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Abstract: As the adoption of electric vehicles (EVs) continues to rise, efficient scheduling methods
that minimize operational costs are critical. This paper introduces a novel EV scheduling method
utilizing a heuristic graph-search algorithm for cost minimization due to its admissible nature. The
approach optimizes EV charging and discharging schedules by considering real-time energy prices
and battery degradation costs. The method is tested on systems with solar generation, electric loads,
and EVs featuring vehicle-to-grid (V2G) connections. Various charging rates, such as standard, fast,
and supercharging, along with uncertainties in EV arrival and departure times, are factored into
the analysis. Results from various case studies demonstrate that the proposed method outperforms
popular heuristic optimization techniques, such as particle swarm optimization and genetic algo-
rithms, by 3–5% for different real-time energy prices. Additionally, the method’s effectiveness in
reducing operational costs for workplace EVs is confirmed through extensive case studies under
varying uncertain conditions. Finally, the system is implemented on a digital real-time simulator
with DNP3 communication, where real-time results align closely with offline simulations, confirming
the algorithm’s efficacy for real-world applications.

Keywords: electric vehicles; graph-search algorithm; charging-discharging scheduling; energy
storage; digital real-time simulation

1. Introduction

Electric vehicles are gaining popularity over conventional fossil fuel-based vehicles
due to their low carbon footprint, and government subsidies. Additionally, using electricity
to fully charge an EV is less expensive than having a similar-sized vehicle’s tank filled with
gasoline. Large-scale integration of EV charging stations makes the power grid susceptible
to voltage fluctuation, frequency excursion, peak demand, etc. [1]. In order to combat this
issue, real-time pricing strategies are increasingly being used by utility companies to shift
peak demand to off-peak hours [2]. This feature can be used for optimal EV scheduling by
determining the ideal time to charge EVs [3]. EVs can also be used as energy storage to sell
energy to the grid with a vehicle-to-grid (V2G) connection [4]. Ideally, EVs should charge
during low-price periods and discharge during peak-price periods. However, EVs are
expected to be charged fully or partially before they are on the road. So, some constraints
need to be addressed when solving EV scheduling problems. In addition, the uncertain
nature of users’ commuting behavior, price of electricity, traffic conditions, arrival and
departure time of EVs, etc., make it difficult to find the optimal solution to this problem
with a normal approach.

Researchers have suggested various strategies to find the best answer to this schedul-
ing issue for EV charging and discharging [5–8]. For instance, the authors of [9] formulated
a rule-based energy management mechanism to control the flow of energy of the EV where
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they considered 10 different scenarios. The authors of [10] presented a comprehensive
review of the scheduling of EVs where different methodologies used for this application
were discussed. The authors of [11] proposed a two-stage framework for the economic
operation of EV parking decks that took the uncertainty of rooftop photovoltaic panels
into account. The authors of [12] proposed a two-level EV charging management system
with stochastic programming while considering the integration of DERs for workplace EV
charging stations. In both articles, users are unable to control the target state of charge
(SoC) of EVs, which could be problematic if the EVs have to travel a significant distance.
A stochastic energy management solution was proposed in [13] for EVs at parking lots
equipped with distributed energy resources (DERs) while considering the unpredictable
nature of energy price, and arrival and departure schedule of EVs. The authors of [14]
proposed a multilayer iterative stochastic dynamic programming framework for energy
management in smart buildings with integrated EVs, effectively adapting to fluctuating
demand and dynamic energy prices, which is crucial for real-world applications.

In [15], a novel iterated random operator theory was developed to schedule the charg-
ing periods of EVs at charging stations with various charge levels. However, the authors
failed to consider the degradation cost of the EV battery in the scheduling problem. The
authors of [16] proposed an ordinal-based approach to find the optimum solution for real-
time EV charging scheduling. The objective of the papers was to find a less computationally
expensive method for the scheduling as the algorithm would be functioning in real time.
The authors of [17] used a novel distributed simulation-based policy improvement method
to coordinate multiple charging stations in a micro-grid environment while considering
wind power generations. Recently, machine learning-based approaches such as reinforce-
ment learning [18] and deep reinforcement learning [19] have been used by researchers to
solve the scheduling problem of EV charging. The authors of [20] suggested a safe deep
reinforcement learning method to reduce the cost of charging EVs using a constrained
Markov decision process while still ensuring that they can be fully charged. However,
most of the articles only considered one charging mode in their test cases. As various
versions of charging modes are being used in real charging stations, the impacts of fast or
supercharging for EV charging scheduling problems need to be discussed.

In order to schedule EV charging and discharging economically at the household
level and workplace level with the integration of photovoltaic (PV) generation, this paper
suggests a heuristic graph-search-based algorithm to minimize the cost of vehicle opera-
tion. This algorithm has recently been used to resolve the power system’s optimization
problems [21–23]. The proposed heuristic graph-search algorithm directly finds the optimal
path by evaluating the actual and heuristic costs of each possible solution node unlike
PSO and GA, which rely on population-based iterations to approximate solutions. This
enables the algorithm to navigate the solution space more effectively by considering both
current and future costs. This approach ensures that it always converges to the optimal
solution without requiring multiple population updates or fitness evaluations, which can
slow down PSO and GA. The graph-search algorithm excels in handling complex, non-
linear constraints, such as battery degradation, real-time electricity prices, and uncertain
EV departure/arrival times, something traditional meta-heuristics can struggle with due
to their stochastic nature. This results in more precise and reliable scheduling outcomes
under uncertainty. Machine learning (ML) models such as deep learning function as a black
box, whereas the graph-search algorithm provides clear, explainable optimization paths
for EV scheduling, which is crucial in energy management applications. Additionally, the
proposed algorithm is computationally efficient and suitable for real-time applications,
allowing timely decisions without the need for extensive computational resources or large
datasets, which ML models typically require. The proposed method is also more adaptable
to uncertainties in real-time data and scalable across different scenarios without requiring
retraining. Although ML models can be powerful for complex prediction tasks, they are less
practical in dynamic optimization settings like EV scheduling, where real-time adjustments
and data variability are common.
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This paper considers three charging modes for residential EV charging: (i) onboard
normal charging, (ii) fast charging, and (iii) supercharging. It is common to have fast or
rapid charging points at the workplace along with the onboard or standard charging points
due to their direct access to a three-phase power supply [24]. The charging stations at the
workplace generally have normal and level 2 fast charging capabilities [25]. So, this paper
considers these two charging modes for the workplace level: (i) onboard normal charging,
and (ii) fast charging. The main contributions of the paper are summarized below:

• The paper proposes a novel heuristic graph-search-based algorithm for the optimal
management of EV charging and discharging at workplaces and residential buildings.
The algorithm is compared with two traditional meta-heuristic methods to validate its
effectiveness for this problem.

• The algorithm optimizes based on 24 h ahead electricity prices and vehicle-specific bat-
tery degradation costs. It also accounts for the inherent uncertainties in EV departure
and arrival times and their SoC levels

• Two different real-time prices (RTPs) of electricity were used to test the robustness of
the system, and these cases were designed to observe various battery operation strate-
gies, including controlled charging, smart charging/discharging, and uncontrolled
charging modes.

• A real-time testbed, employing the Distributed Network Protocol (DNP3)—a standard
in electric power system communications—was modeled on real-time simulators to
validate the proposed algorithm.

The remainder of this paper is structured as follows. The mathematical formulation of
the problem is covered in Section 2. The mathematical representation and the flow chart of
the suggested algorithm are provided in Section 3. Section 4 includes cost analyses based
on offline simulation results, test cases, and system parameters. Real-time validation of the
algorithm is provided in Section 5. Finally, Section 6 ends with concluding statements.

2. Problem Formulation

The proposed EV controller will have the objective of minimizing the cost of EV
operation at residences and workplaces without violating any constraints. The algorithm’s
output will send control signals for the battery operation, such as charging or discharging
the car, while it is connected to the power source. An accurate model for the battery is
necessary to express its voltage, current, and SoC. The battery of EVs is modeled based
on a Li-ion battery whose discharge curve can be segmented into three zones [26–28], as
shown in Figure 1. The initial zone (Zone 1) reflects the exponential drop in the voltage
of the cell during the initial discharge. The next segment (Zone 2) signifies the amount
of charge extractable from the cell before reaching its nominal voltage. The final section
(Zone 3) represents the complete discharge of the cell and its cutoff voltage. The model’s
parameters are deduced from the discharge characteristics and assumed to be the same
for charging. Furthermore, it is assumed that the internal resistance of the cell remains
constant during both charging and discharging cycles.

Equations (1) and (2) represent the charging and discharging equations, respec-
tively [29].

Vb,ev = E0 − Ri − K
Q

it − 0.1Q
· i∗ − K

Q
Q − it

· it + Ae−B·it (1)

Vb,ev = E0 − Ri − K
Q

Q − it
· i∗ − K

Q
Q − it

· it + Ae−B·it (2)

where Vb,ev is the battery voltage of the EV, A is the exponential voltage, K is the polarization
constant, E0 is constant voltage, B is the exponential zone time constant inverse, Q is the
charge capacity, i is the battery current, i∗ is the filtered current, t is time, and R is internal
resistance. During the fully charged voltage, the filtered current, i∗, and the extracted
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charge, it, both become zero as the current step has just begun. So, the voltage of the battery
when it is fully charged, Vf ull , can be represented by (3) [29].

Vf ull = E0 − Ri + A (3)

To calculate the voltage of the exponential area, B is approximated to be 3
Qexp

as the
energy of the exponential term becomes closer to zero and i∗ is equal to i during the steady
state. So, the voltage of the exponential zone, Vexp, can be defined by (4) [29].

Vexp = E0 − Ri − K
Q

Q − Qexp
· (Qexp + i∗) + Ae

−3
Qexp ·Qexp (4)

Similarly, the voltage of the nominal area Vnom is defined by (5) [29].

Vnom = E0 − Ri − K
Q

Q − Qnom
· (Qnom + i∗) + Ae

−3
Qnom ·Qnom (5)

The thermal part of the battery modeling is implemented based on [30]. The reference
signal used for charging and discharging is ∈ {0, 1}. The controller will reduce the costs and
consequently save money for users with a V2G connection considering the RTP of energy.
An objective function for a residential place is formulated to solve this cost minimization
problem, which can be represented by (6).

min
{

∑
t∈T

[
rrtp,t∆t ∑

v∈V
(Pc

v,t − Pi
v,t) + ∑

v∈V
Cd

v Pd
v,t

]}
(6)

where, rrtp,t is the real-time energy price at time t, Pc
v,t and Pi

v,t represent consumed power
from the grid and injected power to the grid for every EV v at time t, and ∆t is the
time interval, and Cd

v is the degradation cost of the battery. Degradation cost is a critical
parameter for EV battery scheduling due to the nature of V2G operation. The degradation
cost is integrated directly into the optimization objective as a key cost component. When
the algorithm makes decisions about when to charge or discharge an EV, it not only
considers the real-time energy price but also the associated battery degradation cost. The
objective function includes both the cost of charging/discharging based on the real-time
price of electricity and the degradation cost, ensuring that the optimization balances the
operational cost with the long-term impact on the battery’s lifespan. In this formulation,
the degradation cost influences the decision on when and how much to charge/discharge
the battery. Charging at times with lower real-time prices might seem optimal initially, but
when accounting for degradation cost, the algorithm prioritizes strategies that minimize
unnecessary battery wear, extending the battery’s life and reducing long-term costs. The
battery degradation model used in this study is based on well-established principles that
take into account the Depth of Discharge (DoD), the number of cycles, and the efficiency
of the battery [31]. Degradation is quantified by considering the relationship between the
battery’s use and its overall lifespan, which is represented by (7), where Cd

v is the battery
degradation cost of the vehicle v, Cbat

v is the cost of a new battery of the vehicle v, DoD is
the desired depth of charge of the EV battery, ncyc is the number of cycles guaranteed under
DoD, Emax

v is the maximum capacity of the battery (kWh), and ηb is the overall efficiency of
the battery.

Cd
v(DoD, ncyc) =

Cbat
v

ncyc × Emax
v × DoD × ηb

($/kWh) (7)

The objective function is subjected to specific equality and inequality constraints.
Inequality constraints of the problem are provided by (8)–(10). SoC at any time t has to
be limited by the maximum and minimum SoC levels of the battery. Similarly, consumed
or injected power by the EV battery at each time t has to be bounded by the minimum
and maximum power rating. The power balance constraint is provided by (11), where the
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power coming from the grid has to be equal to the total consumed power by loads and EVs.
PG(t) is grid power, Ppv(t) is the output power of PV, and ∑l∈L Pl(t) is the total consumed
power for all loads L at time t in (11). Equation (12) indicates that the SoC level at the end
of the charging period should be equal to the desired SoC level set by the user. As the
vehicle battery cannot be charged and discharged at the same time, constraints presented
by (13) and (14) are used to ensure the battery operates in one mode, i.e., charging or
discharging where δc

v,t, δi
v,t, αv,t are constant terms ∈ {0, 1}.

SoCmin
v ≤ SoCv,t ≤ SoCmax

v (8)

Pmin
v ≤ Pc

v,t ≤ Pmax
v (9)

Pmin
v ≤ Pi

v,t ≤ Pmax
v (10)

PG(t) = ∑
l∈L

Pl(t)− Ppv(t) + ∑
v∈V

(Pc
v(t)− Pi

v(t)) (11)

SoC(t=end)
v = SoCdesired

v (12)

δc
v,tP

c
v,t + δi

v,tP
i
v,t

Pc
v,t + Pi

v,t
= αv,t, where, Pc

v,t + Pi
v,t ̸= 0 (13)

δc
v,t + δi

v,t = αv,t (14)

The SoC of EVs is calculated using (15), where SoCv,t is the state of charge of the
vehicle v at time step t, Pr

v,t is the rated power of the EV battery, and ηc
v, and ηd

v are the
battery’s efficiency terms for charging and discharging, respectively.

∆SoCv,t =

ηc
v

Pr
v,t×∆t
Emax

v
, when charging

1
ηd

v

Pr
v,t×∆t
Emax

v
, when discharging

(15)

The problem formulation for a workplace with charging stations is the same as the
residential level except for the objective function. The objective function considers another
cost component called demand charge, Cdc, contributed by violating the peak demands
while charging EVs. So, the objective function for a workplace with charging stations can
be expressed by (16).

min
{

∑
t∈T

[
rrtp,t∆t ∑

v∈V
(Pc

v,t − Pi
v,t) + ∑

v∈V
Cd

v Pd
v,t

]
+ Cdc max

t∈Tm
(Pc

v,t)

}
(16)

Let us consider a distribution grid with a transformer, dynamic load, PV generation,
EV, and power electronics, such as a DC-AC and a DC-DC converter, which are all part of a
residential system. Figure 2 depicts the test systems’ architecture. The PV and grid supply
the majority of the dynamic loads at the household level. If additional PV generation
occurs, the energy can be sold back to the grid. The EV’s battery can be used as energy
storage to power the load. The EV charging station also supports bi-directional power flow,
which means the battery can inject power into the grid. Figure 2b shows the test system
for a workplace with charging stations which consists of PV panels, EV charging panels,
and power electronics components. EVs in the charging station also have the capability to
discharge, i.e., inject power into the grid. The MATLAB/Simulink v2022a platform was
used to model the test systems.
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Figure 1. Discharge curve of a Li-ion battery [26–28].

(a) Residential (b) Workplace
Figure 2. Architecture of test system models.

3. Proposed Algorithm

A heuristic graph-search-based algorithm known as A star (A*) has been known for
its use in robot path planning [32]. The main objective of a path planning problem is to
navigate through terrain with numerous obstacles while finding the target location in the
shortest amount of time possible. This issue is resolved by the A* algorithm, which builds
a graph of the terrain with numerous nodes and determines the path with the lowest cost.
We can consider the target location as the target SoC level, and the nodes as the time steps
necessary for each control action, making the EV scheduling problem a similar type of
problem. Then, evaluating each path’s cost after considering all the potential nodes, the best
path can be found. The cost is calculated using (17), where n stands for the specific node.

f (n) = g(n) + h(n) (17)

The total cost function, which is a combination of two other costs, is represented by
the symbol f (n) in this equation. One is the actual cost, or g(n), which is the price incurred
along the route taken to reach the node from the starting node. Heuristic cost, or h(n), is
the other cost and it calculates the price to travel to the target node from the node, n. The
heuristic cost function must be accepted for the algorithm to always choose the cheapest
route. It implies that the estimated heuristic cost cannot be greater than the actual path
cost between the current node and the target node. As a result, the heuristic cost must be
carefully calculated, which is problem-specific. A* begins by figuring out the total cost of
all the nodes that are closest to the starting node. All of these closest nodes, which are also
referred to as the initial node’s children, are added to a list called OPEN. Then, it selects the
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node whose successor has the smallest cost function, f (n). The starting node can now be
referred to as the successor node’s parent node. To determine its successor, the next step is
to compute the total cost of the closed nodes of the predecessor node. The initial successor
node is moved to a new list that is CLOSED after being removed from the OPEN list. After
the next line of successor nodes has been added to the OPEN list, the node with the lowest
cost is then selected as the succeeding successor. Until the heuristic cost is zero, or when it
reaches the target node, the algorithm extends the OPEN and CLOSED lists. The CLOSED
list contains all the nodes from the start to the goal node that have the lowest costs. To find
the best path, the algorithm now retraces its steps from the starting node to the target node.
Figure 3 contains the flow chart for the A* algorithm.

Figure 3. Flow chart of A* algorithm.

In order to implement this method for our case, at first, the solution space needs to be
defined by a combination of nodes and edges. The starting node will be initiated using the
current status of the system. The algorithm will have access to 24 h predicted RTP and load
data to use for determining the future nodes and edges. The total actual cost from time t
to time t + ∆T for the problem is represented by Cactual(n). It can be calculated using (18),
where CEV(pc) is the cost to go from parent node p to child node c, and Clowest(p) is the
lowest cost to get to the parent node p from the starting node.

Cactual(n) = CEV(pc) + Clowest(p) (18)

CEV(pc) is calculated using (19), where SoCc and SoCp represent the state of charge at
the child and parent node, rrtp is the real-time price of electricity from time t to time t + ∆T,
and ∆T is the time interval.

CEV(pc) = (SoCc − SoCp) · Emax
v · rrtp (19)
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The heuristic cost Ch(n) of node n at time t can be calculated by (20), where D(n)
and rrtp(n) are the energy demand and real-time electricity price between time t and
t + ∆T, respectively.

Ch(n) =
end

∑
n=t

D(n) · rrtp(n) (20)

so, the total cost Ctotal(n) can now be written as (21) for this problem.

Ctotal(n) = Cactual(n) + Ch(n) (21)

Figure 4 provides a graphical representation of the solution space of EV SoC with the
proposed algorithm. In the figure, the x-axis represents time t = 0, ∆T, 2 × ∆T, ..., T where
∆ T = 15 min, T is the end time, and the y-axis represents SoC. Let us assume that at time
t = 0, the initial SoC of the EV battery is 50%, and at time t = T, the desired SoC is 90%.
The SOC of the EV battery is discretized in steps of 4% for the normal charging mode of
Tesla Model 3. It is assumed that the battery can discharge a maximum of 8% at a time
safely. Now, in the next time step, t = ∆T, the battery’s possible SoC can be 42%, 46%,
50%, or 54%. Similarly, all the nodes are formulated for the solution space until t reaches
T. The cost to go from one node at t = 0 to another possible node at t = ∆T is calculated
using (18), and the cost to go from the node t = ∆T to the final node at t = T is calculated
with (20). Based on all the costs, the algorithm will decide which path to take to obtain a
cost-effective solution without violating constraints.

Figure 4. Demonstration of the discretized solution space of EV SoC with the A* algorithm.

The proposed algorithm will provide reference signals for charging and discharging
for a time interval of 15 min. Users can set the algorithm’s end time, i.e., the operation
time of the vehicle and the desired SoC level of the vehicle. It is therefore possible for
the controller to charge the EV to its maximum level before the start of the journey if
any user plans to travel a long distance. The algorithm is based on 24 h ahead price
forecasts, which provide a reasonable approximation of future energy costs. However, in
dynamic energy markets, real-time prices may fluctuate due to demand response, market
conditions, or renewable energy integration, potentially affecting the optimality of the
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charging/discharging decisions. In this model, it is assumed that EVs will maintain
their battery temperature at its optimal level, reducing the effects of temperature on the
performance. The charging rate is linearized between the time steps to reduce model
computational time based on the current SoC. The SoC of the battery will be sent from the
vehicle itself, and using a charging profile, we almost accurately predict what its state of
charge is going to be for the next time step. The flow of data required by the controller
for its optimal EV charging and discharging schedule is depicted in Figure 5. Forecasted
parameters can be obtained using machine learning methods, e.g., neural prophet [33],
deep neural network [34], LSTM [35], etc. Historical datasets of the required parameters
can be obtained from different independent system operators (ISOs). The controller will
provide the reference signal for each EV based on all the data available to it.

Figure 5. Data flow of EV scheduling controller.

All offline simulations were performed on a personal computer with Intel(R) Core(TM)
i7-10510 CPU @ 1.8 GHz (Intel, Santa Clara, CA, USA) with 16 GB of RAM running on a
64-bit Windows 10 operating system.

4. Offline Results and Analysis
4.1. Residential

Due to the Tesla Model 3’s variety of charging options, this vehicle was chosen as
the EV model to test the proposed algorithm for residential purposes. The EV model
parameters can be found in [36,37]. The Tesla Model 3 has a 240 V adapter for onboard
standard charging. To charge the vehicle, a fast charger with a maximum power rating of
120 kW to 150 kW can be used. Tesla’s supercharger version 3, with a maximum power
rating of 250 kW, provides the fastest charging speed. The data for the test system, including
solar generation and dynamic load profiles, are taken from [38]. All of the parameters used
for the test system are listed in Table 1.

Table 1. EV battery test system parameters.

Parameter Value Parameter Value

Battery Capacity 57.5 kW SoCmin 10%
Max. Power for Normal Charging 11.5 kW SoCmax 90%

Max. Power for Fast Charging 150 kW DoD 80%
Max. Power for Supercharging 250 kW ncyc 380

Efficiency, ηv 90% Cd
v 0.85 USD/kWh

Two RTP profiles were used to evaluate the controller’s performance for the various
test cases mentioned above. One energy price was obtained by modifying the New England
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Independent System Operator (NEISO) [39] hourly locational marginal price (LMP) to
match the daily average price of the Massachusetts region. Another synthesized price was
created by combining the NYISO’s marginal price [40] with the time-of-use (ToU) price of
electricity in Tallahassee, Florida. This energy price was calculated in 15-min increments.
Equations (22) and (23) are used to modify the NYISO price, where NYavg is the average
price of NYISO price, To f f is the off-peak bias, Ton is on-peak bias, Sc is supplier charge,

rtpo f f
t is off-peak RTP at time t, and rtpon

t is on-peak RTP at time t. This synthesized price
will be more appropriate to the North Florida market while preserving the fluctuating
nature of RTP.

rtpo f f
t = LMPt + |NYavg − To f f |+ Sc (22)

rtpon
t = LMPt + |NYavg − Ton|+ Sc (23)

The following three test cases have been considered in order to test the controller
algorithm.

4.1.1. Case I

In this case, the EV will start charging at 10:00 p.m. to reach its maximum level without
the use of a controller. As a result, there will be no V2G operation in this case. This will
serve as the baseline against which all other cases will be compared for cost analysis.

The average net cost of this operation for the user is −USD 3.50 for the NEISO-based
energy price and −USD 1.95 for the synthesized Tallahassee energy price, respectively. In
this case, a negative net cost means that users must pay that amount to the utility.

4.1.2. Case II

During the weekdays, people with families tend to leave early for work and return
home in the afternoon [41]. In this case, 12 h (from 6:00 p.m. to 6:00 a.m.) was chosen for
the EV’s charging and discharging period, and the SoC level of the EV’s battery had to be
at its maximum (90%) at the end of the period. The initial SoC is set randomly between 40
and 80%.

EV profiles for both normal charging and supercharging modes are shown in Figure 6.

(a) NEISO-based energy price. (b) Synthesized energy price.
Figure 6. EV battery charging and discharging profile for 12 h operation.

The optimal scheduling of EV for NEISO-based energy price where energy price is
high during the evening time is depicted in Figure 6a. As a result, the EV initially injects
power into the grid before consuming power to charge to its set point before 6:00 AM
(set by the user). Because the EV can be charged and discharged quickly with fast and
supercharging, Figure 6a shows that only one charging and one discharging action are
required to maximize the gain. As shown in Figure 6b, the proposed algorithm can
maximize savings by discharging during peak prices based on predicted energy prices. For
example, the EV discharged energy for all modes in Zone 1 and the SoC reached different
levels based on its charging mode. In Zone 2, it can be seen the battery was charging at a
lower price so that it could discharge during the peak price. The algorithm ensures that all
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the actions taken by the battery lead up to its desired SoC level, which is represented in
Zone 3 of Figure 6b. Overall savings for a day are calculated by (24), where NCc,i is the net
cost with the proposed method, i represents different charging modes, and NCbase is the
net cost when no control action was taken.

Savingsi = NCc,i − NCbase (24)

The savings using NEISO-based energy price are USD 10.75, USD 13.00, and USD
13.30 with normal charging, fast charging, and supercharging, respectively. Similarly, using
the synthesized energy price, the net costs of normal, fast, and supercharging are USD 2.10,
USD 7.33, and USD 8.63, respectively.

4.1.3. Case III

The assumption, in this case, is that the vehicle is available for 24 h (from 6:00 a.m. to
6:00 a.m. the following day) and must be fully charged at the end of that time. This type of
scenario is common on the weekends.

The charging/discharging profiles for Case III are shown in Figure 7. In this case, the
vehicle is available for charging and discharging for 24 h. The SoC of the EV drops to its
lowest level during peak prices to maximize savings by discharging energy. The algorithm
ensures that the EV battery has enough stored energy for maximum capitalization of the
peak prices. The SoC then rises to its desired value during low-price periods. In this
case, overall savings in 24 h for NEISO-based prices are USD 13.30, USD 21.60, and USD
21.60 for normal, fast, and supercharging modes. Charging and discharging during small
fluctuations in energy price will damage the battery and as a result, the net cost will be
higher. The algorithm ensures this by considering degradation cost and depth of charge,
which are reflected in Figure 7b. The synthesized price fluctuated during the morning with
small differences, so the battery was not charged. However, the price variation was high
enough during the afternoon to charge/discharge the battery. In this case, overall savings
in 24 h for synthesized-based prices are USD 4.53, USD 14.29, and USD 15.37 for normal,
fast, and supercharging modes, respectively.

(a) NEISO-based energy price. (b) Synthesized energy price.
Figure 7. EV battery charging and discharging profile for 24-hour operation.

4.1.4. Comparison Analysis

The algorithm was compared with two meta-heuristic methods, i.e., particle swarm
optimization (PSO) and genetic algorithm (GA), to show its efficacy over any meta-heuristic
approach. PSO is a swarm-based optimization algorithm that is inspired by social ani-
mals’ collective behavior [42]. Researchers have used this method for optimal dispatch
problems [43] and scheduling problems for EV charging and discharging [44]. GA is a
computational method inspired by biological evolution [45]. The main idea in GA is to find
the best chromosomes from a random population of chromosomes based on the solution
they provide. The authors of [46] used GA for smart charging and discharging schedules
for EV fleets. These two methods were modeled using Python and the hyperparameters
were optimized using the random search method. The selected population size and number
of epochs were 100 and 400 for GA, and 120 and 200 for PSO, respectively. The algorithms
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were simulated multiple times with different hyperparameters and specifying random
seeds in order to find the optimal solution.

Table 2 provides the comparison analysis for the residential EV charging/discharging
schedule with different techniques.

Table 2. Comparison analysis for different techniques.

Case No. Charging
Savings (USD) for
NEISO Based Price

Savings (USD) for
Synthesized Based Price

Type
A* PSO GA A* PSO GA

Case II
Normal 10.75 10.25 10.40 2.10 1.98 2.03

Fast 13.00 13.00 13.00 7.33 7.33 7.27
Super 13.30 13.30 13.30 8.63 8.63 8.63

Case III
Normal 13.30 12.75 12.90 4.53 4.25 4.33

Fast 21.60 21.60 21.60 14.29 14.29 14.29
Super 21.60 21.60 21.60 15.37 15.37 15.37

Case I was used as a base case to calculate cost savings, as it represents normal
operation without any controller action. Table 2 shows that A* always performs better in
normal charging mode than other methods. However, almost all the methods perform
similarly for fast and supercharging modes. In Case II, A* achieves 4.6% greater savings
than GA and 3.2% greater savings than PSO in normal charging mode with NEISO-based
pricing. For synthesized pricing, A* shows a 5.7% improvement over GA and a 3.33%
improvement over PSO. In Case III, A* provides 5.6% better savings than GA and 4.% better
than PSO in normal charging mode with NEISO-based pricing. For synthesized pricing,
the improvements in savings with A* are 6.18% over GA and 4.44% over PSO. From the
results, it can also be concluded that the supercharging option saves more money than the
normal charging mode due to its high charging rate. However, the high installation costs of
fast or supercharging facilities must be considered, as these may result in a longer return on
investment period compared to the normal onboard charging operation. Table 3 provides
the computational time for each method, where it can be observed that the proposed
algorithm provides a faster solution than the other two methods.

Table 3. Computational time comparison.

Algorithm Computational Time (s)

A* 124
PSO 145
GA 173

4.2. Workplace Building with EV Charging Station

For a quantitative evaluation, modeling a workplace equipped with an EV charging
station is crucial for the decision-making process of optimal scheduling [47]. Addition-
ally, it is important to determine the optimal strategy for different vehicles at charging
stations equipped with PV and energy storage systems [48]. To evaluate the algorithm’s
performance at workplace EV charging stations, various test cases were conducted using
synthesized energy prices. In these scenarios, the vehicles were operated in two charging
modes, and five different EVs from various manufacturers, including Tesla, Nissan, and
Kia, were selected. All the information collected from [49] is provided in Table 4 where
degradation cost is calculated for 80% depth of discharge.

The following three test cases have been considered in order to test the algorithm.
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Table 4. Specifications of different EVs.

EV No. EV Model Degradation Cost Power Rating
(USD/kWh)

[from (7)] (kWh)

EV1 Nissan leaf 0.85 39
EV2 Tesla Model 3 1.05 57.5
EV3 Kia e-soul 1.15 64
EV4 Tesla Model 3 long range 1.05 75
EV5 Tesla Model S plaid 1.46 95

4.2.1. Case I

In this case, all EVs will be plugged into the charger for a 12 h period (6:00 a.m. to
6:00 p.m.) with the same degradation cost. Both normal and fast charging modes were
explored separately for different degradation costs. The optimal scheduling of EVs for
synthesized energy price at a workplace with charging stations is depicted in Figure 8. All
EVs have the same initial SoC level of 50%. Initially, all EVs consumed power to charge and,
later during the peak price, injected power into the grid. In Figure 8a, it can be observed
that only EV1 has a different response profile to the rest. The reason behind this is the
lowest degradation cost of EV1. The cost would have been between −USD 2.25 and −USD
2.50 for each EV when EVs were connected without any controller. The overall savings in
this mode were USD 1.78 for EV1 and USD 1.74 for the rest of the EVs. Even though the
savings seem low, the cumulative savings over the year would be significant. In Figure
8b, the responses of the EVs are shown, where all EVs were charging in fast mode. The
responses from EVs were quite different from each other due to their degradation cost here
as well. However, as the vehicles can charge faster, they can now utilize the peaks more
effectively in this mode. The savings were USD 4.43, USD 2.96, USD 2.36, USD 2.68, and
USD 3.87 for EV1, EV2, EV3, EV3, and EV5, respectively. If no control action was taken and
the EVs were kept in charging mode, then the EVs would have been charged during the
peak hours. As a result, their operational costs would have been much higher.

(a) Normal charging mode. (b) Fast charging mode.
Figure 8. Response of EVs for different charging modes at a workplace with charging stations.

4.2.2. Case II

In this case, EVs had different initial SoCs, while the charging/discharging period for
this case was the same as Case I. In order to fully understand the impact, only one type of
EV was chosen.

In the next test case, the range of the initial SoC was set from 40% to 80% to observe the
actions of the controller. The charging and discharging responses of the EVs for different
initial SoCs are shown in Figure 9, where only one type of EV was used. Operational
costs were higher for those EVs whose initial SoCs were lower as the vehicles needed to be
charged to the desired maximum SoC level. Savings for each EV were USD 1.15, USD 1.50,
USD 1.83, USD 2.16, and USD 2.49, respectively. Since vehicles with a lower initial state of
charge require more energy to reach the desired SoC, their overall operational costs would
be higher.
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Figure 9. Output result for EVs with different initial SoCs.

4.2.3. Case III

EVs had the same initial SoC in this case. The vehicles had different charging modes,
different degradation costs, and different charging speeds. The outcome for Case III is
shown in Figure 10. In this case, five different EVs were connected to the charging station
at the same time. However, EV1 and EV3 were operating in fast charging mode. Overall
savings for each EV are USD 1.91, USD 1.46, USD 2.35, USD 1.05, and USD 0.97, respectively.
The reason for higher savings for vehicles 1 and 3 is that they were able to use their charging
speed to minimize the operation cost.

Figure 10. Output results for EVs for Case III.

4.2.4. Case IV

Vehicles can come at different hours of the day at the workplace with distinct SoCs and
leave at different times in real-life scenarios. This case explored this effect on the algorithm.
The assumption here is that the operational time for the workplace is between 7 a.m. and
7 p.m. So, EVs can arrive anytime between 7 a.m. and 10 a.m. for an 8 h workday. When
the EVs arrive, the controller will assume it has 9 h to reach its desired SoC level unless
users define different hours. As EVs can arrive with different SoCs depending on how
much energy is used for the travel, this paper assumed the SoC of the EVs to be between
40% and 80% with a 10% step for simplicity.
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The unpredictable nature of human behavior was analyzed in Case IV. Initially, the case
study was performed by changing only the arrival time of EVs. Later, arrival/departure
times and initial SoCs were randomly chosen to test the algorithm’s performance. The
charging/discharging period was fixed at a 9 h period, which is a typical office hour time.
The output for this case can be seen in Figure 11. EV1 and EV2 have a lower net cost as
they were able to utilize the peak price at 7:00 a.m. Moreover, these two have lower power
ratings than the rest of the EVs. Figure 11a shows the responses of EVs when they had
different arrival times but the same initial SoC. Figure 11b represents the responses of the
EVs when both arrival and initial SoC were randomly distributed.

(a) Different arrival time. (b) Different arrival times and initial SoCs.
Figure 11. Simulation results for Case IV.

Table 5 summarizes the savings of each EV for different test cases. The operational
cost would be between −USD 3.00 and −USD 2.25 without any controller action for those
EVs. So, the proposed algorithm is able to reduce operational costs for all cases.

Table 5. Savings (USD) in different test cases for workplace EVs.

Test Cases EV1 EV2 EV3 EV4 EV5

Case I Normal 1.78 1.74 1.74 1.74 1.74
Fast 4.43 2.96 2.36 2.68 3.87

Case II 1.15 1.50 1.83 2.16 2.49
Case III 1.91 1.46 2.35 1.05 0.97

Case IV (a) 2.25 2.05 1.89 1.83 1.75
Case IV (b) 2.37 2.23 1.98 1.83 1.61

The current optimization framework focuses on EV SoC and operational cost min-
imization. However, large-scale EV charging can impact grid infrastructure, including
transformer overloading and voltage stability. The simultaneous charging of multiple EVs,
particularly at fast or supercharging rates, could lead to significant power demand spikes,
potentially exceeding transformer capacity and causing voltage violations [50]. Additional
objectives such as voltage violation cost could be added to this framework to make the
problem a multi-objective problem. Then, the goal will be to find the optimal solution
where both operational cost and voltage violation cost are reduced.

5. Validations Through Real-Time Simulations

The procedure for testing the algorithm for real-time setup and the comparison be-
tween the offline and real-time results are discussed in this section. Real-time validation of
a controller is a necessary step that needs to be taken before any control algorithm goes
to the commercial market because of the sensitive nature of the power grid. Figure 12
represents the setup for the real-time simulation used for validation purposes, where
OPAL-RT [51] is used as a digital real-time simulator (DRTS). However, any other DRTS
such as RTDS or Typhoon can be used as well. The DRTS transmits the current network
status such as the SoC of the EV, demand, price of electricity, etc., to the Python/MAT-LAB
communication interface via DNP3 over TCP/IP. The communication interface inserts the
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current status of the system into the database. It also sends the system’s current status to
the controller under test. Based on the received data, the controller under test optimizes
and sends control decisions, i.e., reference signal, back to the DRTS via the communication
interface and DNP3 over TCP/IP. The control decisions are also stored in the database by
the communication layer. The database management server is necessary for storing the
system’s current and historical data. The real-time simulation was performed using 50 µs.
The experimental setup of the real-time simulation can be found in Figure 13 where the
actual lab equipment is shown. The presented testbed comprises the following components.

Figure 12. Digital real-time simulation setup for proposed algorithm validation.

Figure 13. Experimental setup for real-time simulation.

• Real-Time System Model: A real-time system is made up of various models that are
designed to represent and simulate the behavior and interactions of different power
system components in a real environment. The transient model of the system was
built in the OPAL-RT platform using RT-Lab Simulink libraries consisting of a battery
of an EV from Simulink, a three-phase average model of a two-level voltage-source
converter (VSC), a DC power source as a PV output, a dynamic PQ load, and a pi-
section model of a three-phase transmission line. The values of PV and dynamic loads
were obtained from a time series dataset with 15-minute intervals. Multiple state
space nodal (SSN) solvers were used to avoid a large state space matrix that could
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eventually cause overrun. These SSN blocks function as a decoupling tool, reducing a
large state space matrix to smaller ones for easier and faster real-time computation.

• Communication Interface: The model communicated with the controller via the IEEE
1815 DNP3 communication protocol [52]. One of the main reasons for choosing this
protocol is that it does not require devices to be in constant communication, thereby
significantly reducing the bandwidth requirements [53].

• Database Management Server: SQLite [54] was used to read and write data to a
database management server (DMS) deployed as an external system. This module can
send data directly to outstations as well as read data from the DMS.

The test case used to validate the model involves an EV that connects to the charging
station at 7:00 a.m. with an initial SoC of 60%. The vehicle departs for one hour at 11:00 a.m.,
returning with its SoC reduced by 10%. It then leaves the charging station again at 4:00 p.m.
Figure 14 shows the real-time results compared with the offline simulation. The missing
data from 11:00 a.m. to 12:00 p.m. reflects the vehicle’s absence. As shown in the figure, the
real-time results closely match the offline results, with a variation of around 0.5%, which is
insignificant.

Figure 14. Comparison between real-time and offline results.

6. Conclusions

In this paper, a graph-search-based algorithm was proposed for scheduling EV charg-
ing and discharging at both the household level and workplaces with integrated PV charg-
ing stations. The method allows users to specify the total charging/discharging time and
the desired SoC level of the battery. The algorithm’s performance was tested under three
different charging rates—normal, fast, and super—at the household level. Additionally,
energy prices based on NYISO and NEISO were utilized to assess the algorithm’s effective-
ness. The results from various test cases indicate that the proposed algorithm significantly
reduces the cost of EV operation across different modes. When compared to PSO and GA,
the algorithm outperforms them by approximately 5% and 4%, respectively. For workplace
testing, five different electric vehicles were used in various uncertain conditions, demon-
strating that the proposed method can reduce the operational costs of all workplace EVs
compared to those without a controller. An experimental test system, modeled on a digital
real-time simulator with PV, loads, and EVs, and using the DNP3 communication protocol,
confirmed that offline and real-time results were nearly identical, validating the efficacy
of the proposed model. The algorithm is able to to minimize operational costs for EV
users while simultaneously reducing peak demand encourages demand-side management
(DSM) and energy efficiency. By shifting EV charging to off-peak hours and enabling V2G
capabilities during peak demand, this approach could contribute to lower electricity prices,
reduce strain on grid infrastructure, and increase grid flexibility.
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The proposed model is evaluated for small-scale EVs. As the number of EVs increases,
the solution space for the scheduling problem grows exponentially due to the combinatorial
nature of the optimization process. The evaluation of multiple nodes and edges in the
solution space, particularly in a real-time scenario, may become computationally expensive.
Charging and discharging schedules of EVs are often independent, and the graph-search
process can be parallelized, with multiple processors working on different EVs simultane-
ously. This would significantly reduce the time required for finding optimal solutions in
large-scale systems. In the future, we plan to incorporate dynamic pricing, more non-linear
behaviors from the EVs, and a distributed approach where local controllers will handle
smaller groups of EVs, reducing the burden on a central controller.

Author Contributions: Conceptualization, M.J.A.S. and S.O.; methodology, M.J.A.S.; software,
M.J.A.S. and M.M.I.; validation, M.J.A.S., M.M.I. and S.O.; formal analysis, M.J.A.S; investigation,
M.J.A.S.; resources, M.J.A.S. and M.O.F.; data curation, M.J.A.S.; writing—original draft preparation,
M.J.A.S.; writing—review and editing, M.J.A.S., M.M.I., S.O. and M.O.F.; visualization, M.J.A.S.;
supervision, M.O.F.; project administration, M.O.F.; funding acquisition, M.O.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Department of Electrical and Computer Engineering,
FAMU-FSU College of Engineering, Florida State University.

Data Availability Statement: Data used for generating the reported results can be found at [36,39,40,49]:
Tesla (http://www.tesla.com), ISO New England (http://www.iso-ne.com), NewYork ISO (https:
//www.nyiso.com), Electric Vehicle Database (http://ev-database.org.)

Acknowledgments: ChatGPT-4’s AI tool was used to check and fix a few grammatical and spelling
errors in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DER Distributed energy resource
DMS Database management server
DNP3 Distributed Network Protocol
DRTS Digital real-time simulator
EV Electric vehicle
GA Genetic algorithm
ISO Independent system operator
NEISO New England Independent System Operator
NYISO NewYork Independent System Operator
PSO Particle swarm optimization
PV Photovoltaic
RTP Real-time price
SSN State space nodal
SoC State of charge
V2G Vehicle-to-grid
VSC Voltage source converter

References
1. Dutta, A.; Ganguly, S.; Kumar, C. Coordinated control scheme for EV charging and volt/var devices scheduling to regulate

voltages of active distribution networks. Sustain. Energy Grids Netw. 2022, 31, 100761. [CrossRef]
2. Srinivasan, D.; Rajgarhia, S.; Radhakrishnan, B.M.; Sharma, A.; Khincha, H.P. Game-Theory based dynamic pricing strategies for

demand side management in smart grids. Energy 2017, 26, 132–143. [CrossRef]
3. Tomašov, M.; Straka, M.; Martinko, D.; Braciník, P.; Buzna, L’. A Feasibility Study of Profiting from System Imbalance Using

Residential Electric Vehicle Charging Infrastructure. Energies 2023, 16, 7820. [CrossRef]
4. Khwanrit, R.; Javaid, S.; Lim, Y.; Charoenlarpnopparut, C.; Tan, Y. Optimal Vehicle-to-Grid Strategies for Energy Sharing

Management Using Electric School Buses. Energies 2024, 17, 4182. [CrossRef]

http://www.tesla.com
http://www.iso-ne.com
https://www.nyiso.com
https://www.nyiso.com
http://ev-database.org
http://doi.org/10.1016/j.segan.2022.100761
http://dx.doi.org/10.1016/j.energy.2016.11.142
http://dx.doi.org/10.3390/en16237820
http://dx.doi.org/10.3390/en17164182


Energies 2024, 17, 5278 19 of 20

5. Yan, Q.; Gao, Y.; Xing, L.; Xu, B.; Li, Y.; Chen, W. Optimal Scheduling for Increased Satisfaction of both Electric Vehicle Users
and Grid Fast-Charging Stations by SOR& KANO and MVO in PV-Connected Distribution Network. Energies 2024, 17, 3413.
[CrossRef]

6. Chen, Q.; Folly, K.A. Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A
Review. Energies 2023, 16, 146. [CrossRef]

7. Erdogan, G.; Fekih, Hassen, W. Charging Scheduling of Hybrid Energy Storage Systems for EV Charging Stations. Energies 2023,
16, 6656. [CrossRef]

8. Jin, H.; Lee, S.; Nengroo, S.H.; Har, D. Development of Charging/Discharging Scheduling Algorithm for Economical and
Energy-Efficient Operation of Multi-EV Charging Station. Appl. Sci. 2022, 12, 4786. [CrossRef]

9. El Harouri, K.; El Hani, S.; Naseri, N.; Elbouchikhi, E.; Benbouzid, M.; Skander-Mustapha, S. Hybrid Control and Energy
Management of a Residential System Integrating Vehicle-to-Home Technology. Designs 2023, 7, 52. [CrossRef]

10. Al-Ogaili, A.S.; Hashim, T.J.T.; Rahmat, N.A.; Ramasamy, A.K.; Marsadek, M.B.; Faisal, M.; Hannan, M.A. Review on scheduling,
clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations. IEEE Access
2019, 7, 128353–128371. [CrossRef]

11. Guo, Y.; Xiong, J.; Xu, S.; Su, W. Two-stage economic operation of microgrid-like electric vehicle parking deck. IEEE Trans. Smart
Grid 2015, 7, 1703–1712. [CrossRef]

12. Wu, D.; Zeng, H.; Lu, C.; Boulet, B. Two-stage energy management for office buildings with workplace EV charging and renewable
energy. IEEE Trans. Transp. Electrif. 2017, 3, 225–237. [CrossRef]

13. Nazari-Heris, M.; Mirzaei, M.A.; Asadi, S.; Mohammadi-Ivatloo, B.; Zare, K.; Jebelli, H. A hybrid robust-stochastic optimization
framework for optimal energy management of electric vehicles parking lots. Sustain. Energy Technol. Assessments 2021, 47, 101467.
[CrossRef]

14. Aljohani, T. M. Multilayer Iterative Stochastic Dynamic Programing for Optimal Energy Management of Residential Loads with
Electric Vehicles. Int. J. Energy Res. 2024, 1, 6842580. [CrossRef]

15. Shao, S.; Harirchi, F.; Dave, D.; Gupta, A. Preemptive scheduling of EV charging for providing demand response services. Sustain.
Energy, Grids Netw. 2023, 33, 100986. [CrossRef]

16. Long, T.; Jia, Q.S.; Wang, G.; Yang, Y. Efficient real-time EV charging scheduling via ordinal optimization. IEEE Trans. Smart Grid
2021, 12, 4029–4038. [CrossRef]

17. Yang, Y.; Jia, Q.S.; Deconinck, G.; Guan, X.; Qiu, Z.; Hu, Z. Distributed coordination of EV charging with renewable energy in a
microgrid of buildings. IEEE Trans. Smart Grid 2017, 9, 6253–6264. [CrossRef]

18. Qian, K.; Adam, R.; Brehm, R. Reinforcement learning based EV charging scheduling: A novel action space representation. In
Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies-Asia (ISGT Asia), Brisbane, Australia, 5–8 December 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

19. Yan, L.; Chen, X.; Zhou, J.; Chen, Y.; Wen, J. Deep reinforcement learning for continuous electric vehicles charging control with
dynamic user behaviors. IEEE Trans. Smart Grid 2021, 12, 5124–5134. [CrossRef]

20. Li, H.; Wan, Z.; He, H. Constrained EV charging scheduling based on safe deep reinforcement learning. IEEE Trans. Smart Grid
2019, 11, 2427–2439. [CrossRef]

21. Newaz, A.; Ospina, J.; Faruque, M.O. Controller hardware-in-the-loop validation of a graph search based energy management
strategy for grid-connected distributed energy resources. IEEE Trans. Energy Convers. 2019, 35, 520–528. [CrossRef]

22. Ketabi, A.; Karimizadeh, A.; Shahidehpour, M. Optimal generation units start-up sequence during restoration of power system
considering network reliability using bi-level optimization. Int. J. Electr. Power Energy Syst. 2019, 104, 772–783. [CrossRef]

23. Owais, S.; Shohan, M.J.A.; Islam, M.M.; Faruque, M.O. Management of grid connected energy storage systems employing
real-time energy price. J. Energy Storage 2024, 92, 112097. [CrossRef]

24. Chen, T.; Zhang, X.P.; Wang, J.; Li, J.; Wu, C.; Hu, M.; Bian, H. A review on electric vehicle charging infrastructure development in
the UK. J. Mod. Power Syst. Clean Energy 2020, 8, 193–205. [CrossRef]

25. Cheikh-Mohamad, S.; Sechilariu, M.; Locment, F.; Krim, Y. Pv-powered electric vehicle charging stations: Preliminary require-
ments and feasibility conditions. Appl. Sci. 2021, 11, 1770. [CrossRef]

26. Saw, L.H.; Somasundaram, K.; Ye, Y.; Tay, A.A.O. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles.
J. Power Sources 2014, 249, 231–238. [CrossRef]

27. Alhanouti, M.; Gießler, M.; Blank, T.; Gauterin, F. New Electro-Thermal Battery Pack Model of an Electric Vehicle. Energies 2016,
9, 563. [CrossRef]

28. Jörg, I. Physically Based Impedance Modelling of Lithium-Ion Cells; KIT Scientific Publishing: Karlsruhe, Germany, 2014; Volume 27.
29. Tremblay, O.; Dessaint, L.A. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 2009, 3,

289–298. [CrossRef]
30. Zhu, C.; Li, X.; Song, L.; Xiang, L. Development of a theoretically based thermal model for lithium ion battery pack. J. Power

Sources 2013, 223, 155–164. [CrossRef]
31. Eom, J.K.; Lee, S.R.; Ha, E.J.; Choi, B.Y.; Won, C.Y. Economic dispatch algorithm considering battery degradation characteristic of

energy storage system with PV system. In Proceedings of the 2014 17th International Conference on Electrical Machines and
Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 849–854.

http://dx.doi.org/10.3390/en17143413
http://dx.doi.org/10.3390/en16010146
http://dx.doi.org/10.3390/en16186656
http://dx.doi.org/10.3390/app12094786
http://dx.doi.org/10.3390/designs7020052
http://dx.doi.org/10.1109/ACCESS.2019.2939595
http://dx.doi.org/10.1109/TSG.2015.2424912
http://dx.doi.org/10.1109/TTE.2017.2659626
http://dx.doi.org/10.1016/j.seta.2021.101467
http://dx.doi.org/10.1155/2024/6842580
http://dx.doi.org/10.1016/j.segan.2022.100986
http://dx.doi.org/10.1109/TSG.2021.3078445
http://dx.doi.org/10.1109/TSG.2017.2707103
http://dx.doi.org/10.1109/TSG.2021.3098298
http://dx.doi.org/10.1109/TSG.2019.2955437
http://dx.doi.org/10.1109/TEC.2019.2952575
http://dx.doi.org/10.1016/j.ijepes.2018.07.045
http://dx.doi.org/10.1016/j.est.2024.112097
http://dx.doi.org/10.35833/MPCE.2018.000374
http://dx.doi.org/10.3390/app11041770
http://dx.doi.org/10.1016/j.jpowsour.2013.10.052
http://dx.doi.org/10.3390/en9070563
http://dx.doi.org/10.3390/wevj3020289
http://dx.doi.org/10.1016/j.jpowsour.2012.09.035


Energies 2024, 17, 5278 20 of 20
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