al. [50], who investigated the impact of future climate
changes on office buildings across diverse climate zones in China, highlighting a similar
trend of varying energy demands due to climatic differences. However, our study extends
these findings by incorporating a wider range of climate zones in the US and employing
dynamic occupancy schedules, which offer a more detailed understanding of energy
consumption patterns. Unlike the static models used in this study, our dynamic approach
reflects real-world variability and provides a new perspective on energy optimization
strategies tailored to specific climate conditions.

Additionally, Meng et al. [51] investigated heating energy consumption in office
buildings across various climate zones. Their findings confirm our results, which suggest
that heating demands vary considerably, emphasizing the need for region-specific energy
management strategies. Our study contributes further by examining both heating and
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cooling demands in a dynamic context, thereby improving the understanding of total
energy consumption dynamics under changing climatic conditions.

3.2. Sensitivity Analysis of Occupancy Parameters

In this study, given the constraints on time and resources, six climate zones ranging
from hot to cold were chosen to analyze occupancy parameters and assess the effectiveness
of feature selection methods. The selected climate zones are presented in Table 3.

Table 3. Selected climate zones for sensitivity analysis.

No. Climate Zone Thermal Climate Zone Name Weather Location

1 2A Hot Humid Tampa, FL, USA

2 3B Warm Dry El Paso, TX, USA

3 3C Warm Marine San Diego, CA, USA

4 4A Mixed Humid New York, NY, USA

5 5A Cool Humid Buffalo, NY, USA

6 6A Cold Humid Rochester, MN, USA

A sensitivity analysis was performed to analyze the impact of changing each oc-
cupancy schedule parameters on building energy performance. These parameters are
analyzed by changing them while keeping all the other variables constant. The results are
presented here.

Occupant Density: One of the occupancy parameters that may greatly impact building
energy consumption is occupant density. Occupant density can be defined as the number
of people per area (person/m2). In this study, six different scenarios were considered to
analyze the impact of occupant density on building energy performance:

• Scenario 1: 0.05 person/m2, equal to 8 occupants using the office.
• Scenario 2: 0.06 person/m2, equal to 16 occupants using the office.
• Scenario 3: 0.1 person/m2, equal to 24 occupants using the office.
• Scenario 4: 0.14 person/m2, equal to 40 occupants using the office.
• Scenario 5: 0.2 person/m2, equal to 56 occupants using the office.

Figure 8 illustrates the annual building energy consumption across various climate
zones, considering different occupant densities. Energy consumption for cooling, fans, and
lighting tends to increase with higher occupant densities, while equipment and heating
consumption show relatively smaller fluctuations. In warmer climate zones such as 2A,
3B, and 3C, the cooling and fan energy consumption exhibit high sensitivity to occupant
density. Increasing the occupant density or number of occupants in these zones results in
higher energy consumption for cooling and fans. This is primarily because a larger occupant
density generates more heat and increases the cooling demand to maintain thermal comfort.

In addition, increasing the occupant density contributes to increased fan energy con-
sumption to enhance air circulation in more crowded spaces. On the other hand, colder
climate zones like 6A and 5A show higher heating energy consumption, with a negative cor-
relation to occupant density. This can be attributed to the heat generation from occupants
in more crowded spaces, resulting in reduced reliance on heating systems for maintaining
comfortable temperatures.

This observed trend aligns with the findings of Zhao Dong et al. [52], who explored
the impact of occupant behavior, particularly density, on energy consumption in office
buildings. Their study provides a basis for understanding how increased occupancy
contributes to higher energy demands. By referencing this broader scope of research,
we can highlight that our findings are consistent with established trends in the field,
suggesting that occupant density is a crucial factor in building energy dynamics. This
also emphasizes the importance of incorporating occupant density considerations in the
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design and operation of HVAC systems, potentially through strategies such as demand-
controlled ventilation and occupancy-based HVAC operation to optimize energy efficiency
in office spaces.
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Arrival and departure: To analyze the impact of the arrival and departure time of
occupants on building energy consumption, five distinct scenarios were considered:

• Scenario 1: Regular staff arrive and depart at 6:30 and 15:30, respectively.
• Scenario 2: Regular staff arrive and depart at 7:00 and 16:00, respectively.
• Scenario 3: Regular staff arrive and depart at 7:30 and 16:30, respectively.
• Scenario 4: Regular staff arrive and depart at 8:00 and 17:00, respectively.
• Scenario 5: Regular staff arrive and depart at 8:30 and 17:30, respectively.

Considering the average working hours of 8 h per day with a 1 h lunch break, regular
staff work 9 h in the office building. Figure 9 presents the annual energy consumption of
building systems in six climate zones considering different arrival and departure times for
regular staff. Although the total working hours of regular staff are the same in all scenarios,
the annual energy consumption is different. For example, in scenarios 1 and 2, the regular
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staff arrive at the office between 6:30 a.m. and 7:00 a.m. and leave the building between
3:30 p.m. and 4:00 p.m. It results in lower energy consumption due to taking advantage
of cooler morning temperatures. In most of the climate zones, the early morning hours
tend to be relatively cooler compared to the later part of the day. By starting work earlier,
occupants can benefit from the cooler temperature and natural ventilation, reducing the
need for extensive cooling and fan usage during the day. Consequently, in all climate zones,
the cooling and fan energy consumption increases from scenario 1 to scenario 5, when
shifting the arrival and departure times from 6:30 a.m. to 8:30 a.m. and 3:30 p.m. to 5:30
p.m., respectively. In contrast, there is a slight reduction in lighting and equipment energy
consumption in all climate zones from scenario 1 to 5.
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This observation aligns with findings from a study conducted by Gu et al. [53], which
demonstrated that energy consumption varies significantly with different occupancy levels
due to the presence and movement of occupants within the building. Specifically, the
study highlighted how adjustments in the arrival and departure times can influence the
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operational schedules of building systems, thereby affecting the energy consumption for
lighting, cooling, and heating. While the study of Gu et al. provided crucial insights, our
study advances this by incorporating a broader analysis across multiple climate zones and
more varied work schedule scenarios. This comprehensive approach not only allows for a
detailed comparison across regions but also enhances the applicability of our findings to
diverse environmental conditions and work patterns. These results highlight the potential
for strategic scheduling to optimize energy efficiency in office buildings, corroborating the
importance of considering occupant behavior patterns in energy management strategies.

Occupants’ stay-time: Occupants’ stay time in their own office is selected for analysis,
where five different scenarios were considered to investigate the impact of occupants’
stay-time in six climate zones:

• Scenario 1: Occupants stay in their own office for 30 min, on average.
• Scenario 2: Occupants stay in their own office for 45 min, on average.
• Scenario 3: Occupants stay in their own office for 60 min, on average.
• Scenario 4: Occupants stay in their own office for 75 min, on average.
• Scenario 5: Occupants stay in their own office for 90 min, on average.

Figure 10 presents the energy performance of various energy systems across six
different climate zones, considering different durations of occupants’ stay-time in their
offices. As shown in the figure, for all six climate zones, there are minor changes in
the energy consumption of the cooling system and fans when the duration of occupants’
stay-time increases from 30 min to 90 min. As occupants stay in a space for a longer
duration, their body heat gradually increases the room’s temperature. Therefore, the
cooling system and fans may need to operate for a slightly extended period to maintain air
quality and temperature.

Conversely, the remaining energy systems, including lighting, equipment, and heating
systems, remain unchanged, indicating that an increase in the duration of occupants’ stay-
time did not have a significant impact on these systems. This is because lighting and
equipment energy consumption is related to occupancy presence and specific activities
rather than the duration alone. Within the considered range of 30 to 90 min, the occupancy
duration does not significantly affect the usage patterns or energy consumption of lighting
and equipment. Similarly, heating systems respond to the set-point temperature and
occupancy needs in colder climates. Therefore, increasing the occupants’ stay-time does
not demand an adjustment in these systems, resulting in unchanged energy consumption.
This observation indicates that for the range of stay times considered, the direct impact
on energy consumption is limited. This stability offers potential for energy management
strategies that focus more on occupancy-based controls rather than adjustments based on
duration of stay alone. Future studies might explore more granular time increments or
different types of activities to further refine our understanding of occupancy impact on
energy use. Such insights could inform more targeted energy efficiency measures that align
with actual usage patterns and contribute to broader energy sustainability goals.

Time-step: To analyze the impact of simulation time-step on the energy performance of
various energy systems in different climate zones, four different time-steps are considered:

• Scenario 1: Time-step size of 5 min.
• Scenario 2: Time-step size of 10 min.
• Scenario 3: Time-step size of 15 min.
• Scenario 4: Time-step size of 20 min.

Figure 11 presents the simulation performance of heating, cooling, lighting, and other
energy consumptions using different time-step sizes. As shown, when employing a 5 min
time-step, the energy performance of cooling systems and fans exhibits a significant increase
across all six climate zones compared to larger step sizes. The utilization of a smaller
time-step allows for a more detailed representation of the dynamic behavior of cooling
systems and fans. With a smaller time-step, the simulation captures shorter fluctuations
in cooling demand and the need for increased fan operation to maintain thermal comfort.
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Consequently, the energy consumption of cooling systems and fans appears higher when
using a 5 min time-step, reflecting their more responsive nature to varying conditions.
This responsiveness underscores the importance of selecting an appropriate simulation
time-step in energy modeling to capture the nuanced effects of environmental changes and
occupant interactions within a building.
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Additionally, the smaller time-step provides a clearer insight into the intermittent na-
ture of heating requirements, thereby enhancing the ability to fine-tune heating operations
to actual needs rather than sustained assumptions. This precision leads to energy conserva-
tion, particularly in climates where heating demands fluctuate significantly throughout the
day. The energy consumption of lighting and equipment remains relatively constant re-
gardless of the simulation time-step. This stability indicates that these systems’ operational
demands are less sensitive to shorter time fluctuations and more dependent on fixed sched-
ules of occupant activity. Understanding these dynamics is crucial for building managers
and designers aiming to optimize energy usage without compromising occupant comfort
and productivity. Looking more closely at different time-steps could help us find new ways
to save energy, especially in systems that automatically adjust based on real-time data.



Energies 2024, 17, 5277 20 of 31

Energies 2024, 17, x FOR PEER REVIEW 21 of 32 
 

 

comfort. Consequently, the energy consumption of cooling systems and fans appears 
higher when using a 5 min time-step, reflecting their more responsive nature to varying 
conditions. This responsiveness underscores the importance of selecting an appropriate 
simulation time-step in energy modeling to capture the nuanced effects of environmental 
changes and occupant interactions within a building. 

Additionally, the smaller time-step provides a clearer insight into the intermittent 
nature of heating requirements, thereby enhancing the ability to fine-tune heating opera-
tions to actual needs rather than sustained assumptions. This precision leads to energy 
conservation, particularly in climates where heating demands fluctuate significantly 
throughout the day. The energy consumption of lighting and equipment remains rela-
tively constant regardless of the simulation time-step. This stability indicates that these 
systems’ operational demands are less sensitive to shorter time fluctuations and more de-
pendent on fixed schedules of occupant activity. Understanding these dynamics is crucial 
for building managers and designers aiming to optimize energy usage without compro-
mising occupant comfort and productivity. Looking more closely at different time-steps 
could help us find new ways to save energy, especially in systems that automatically ad-
just based on real-time data. 

 
Figure 11. The impact of occupancy simulation time-step size on building energy performance. Figure 11. The impact of occupancy simulation time-step size on building energy performance.

The sensitivity analysis of four occupancy parameters was presented. Although a total
of 22 parameters exist, it is important to note that the selection of these four parameters
does not diminish the significance of the other parameters. The choice to analyze these
particular parameters was driven by two reasons. Firstly, these four parameters were
identified as having a high potential for influencing building energy consumption based on
prior research and expert knowledge in the field. Secondly, considering the constraints of
limited resources and time, focusing on a subset of parameters allowed for a more in-depth
and targeted analysis.

3.3. Feature Selection Results

The generated dataset of building energy performance based on various climate zones
and occupancy parameters served as input for feature selection methods to identify the most
significant occupancy parameters affecting building energy consumption. In this regard, MVL,
LASSO, NCA, and ReliefF feature selection methods were applied to the generated dataset. To
assess the results of these feature selection methods, the selected features for each building energy
system (i.e., heating, cooling, lighting, equipment, and fans) were incorporated into a multiple
linear regression model to compute the corresponding R-square values. Subsequently, these
calculated R-square values were evaluated against a predefined threshold of 0.05 as established
in this study [54]. Features that demonstrated contributions greater than this threshold in the
calculation of the R-square value were retained and considered significant variables. Conversely,
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features that exhibited contributions below the threshold in the calculation of the R-square value
were eliminated from the list. This systematic process facilitated the identification of significant
variables, allowing for a focused analysis of the features that exhibited a significant impact on
the performance of the building energy systems.

Heating: This section focuses on the performance of heating energy consumption and
presents the results of four feature selection methods to identify the significant occupancy
parameters impacting heating energy consumption in six climate zones, as presented in
Table 4. As shown in the table, all four methods consistently identified “Occupant-Density”
as the primary significant variable across all six climate zones. Furthermore, “Time-Step”
emerged as the second significant parameter in most cases, except for the “2A” climate
zone where it did not exhibit the same significance.

Cooling: This section focuses on the performance of cooling energy consumption and
presents the results of four feature selection methods to identify the significant occupancy
parameters impacting cooling energy consumption in six climate zones, as presented in Table 5.

As shown in the table, all four methods consistently identified “Occupant-Density”
and “Time-step” as the first two primary significant variables across all six climate zones.
According to Table 5, it can be seen that the LASSO feature selection method presented a
better performance across all six climate zones in identifying the significant features influ-
encing cooling energy consumption. This method generated higher R-squared values com-
pared to other methods. The selected features in the LASSO method include “Time-step”,
“Occupant_Density”, “Staff_Arriv_Depar”, “Lunch_Duration”, and “Own_Stay_Duration”.
Conversely, the ReliefF method presented limited effectiveness in identifying significant
features. This analysis focuses on influential occupancy parameters affecting cooling energy
consumption in small office buildings across different climate zones and highlights the
LASSO feature selection method as the preferred approach for identifying the features that
have a significant impact on cooling energy consumption.

Lighting: This section focuses on the analysis of lighting energy performance and
presents the results of four feature selection methods to identify the significant occupancy
parameters impacting lighting energy consumption in six climate zones as presented in
Table 6. As shown in the table, all four methods consistently identified “Occupant-Density”
as the primary significant variable across all six climate zones. According to Table 6, it
can be seen that both the NCA and LASSO feature selection methods presented a better
performance across all six climate zones in identifying the significant features influencing
lighting energy consumption. These methods generated higher R-squared values compared
to other methods.

Conversely, the ReliefF method presented a low performance in identifying significant
features. This analysis focuses on influential occupancy parameters affecting lighting
energy consumption in small office buildings across different climate zones and highlights
that both NCA and LASSO feature selection methods are preferable for identifying the
features that have a significant impact on lighting energy consumption.

Equipment: This section focuses on the analysis of equipment energy performance and
presents the results of four feature selection methods to identify the significant occupancy
parameters impacting equipment energy consumption in six climate zones, as presented in
Table 7. As shown in the table, all four methods consistently identified “Occupant-Density” as
the primary significant variable across all six climate zones. According to Table 7, it can be seen
that the LASSO feature selection method presented a better performance across all six climate
zones in identifying the significant features influencing equipment energy consumption. This
method generated higher R-squared values compared to other methods. The selected features in
the LASSO method include “Occupant_Density”, “Staff_Arriv_Depar”, “Manag_Arriv_Depar”,
“Arriv_Depar_Vari”, and “Time_Step”. Conversely, the ReliefF method presented limited
effectiveness in identifying significant features. This analysis focuses on influential occupancy
parameters affecting equipment energy consumption in small office buildings across different
climate zones and highlights the LASSO feature selection method as a preferred approach for
identifying the features that have a significant impact on equipment energy consumption.
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Table 4. Identified features for heating energy performance across different climate zones.

Climate Zone MVLinear LASSO NCA ReliefF

2A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Staff_Arriv_Depar • Staff_Arriv_Depar • Admin_Arriv_Depar • Meeting_Stay_Duration

• Lunch_Time • Admin_Arriv_Depar • Manag_Arriv_Depar • Manag_Room_Stay

• Lunch_Duration • Manag_Arriv_Depar

• Own_Stay_Duration

R-squared 0.89596 0.90338 0.88389 0.87748

3B • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Time_Step • Time_Step • Time_Step • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar

• Lunch_Duration • Admin_Arriv_Depar

• Lunch_Time • Manag_Arriv_Depar

R-squared 0.83587 0.83982 0.83773 0.82429

3C • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Time_Step • Time_Step • Time_Step • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Manag_Arriv_Depar

• Manag_Arriv_Depar

• Own_Stay_Duration

R-squared 0.89596 0.89345 0.88437 0.86468

4A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Time_Step • Time_Step • Time_Step • Time_Step

• Lunch_Duration • Staff_Arriv_Depar • Staff_Arriv_Depar

• Manag_Arriv_Depar • Manag_Arriv_Depar

• Admin_Arriv_Depar

R-squared 0.88695 0.89287 0.89161 0.88692

5A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Time_Step • Time_Step • Time_Step • Time_Step

• Lunch_Duration • Manag_Arriv_Depar • Manag_Arriv_Depar • Lunch_Duration_Vari

• Staff_Arriv_Depar • Staff_Arriv_Depar

R-squared 0.87708 0.88016 0.87937 0.87729

6A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Time_Step • Time_Step • Time_Step • Time_Step

• Lunch_Duration • Manag_Arriv_Depar • Manag_Arriv_Depar • Admin_Room_Stay

• Outdoor_Stay_Duration • Auxiliary_Stay_Duration • Auxiliary_Stay_Duration • Own_Stay_Duration

R-squared 0.9034 0.90748 0.90694 0.90336

Fans: This section focuses on the performance of fan energy consumption and presents
the results of four feature selection methods to identify the significant occupancy parameters
impacting fan’s energy consumption in six climate zones, as presented in Table 8. As
shown in the table, three methods of MVLinear, NCA, and LASSO consistently identified
“Time-Step” as the primary significant variable across all six climate zones. Furthermore,
“Occupant-Density“ emerged as the second significant parameter, except in the “ReliefF”
method, which is the opposite. According to Table 8, both MVLinear and LASSO feature
selection methods presented better performances across all six climate zones in identifying
the significant features influencing fan energy consumption.

These methods generated higher R-squared values compared to other methods. The
selected features in the MVLinear and LASSO methods include “Time_Step”, “Occu-
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pant_Density”, “Staff_Arriv_Depar”, “Admin_Arriv_Depar”, and “Own_Stay_Duration”,
and, conversely, the ReliefF method presented limited effectiveness in identifying signif-
icant features. The higher performance of MVLinear and LASSO in our study points to
their robustness in handling diverse datasets and their capability in effectively isolating key
factors that influence fan energy consumption. These methods prove particularly valuable
in scenarios where predictive accuracy is important to developing energy management
solutions that are both effective and scalable across different climate zones.

Table 5. Identified features for cooling energy performance across different climate zones.

Climate Zone MVLinear LASSO NCA ReliefF

2A • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Occupant_Density • Time_Step

• Own_Stay_Duration • Staff_Arriv_Depar • Manag_Room_Stay • Own_Stay_Duration

• Lunch_Duration • Lunch_Duration • Meeting_Stay_Duration

• Own_Stay_Duration

R-squared 0.85107 0.85221 0.85143 0.84634

3B • Time_Step • Time_Step • Occupant_Density • Occupant_Density

• Occupant_Density • Occupant_Density • Time_Step • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar

• Own_Stay_Duration • Lunch_Duration

• Own_Stay_Duration

R-squared 0.83984 0.84153 0.84052 0.83586

3C • Time_Step • Time_Step • Occupant_Density • Occupant_Density

• Occupant_Density • Occupant_Density • Time_Step • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay • Own_Stay_Duration

• Lunch_Duration • Staff_Arriv_Depar

• Own_Stay_Duration

R-squared 0.82795 0.83965 0.83164 0.82541

4A • Time_Step • Time_Step • Occupant_Density • Occupant_Density

• Occupant_Density • Occupant_Density • Time_Step • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar • Own_Stay_Duration

• Lunch_Duration • Lunch_Duration • Auxiliary_Stay_Duration

R-squared 0.81269 0.8148 0.81346 0.81127

5A • Occupant_Density • Time_Step • Occupant_Density • Occupant_Density

• Time_Step • Occupant_Density • Time_Step • Time_Step

• Own_Stay_Duration • Lunch_Duration • Staff_Arriv_Depar • Own_Stay_Duration

• Own_Stay_Duration • Lunch_Duration • Auxiliary_Stay_Duration

• Own_Stay_Duration

R-squared 0.78551 0.78816 0.78816 0.78456

6A • Occupant_Density • Time_Step • Time_Step • Occupant_Density

• Time_Step • Occupant_Density • Occupant_Density • Time_Step

• Staff_Arriv_Depar • Lunch_Duration • Staff_Arriv_Depar • Own_Stay_Duration

• Own_Stay_Duration • Staff_Arriv_Depar • Lunch_Duration

• Own_Stay_Duration • Own_Stay_Duration

R-squared 0.77699 0.77968 0.77968 0.77546

This analysis focuses on influential occupancy parameters affecting fan energy
consumption in small office buildings across different climate zones and highlights
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the LASSO and MVLinear feature selection methods as preferred approaches for iden-
tifying the features that have a significant impact on fan energy consumption. By
systematically identifying these key parameters, our approach aids facility managers
and designers in implementing precision-driven energy conservation measures. Specif-
ically, understanding the detailed impacts of occupancy parameters such as “Occupant-
Density” and “Time-Step” allows for the optimization of HVAC operations and other
energy systems to better match actual building use patterns, thus avoiding both overuse
and underuse of energy resources.

Table 6. Identified features for lighting energy performance across different climate zones.

Climate Zone MVLinear LASSO NCA ReliefF

2A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar

• Time_Step • Time_Step

R-squared 0.83369 0.84654 0.84654 0.81792

3B • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar

• Lunch_Start_Vari • Time_Step

R-squared 0.83252 0.84592 0.84592 0.81617

3C • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar

• Lunch_Start_Vari • Admin_Arriv_Depar

R-squared 0.83225 0.846712 0.845331 0.81572

4A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Lunch_Start_Vari

R-squared 0.83203 0.84544 0.84544 0.81546

5A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Lunch_Start_Vari • Admin_Arriv_Depar

R-squared 0.83351 0.84682 0.84647 0.81456

6A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Time_Step • Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Lunch_Start_Vari • Outdoor_Stay_Duration

R-squared 0.83316 0.84647 0.84635 0.81632
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The results of the feature selection analyses highlight critical occupancy parameters
such as “Occupant-Density” and “Time-Step”, which are consistently significant across
multiple climate zones. This consistency across zones not only validates our feature
selection methods but also reinforces the importance of these parameters in the energy
efficiency profiling of office buildings. These parameters offer valuable insights into the
design and operation of energy-efficient buildings, tailored to the unique characteristics of
each climate zone. For instance, the consistent significance of occupant density suggests
that strategies focused on optimizing space usage can lead to substantial energy savings.
This is particularly relevant in denser office environments where the effective management
of space and occupant schedules can reduce unnecessary energy expenditure during peak
and off-peak hours. Moreover, the distinction in significant parameters across climate zones
allows for the development of region-specific energy management strategies. In colder
climates, during high heating demands, understanding the impact of occupancy timings can
help in better scheduling of heating systems to align with actual office hours, thus avoiding
wastage. Similarly, in hotter regions, cooling systems can be optimized based on detailed
occupancy schedules to ensure that energy is not wasted cooling unoccupied spaces.

Table 7. Identified features for equipment energy performance across different climate zones.

Climate Zone MVLinear LASSO NCA ReliefF

2A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Lunch_Start_Vari • Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Time_Step • Outdoor_Stay_Duration

R-squared 0.83041 0.84465 0.84444 0.8087

3B • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Lunch_Start_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Outdoor_Stay_Duration

• Arriv_Depar_Vari • Manag_Arriv_Depar

• Time_Step

R-squared 0.83041 0.84465 0.84444 0.8087

3C • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Lunch_Start_Vari • Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Time_Step • Outdoor_Stay_Duration

R-squared 0.83041 0.84465 0.84444 0.8087

4A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Manag_Arriv_Depar • Manag_Room_Stay

• Lunch_Start_Vari • Arriv_Depar_Vari • Auxiliary_Stay_Duration

• Time_Step • Outdoor_Stay_Duration

R-squared 0.83041 0.84465 0.84444 0.8087

5A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Arriv_Depar_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Lunch_Start_Vari • Arriv_Depar_Vari • Manag_Arriv_Depar

• Time_Step
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Table 7. Cont.

Climate Zone MVLinear LASSO NCA ReliefF

R-squared 0.83041 0.84465 0.84444 0.8087

6A • Occupant_Density • Occupant_Density • Occupant_Density • Occupant_Density

• Manag_Arriv_Depar • Staff_Arriv_Depar • Arriv_Depar_Vari • Time_Step

• Lunch_Start_Vari • Manag_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Arriv_Depar_Vari • Manag_Arriv_Depar • Auxiliary_Stay_Duration

• Time_Step • Outdoor_Stay_Duration

R-squared 0.83041 0.84465 0.84444 0.8087

In this study, we applied a variety of feature selection methods to enhance the accuracy
and efficiency of predicting building energy consumption. This approach is supported by
recent research, including the work by Henriques et al. [55], who utilized advanced feature-
selection methods like recursive feature elimination and random forests to uncover atypical
energy-consumption patterns in households. Their findings demonstrate the effectiveness
of comprehensive feature selection in identifying significant predictors of energy usage,
which aligns with our methodology for improving model performance. Additionally, the
application of feature selection for support vector regression models, as discussed in a
study by Zhao and Magoulès [56], highlights the reduction in model complexity and the
improvement in predictive accuracy for building energy consumption. This reference
further validates our choice of feature selection methods by illustrating their benefits in
similar applications, thereby highlighting the relevance of our methodological choices in
the context of current research trends.

Table 8. Identified features for fan energy performance across different climate zones.

Climate Zone MVLinear LASSO NCA ReliefF

2A • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Occupant_Density • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Admin_Arriv_Depar • Admin_Arriv_Depar • Auxiliary_Stay_Duration • Own_Stay_Duration

• Own_Stay_Duration • Own_Stay_Duration • Manag_Room_Stay

R-squared 0.83267 0.83267 0.83092 0.81171

3B • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Occupant_Density • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar • Manag_Room_Stay

• Admin_Arriv_Depar • Admin_Arriv_Depar • Auxiliary_Stay_Duration • Own_Stay_Duration

• Own_Stay_Duration • Own_Stay_Duration • Manag_Room_Stay

R-squared 0.82586 0.82586 0.82374 0.80272

3C • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Occupant_Density • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar • Own_Stay_Duration

• Admin_Arriv_Depar • Admin_Arriv_Depar • Auxiliary_Stay_Duration

• Own_Stay_Duration • Own_Stay_Duration • Manag_Room_Stay
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Table 8. Cont.

Climate Zone MVLinear LASSO NCA ReliefF

R-squared 0.82016 0.82016 0.81748 0.80914

4A • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Occupant_Density • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Staff_Arriv_Depar

• Admin_Arriv_Depar • Admin_Arriv_Depar • Auxiliary_Stay_Duration

• Own_Stay_Duration • Own_Stay_Duration • Admin_Arriv_Depar

R-squared 0.81928 0.81928 0.81827 0.79416

5A • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Staff_Arriv_Depar • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Occupant_Density • Own_Stay_Duration

• Own_Stay_Duration • Admin_Arriv_Depar • Auxiliary_Stay_Duration

• Own_Stay_Duration • Admin_Arriv_Depar

R-squared 0.81505 0.81505 0.81381 0.78929

6A • Time_Step • Time_Step • Time_Step • Occupant_Density

• Occupant_Density • Occupant_Density • Staff_Arriv_Depar • Time_Step

• Staff_Arriv_Depar • Staff_Arriv_Depar • Occupant_Density • Own_Stay_Duration

• Admin_Arriv_Depar • Admin_Arriv_Depar • Auxiliary_Stay_Duration

• Own_Stay_Duration

R-squared 0.81444 0.81444 0.81307 0.78684

These insights not only enhance the ability to create more adaptive and intelligent
building management systems but also support the development of policies and standards
that promote energy efficiency. By integrating these findings into the regulatory frame-
works, it is possible to set more realistic and attainable energy usage benchmarks that reflect
the real-world conditions of office buildings. This approach can lead to more sustainable
energy practices and significant reductions in operational costs, contributing to broader
environmental and economic benefits.

4. Conclusions

This study utilizes a nationwide energy simulation to analyze the impact of occupancy
parameters on building energy performance across different US climate zones. Dynamic
occupancy schedules are generated based on identified occupancy parameters using an
ABM. The generated schedule, along with the DOE small office prototype model, are
integrated into the BPS tool (i.e., EnergyPlus). The simulation results provide a dataset of
occupancy parameters and building energy performance in various climate zones. This
study employs sensitivity analysis and feature selection methods to assess the influence
of occupancy parameters on the energy consumption of various building energy systems
(i.e., heating, cooling, lighting, equipment, and fans).

The energy performance simulation across 16 climate zones revealed that buildings
located in cool marine, mixed marine, and warm marine climate zones had lower total
energy consumption compared to other zones. This lower energy consumption can be
attributed to the moderate and stable temperatures characteristic of marine climates. On
the other hand, buildings in hot–humid climate zones demonstrated significantly higher
energy consumption, primarily due to the high demand for cooling and air conditioning
systems. As a result of the sensitivity analysis, heating and cooling energy consumption
were found to be sensitive to climate zones. However, lighting and equipment energy
consumption remained relatively constant across climate zones, due to their dependence
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on occupancy presence and specific activities rather than climate zones. Fan energy con-
sumption exhibited minimal variation across climate zones but was slightly higher in dry
climates to create a perceived cooling sensation for occupants.

The sensitivity analysis of occupancy parameters revealed the impact of occupant
density, arrival and departure times, and occupants’ stay-time and simulation time-step on
energy consumption. For instance, reducing occupancy density from 0.2 person/m2 to 0.05
person/m2 if possible (e.g., transition to a hybrid work environment) can result in annual
energy savings ranging from 9000 to 12,000 kWh. In other words, an underoccupied office
building can reduce energy consumption by 60 percent. Modifying arrival and departure
times, particularly by starting work earlier at 6:30 a.m. instead of 8:00 a.m., resulted in
lower cooling and fan energy consumption due to taking advantage of cooler temperatures.
Also, in hot climate zones, by shifting the arrival and departure time to the early morning,
an annual energy savings of up to 3000 kWh can be achieved. In addition, changing the
duration of occupants’ stay-time in their own office from 30 to 90 min had a minimal
impact on building energy consumption across all climate zones, with only slight changes
observed in cooling and fan energy consumption. Moreover, the simulation time-step size
influenced the energy performance of cooling systems and fans, with smaller time-steps
resulting in higher energy consumption for these systems. In other words, changing the
simulation time-step from 20 min to 5 min can result in a 50% discrepancy, which is around
12,000 to 15,000 kWh in annual cooling and fan energy consumption.

Feature selection methods applied in this study effectively identified significant occu-
pancy parameters impacting energy consumption, with “Occupant Density” consistently
identified as the primary significant variable across all climate zones. Other variables such
as “staff’s arrival and departure time”, “stay-time in own office”, “lunch break time”, and
“simulation time-step” were also found to have a significant impact on the simulation
results. These findings offer valuable insights into the influential occupancy parameters
for different small offices across various climate zones, underscoring the importance of
tailoring occupancy schedules to enhance energy efficiency. This study provides practi-
cal guidance that can be directly applied to optimize energy consumption and achieve
significant energy savings in small office settings with different weather conditions.

The novel insights gained from this research highlight the critical role of detailed
occupancy parameter analysis in understanding and optimizing building energy perfor-
mance across diverse climate conditions. By employing advanced modeling techniques
and comprehensive sensitivity analyses, this study improves our knowledge of how occu-
pancy behaviors impact building energy consumption and provides a pathway to more
effective energy management strategies tailored to specific climatic and operational con-
texts. Overall, this study not only clarifies the effects of various occupancy parameters on
energy consumption but also underscores the importance of detailed modeling in crafting
energy-efficient buildings. The findings emphasize the necessity of considering both the
micro (occupancy behavior) and macro (climate influences) elements in building energy
assessments to foster sustainability in the built environment. This research also provides
actionable insights that could significantly refine current building energy standards and
practices. Specifically, the findings suggest that ASHRAE standards could be updated to
include more nuanced models of occupant behavior, particularly in relation to occupant
density and dynamic occupancy schedules. We recommend that ASHRAE Standard 90.1
incorporate specific guidelines on adjusting HVAC operation based on real-time occupancy
data, which our research shows can lead to substantial energy savings.

One limitation of this study is the focus solely on small office buildings, neglecting
the analysis of other types of office buildings prevalent in the US. Additionally, the study
uses a single building model for all 16 climate zones, which may limit the reflection
of specific architectural and environmental adaptations typically required for optimal
energy efficiency in diverse climates. This narrow scope restricts the generalizability of our
findings to broader office building contexts. In addition, while we extensively investigated
the influence of occupancy parameters on building energy consumption, our analysis did
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not encompass the impact of other factors such as heating, cooling, lighting, and energy
control strategies. Moreover, the assumption that subspaces within each thermal zone
maintain similar thermal conditions may not fully capture the variability in actual office
environments, where different uses or solar exposures can affect zone-specific energy
demands. Future research could explore these aspects comprehensively to provide a more
holistic understanding of energy efficiency in diverse office building settings.
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