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Abstract: Uncertainty is an important subject in optimization problems due to the unpredictable
nature of real variables in the power system area, which can condition the solution’s accuracy. The
effective modelling of stochastic variables can contribute to the reduction in losses in the system
under evaluation and facilitate the implementation of an effective response in advance. To model
uncertainty variables, the most extended technique is the scenario generation (SG) method. This
method evaluates possible combinations of complete curves. Classical scenario generation methods
are founded on probability distributions or robust stochastic optimization. This paper proposes a
novel approach for constructing scenarios using the Ant Colony Optimization (ACO) algorithm,
referred to as ACO-SG. This methodology does not require a previous statistical study of uncertainty
data to generate new scenarios. A historical dataset and the desired number of scenarios are the
inputs inserted into the algorithm. In the case study, the algorithm used historical data from the
Savona Campus Smart Polygeneration Microgrid of the University of Genoa. The approach was
applied to generate scenarios of photovoltaic generation and building consumption. The low values
of the Euclidean distance were used in order to check the validity of the scenarios. Moreover, the
error deviation of the scenarios generated with the goal of daily power were 1.77% and 0.144% for
the cases of PV generation and building consumption, respectively. The different results for both
cases are explained by the characteristics of the specific cases. Despite these different results, both
were significantly low, which indicates the capability of the algorithm to generate any kind of feature
within curves and its adaptability to any case of SG.

Keywords: ant colony optimization; microgrids; stochastic processes; energy management

1. Introduction
1.1. Motivation

The European Green Deal fixed numerous objectives to achieve by 2050, including
achieving zero net greenhouse gas emissions and decoupling economic growth from
resource use [1]. These goals pose significant challenges to the contemporary energy sector.
The widespread electrification of aspects such as buildings, transport and industry, driven
by renewable energy sources (RESs), carries various complexities in the operation of the
power grid. This transition requires additional flexibility and substantial investment to
reinforce transmission and distribution networks. Furthermore, the growing integration
of variable RESs into the power system, coupled with the shift towards proactive energy
consumers who generate and consume energy, presents an increased risk to the grid’s
reliability and stability of the grid. These variables become a challenge for operational
decision-making in the energy system due to their difficulty in terms of prediction and
their stochastic nature.

Dealing with uncertainty can significantly affect the objective function value of solu-
tions generated by decision-support techniques in real-world applications. This is a critical
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aspect in several application areas leading to the development of appropriate solution ap-
proaches that incorporate uncertainty. In decision theory, uncertainty is usually represented
through scenarios that include various possible outcomes of indeterminate parameters in
a problem. These scenarios may or may not have a dedicated probability or probability
distribution. Therefore, in addition to expected value methods, non-probabilistic meth-
ods can also address uncertainty in decision-making. These methods consider various
decision-makers with different risk profiles, ranging from total pessimism to total optimism,
including risk-balancing strategies. The scenarios describe possible situations referring to
the analyzed variable, which normally is an unpredicted behaviour from the real world.
This fact makes scenarios a key tool for stochastic programming. Stochastic programming
differs from deterministic optimization in that it accounts for uncertain problem parameters.
It has a wide range of applications in fields such as finance, transport, and energy optimiza-
tion, as many real-world decisions involve uncertainty. In many instances of stochastic
programming, discrete distributions known as SG approximate the probability distribu-
tions of the uncertain variable [2]. This provides feasible approaches for simplifying large
amounts of data to approximate the probability distributions. Specifically, this document is
focused on the well-known two-stage stochastic optimization problem [3]. In the first stage,
a set of decisions is fixed before any realized uncertainty, which cannot be changed in the
second stage. Recourse decisions based on the first stage are made in the second stage.

This paper analyses authentic historical data for the Smart Polygeneration Microgrid
(SPM) at Savona Campus, University of Genoa [4,5]. The microgrid was installed at the
Savona Campus in 2014 thanks to the Energia2020 project [6] and serves as a living labora-
tory for the University of Genoa. The microgrid is located in the western part of the Liguria
region in Italy and is powered by renewable energy sources such as geothermal energy and
solar panels. It also includes storage systems, electric vehicles, gas microturbines, a smart
building and an Energy Management System, the layout of which is illustrated in Figure 1.
It provides all the necessities such as electrical power, heating, cooling and hot water to the
campus buildings. The campus accommodates approximately 2000 individuals, including
students, professors, university staff and employees.

1.2. Literature Review

The objective of this section is to offer the reader pertinent background information by
presenting and discussing the literature that supports the notion of incorporating evolu-
tionary algorithms for SG. Various methods can be differentiated for scenario generation
areas, and [7] categorizes them into three groups: sampling-based, forecasting-based and
optimization-based. The predominant approach is sampling-based, which entails fitting a
statistical model to the uncertain parameters and generating samples from it. The resulting
outcomes are samples that conform to the trained distribution. Some examples are Monte
Carlo (MC) [8], Latin Hypercube Samples (LHSs) [9], copula function sampling [10], etc.
These approaches are simple and fast, but they present limitations in multivariate scenarios
as they cannot capture the temporal and spatial correlations of variables. To achieve a
reliable representation of the distribution by the samples and ensure adequate coverage of
the space, these approaches require a large number of samples. Consequently, a scenario
reduction method is necessary [4]. It is important to note that a high number of scenarios is
not practicable for optimization purposes. Forecasting-based methods consist of training
models from historical data without taking the distribution into account.

Techniques in this group include Auto Regressive Moving Average (ARMA) [11],
Artificial Neural Networks (ANNs) [12] and Generative Adversarial Networks (GANs) [13].
Forecasting-based methods are effective in capturing the characteristics of variables, in par-
ticular, correlations and complex nonlinear relationships. Remarkably, this methodology is
dependent on data-driven methods, which means that the quality of the scenarios generated
is dependent on historical observation samples. Finally, optimization-based methods aim
to reduce a large number of possible scenarios. Clustering, Backward Reduction (BR) [14]
or Forward Selection (FS) [15] are techniques that belong to the optimization-based group.
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They present a significant NP-hard problem that solves intricate complications but proves
difficult to implement in large power systems. They can be combined to form new method-
ologies with some features that enhance traditional techniques. More advanced algorithms
derived from the above are available, such as Markov-Chain Monte Carlo (MCMC) [16],
LHSs incorporating the correlations between random variables [17] or others, such as
those based on decision trees [18]. Yadav et al., in [19], developed a hybrid optimization
algorithm, named “Genetic Algorithm-Grey Wolf Optimizer”, which combines the GA
and Grey Wolf Optimizer algorithms. The objective is to find the global maximum power
point of a PV generation under different conditions. However, the proposed algorithm is
a complex and resource-intensive method in comparison to both parent algorithms and
conventional techniques.

Figure 1. Smart Polygeneration Microgrid layout of Savona.

Generally, SG strategies tend to follow a probability distribution which is associated
with an uncertain value. Therefore, the first stage in these approaches is to model the prob-
ability distribution, as shown in [20], where the authors implement different SG methods.
On the other hand, some works concentrate on a set of scenarios generated by metaheuristic
techniques, as in the case of [21] by Oliveira et al., where they propose a Genetic Algorithm
(GA) to obtain a diverse number of scenarios. They do not rely on probability distributions,
but a metric called “crowding distance” to measure the diversity between scenarios. The
GA searches for various scenarios designed to increase the “crowding distance”, indicating
that they are far apart according to this metric. Nevertheless, the main problem with this
method seems to be the execution time, which depends on the number of scenarios chosen.
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Several studies have used metaheuristic algorithms for the placement and sizing of
different microgrid systems; for example, [22] tests a large number of scenarios to meet the
load demand on a tri-objective goal. Indeed, evolutive algorithms proved to be beneficial
in solving stochastic multi-objective problems [23]. These examples demonstrate the
effectiveness of such algorithms in dealing with large search spaces. However, their purpose
is to solve optimization problems by testing various scenarios rather than generating them
in the majority of cases. Another interesting algorithm is the musical chair algorithm [24],
which consists of removing the worst-performing agents and replacing them with new
agents to look for the optimal solution. The author achieved faster convergence with
this method. Despite the appeal of the underlying concept, the approach still relies on
random computing efforts to solve the issue of convergence. In contrast, ACO employs an
intelligent use of the pheromone left by previous agents to guide the subsequent agents
and accelerate convergence.

In particular, ACO is a bio-inspired EA that is based on the foraging behaviour of ants.
ACO is widely used to solve combinatorial optimization problems such as the Travelling
Salesman Problem (TSP) [25], the job shop scheduling problem, the vehicle routing problem,
or the knapsack problem. ACO is able to rank possible next steps based on the pheromone
deposition strategy inspired by the ability of ants to find the best solution by iteratively
constructing and updating a construction graph. The ACO algorithm has proven to be an
effective method in numerous applications due to its robustness, versatility and scalability.
The adaptability of the problem of SG to identify the optimal path and the adaptability of
the ACO to explore the space of the curves are the main reasons for selecting this specific
evolutionary algorithm to address this project.

ACO has been used in multiple studies related to power systems, for example, the
optimal integration of Distributed Generation (DG) into a distribution system [26] to min-
imize a multi-objective function based on power loss, voltage deviation and operating
costs. In addition, ACO has been implemented in [27] to solve problems of PV module
toxicity throughout their lifetime to keep it at an acceptable level, which is an approach that
regulates PV module efficiency. These studies adhere to a traditional nonlinear problem
where EAs typically perform efficiently in finding a solution. Aghelpour et al. [28] used
ACO combined with an adaptive neuro-fuzzy inference system for the daily streamflow
prediction of a river. Several studies have used ACO for diverse applications. Nevertheless,
there is a lack of an ACO model in the literature that allows scenario generation. Further-
more, few studies have implemented evolutionary algorithms for this purpose. Another
advantage of the ACO-SG algorithm is the ability to generate scenarios that are directly
representative of the whole space. This eliminates the need to reduce the scenarios after
their generation, which is a typical practice in this type of problem, as shown in [4].

This research proposes a novel algorithm for SG based on ACO that generates scenarios
from a real dataset, which will be explained in detail in Section 3. The algorithm can
generate a set of new scenarios whose patterns are related to the historical dataset. These
scenarios must satisfy the criteria of validity and reliability in order to be considered
credible and useful, as defined in [29].

1.3. Aims and Contributions

This paper aims to address the potential mismatch between evolutionary algorithms
and scenario generation by proposing an efficient tool that can generate a specific number of
scenarios accurately representing the range of uncertain variables. Generally, SG methods
attempt to approximate the scenarios to a distribution function [30–32], reduce variance
to estimate tighter confidence intervals [33] or minimize approximation errors through
dynamic sampling [34].

Traditionally, SG methodologies generate scenarios from a probability distribution
originally modelled from a statistical study of a historical dataset. Nevertheless, the
approach presented in this work attempts to generate scenario set diversity in order to
cover the different impacts of the evaluated uncertain variable. In comparison with the
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traditional methods, one of the main advantages of the approach outlined in this document
is the elimination of the necessity to model the probability distribution.

The approach exposed in this document allows the generation of scenarios within
the range of the historical dataset. The desired total of scenarios is spread over that space
by specifying the daily power of each scenario, each of them with an acceptable margin
of error. This methodology avoids the necessity of studying the probability distribution,
which is a fundamental aspect of the majority of other methodologies. The algorithm can
reproduce scenarios according to spatio-temporal features captured from the historical
dataset, ensuring that they are feasible as a function of the total amount of power required.
In the case study, scenarios have been implemented for PV generation and building con-
sumption based on historical data. The main contributions of the study are highlighted
as follows:

• The ACO algorithm has been adapted for the generation of scenarios, which supposes
a novel algorithm in the area. It can generate new scenarios from historical data that
accurately represent the range of the case under study.

• The algorithm takes a specific number of scenarios as input to generate them, specified
by the user. Those scenarios are spread over the space according to the historical
dataset. Subsequently, post-processing for scenario reduction is unnecessary, as is
common in this field. Moreover, the necessity for a probability distribution study is
negated by this approach.

1.4. Structure

The remainder of the paper is structured as follows: Section 2 describes the theoretical
background of the scenario generation by the ACO algorithm, with emphasis on data
representation. Section 3 introduces the application problem based on real data obtained
from the Savona campus. Finally, Section 4 summarizes the main conclusions, contributions
and possible future lines for this new ACO approach.

2. Materials and Methods

This section describes the ACO-SG algorithm developed in this research. The purpose
consists of adapting a classical ACO algorithm to find the curves that correspond with
scenarios. The algorithm procedure can be divided into a sequence of steps: pre-processing,
clustering and applying the modified ACO algorithm. Two separate subsections outline the
modifications and updates made to the classical ACO algorithm for scenario generation,
differentiating between the classical ACO and the modified ACO.

2.1. Data: Pre-Processing and Clustering

The pre-processing phase consists of identifying the incomplete data within the histor-
ical dataset and ensuring data integrity. These identifications have been useful for erasing
complete daily samples rather than interpolating them. If data are interpolated, the gener-
ated scenarios may generate scenarios that are not directly derived from the original dataset.
To analyze and understand the curve characteristics, the data have been categorized into
weekdays, weekends and different seasons, following the typical approach in scenario
generation. The division must be related to the variable features. For example, for PV
production, it does not make sense to divide it into weekdays and weekends because it
is not contingent upon the weekday; PV generation is independent. This contrasts with
the building’s consumption, which can be higher during weekdays because of the use of
the installations.

To extract curve features, the use of an automatic divider has been implemented to
obtain curve clusters; for this aim, the k-means algorithm has been selected [35]. The
elbow method determines how many clusters divide the dataset. K-means is an unsu-
pervised algorithm that is capable of subtracting features without the use of reference to
known or labelled results. This methodology has been selected due to its ease of imple-
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mentation, scalability to sizable datasets and capacity to adapt to novel examples with
guaranteed convergence.

2.2. ACO Algorithm

ACO consists of a probabilistic technique modelled on the actions of an ant colony.
Artificial ants traverse the search space in search of optimal solutions. Each ant’s position
is documented as a state, and the simulated ants record their state and the quality of their
solutions using an artificial pheromone. In this way, each ant is associated with a solution of
a certain quality, which will help to guide future ants to better solutions. ACO formalization
is based on a combinatorial optimization problem defined by P = (S, Ω, f ), in which S is
the space of the search, Ω is the set of constraints among the variables and f corresponds
to the objective function.

To implement ACO, the optimization problem must be transformed into a problem of
finding the most effective path. Algorithm 1 shows the complete procedure of a general
ACO algorithm. It starts with the generation of solutions based on the stochasticity of
the problem from a random point. The algorithm rates every solution and updates the
pheromone according to their marks. The algorithm ends either when the solution reaches
the quality criteria evaluated by the fitness or after a predefined number of iterations.

The possible next movements of the ants are evaluated from their current state, pro-
viding different probabilities for each of the options. The ants transit from x to y, where
they consider those transitions with Ak(x), which defines the possible next movements
according to the probability provided by a mix of the defined heuristic and the pheromone.
This probability is defined by Expression (1).

pk
xy =

(τα
xy)(η

β
xy)

∑z∈allowedy (τ
α
xz)(η

β
xz)

(1)

where ηxy is the desirability of state transition xy. The term τxy represents the quantity
of artificial pheromones for the transition from state x to y. Finally, the influence of ηxy is
regulated by α, while the influence of τxy is controlled by β.

Trails are updated once all ants have completed their solution, as given by Expres-
sion (2). The amount of pheromone deposited by each ant is directly related to the fitness
score, which can be used to evaluate the different solutions.

τxy ← (1− ρ)τxy +
m

∑
k

∆τk
xy (2)

where ρ is the evaporation coefficient of the artificial pheromone, m is the number of ants
and ∆τk

xy is the amount of artificial pheromone deposited by ant k.

Algorithm 1: Pseudocode for a Classic ACO

While the objective is not satisfied do
For n from 1 to ant N do

Ant state← Initialize randomly
For p from 1 to point P do

Compute heuristic
Ant n chooses point p in the space S

End for
Update best solution
End for

Update pheromone
End While
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2.3. Problem Adaptation

The graph that ACO uses for constructing solutions can be expressed as GC(V, E),
where V corresponds to the vertices set and E is the set of links between those vertices. Some
modifications to the traditional ACO are necessary to produce possible curves. For ACO-
SG, V represents the recorded dataset of points, while E is the viable transitions between
the evaluated point at a specific time and the available set of points at the subsequent time
step. Pre-processing aims to create a space for the ants by adapting the information. The
historical dataset contains curves consisting of arrays of 24 values. The ants start from a
starting point and traverse the data from the 1st hour to the 24th hour, excluding the starting
point at zero. This ensures that the first hour adheres to the heuristic in the algorithm rather
than being arbitrarily selected. Figure 2 shows a representation of the available points
through which the ants can pass, based on a real curve. The possible points that the ants
can select are actual points recorded in the historical dataset. The algorithm considers
all the real points in the dataset as possible states for the ants to use. Consequently, this
corresponds to defining the search space S previously defined.

Figure 2. Construction of points based on historical data. Real registered curve (a) and its discretized
representation (b).

The cluster curves obtained from the k-means algorithm in the pre-processing stage
can be used as the basis for generating new curves. These new curves can be defined
by specific shapes and a designated power for the complete curve. The mathematical
operation employed for generating the new centroid is formalized in Expression (3).

Ps = Pc −

T
∑

t=0
Pc

t − PD

T
(3)

where Pc expresses the obtained cluster in the pre-processing, and T corresponds with the
time window considered. The result is the new centroid Ps with the shape of the cluster Pc

and the objective daily power.
The heuristic rewards points closer to the new curve Ps obtained from (3) and pe-

nalizes the furthest points. Consequently, the attractiveness η carries out this purpose,
mathematically expressed in (4).

η = abs(Pa
t − Ps

t ) (4)

where Pa
t is the point under evaluation and Ps

t corresponds to the point of the cluster,
evaluated according to the time t.

The fitness function minimizes the disparity between the objective power and the
candidate power solution, as expressed in Equation (5).

f = min
(√

(PD − PS)
2
)

(5)
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where PD corresponds to the objective power and Ps corresponds to the candidate power
solution of the scenario generated by the algorithm.

The stopping criteria are expressed by Equation (6), which limits the power error
desired as a percentage. If this requirement is met, the algorithm stops, and the output is
the best scenario according to the specifications. If this condition is not met and the error is
higher, another iteration will be computed until the criteria is reached.

Error =
PD − PS

PS × 100 (6)

To summarize, the algorithm takes as input the historical dataset for modelling the
uncertainty and the desired number of scenarios to generate. The clusters of the dataset are
obtained with the elbow method, and daily power scenarios are determined in function of
the maximum and minimum in the dataset and the number of scenarios to be accordingly
distributed. Clusters and daily power will be used in the heuristic of the algorithm to obtain
the scenarios. The ants traverse the space from a starting point to the final dimension.
Error stopping criteria are applied depending on the desired daily power. From this
perspective, Algorithm 2 shows the pseudocode for ACO-SG. Moreover, Figure 3 presents
the flowchart of the ACO-SG to provide a comfortable overview of the complete algorithm.
In accordance with the aforementioned guidelines, this methodology does not necessitate a
previous statistical study to obtain the probability distribution, in contrast to traditional
methodologies employed in the SG area.

Figure 3. Flowchart of the ACO-SG algorithm.
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Algorithm 2: Pseudocode for the Proposed ACO-SG

Clusters = KMeans_algorithm(historical_dataset)
While the objective is not satisfied do

For n from 1 to ant N do
Ant state← Initialize to point zero
For t from 1 to time T do

For p from 1 to point P(t) do
Compute heuristic
Ant n chooses point p at time t

End for
End for

Update best solution
End for

Update pheromone
End While

3. Case Study

The present section presents the application of the ACO-SG algorithm, where data
from the Savona campus have been used to generate both photovoltaic production and
building consumption. Historical data are pre-processed, clustered, and finally, ACO-SG
is applied.

3.1. Pre-Processing and Clustering of Case Study

For the case study, five years of data were available from 2019 to 2023. In the case
of PV data, 1815 daily datapoints were registered, which were reduced to 1795 following
pre-processing. On the other hand, the original number for building’s consumption data
was 1218 and was reduced to 1075 following pre-processing. The discrepancy in the number
between the two variables is attributed directly to the available dataset; it affects the density
of points. However, the results show a satisfactory performance for both cases. Historical
data in SG are commonly divided by season and working/non-working days. For this case
study, data from spring and working days were selected. PV production is not affected by
whether it is a working or non-working day, so both have been included. Figures 3 and 4
show the curves.

Figure 4. (a) Real recorded hourly curves for building consumption; (b) its corresponding discretized
representation obtained from real hourly curves.

The two variables under consideration in this study are independent of one another.
This implies that any scenario involving one variable can be combined with any scenario
involving the other variable, resulting in a unique case. All possible combinations between
variables will form all possible scenarios to be studied in a hypothetical optimization problem.

After pre-processing the available data, the k-means algorithm was applied. The elbow
method was used to determine the number of representative clusters based on the available
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data. Figures 5 and 6 show the elbow graph and the corresponding clusters according to
the results of the elbow method.

Figure 5. (a) Real recorded hourly curves for photovoltaic production; (b) its corresponding dis-
cretized representation obtained from real hourly curves.

Figure 6. (a) Elbow graph for building consumption; (b) building consumption clusters.

3.2. Algorithm

The ACO-SG is capable of being configured to produce a predefined number of
scenario curves. For instance, it was set to generate 30 scenarios. The scenarios to be
generated were distributed within the range of maximum and minimum total consumption
of the clusters.

Table 1 summarizes the configuration values that define the ACO-SG. Figures 4 and 5
show the historical datasets and their discretization. Figures 6 and 7 illustrate the clusters
and the elbow method of the corresponding cases evaluated in this work. Figure 8 dis-
plays the scenarios generated by ACO-SG. A visual comparison shows that the generated
scenarios are correlated with the real dataset.

Table 1. Setting values.

Variable Value

N◦ of ants 100
N◦ of iterations 100

α 1
β 1
ρ 0.5

Error 5%
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Figure 7. (a) Elbow graph for PV production; (b) building consumption hourly curve clusters.

Figure 8. Resulting scenarios: (a) PV generation; (b) building consumption.

However, an analytic analysis must be carried out to guarantee the new curves keep
the correlation with the original dataset.

The basis for comparison is the closest Euclidean distance between the scenarios and
their real sample. This results in a list of distances, one per scenario created, which can
be used to check the correlation of several scenarios with the real dataset, which allows
us to check how truthful several generated scenarios are. On the one hand, for the case of
PV generation, the minimum distance is 14.47 and the maximum is 76.24 from the closest
registered curve in the dataset. On the other hand, in the case of building consumption, the
minimum distance is 2.29 and the maximum is 18.50 from the closest registered curve in the
dataset. The aforementioned distances are relatively modest when 24 dimensions are being
considered. The discrepancy of the results for both cases can be explained by the particular
case of the PV curve shapes. In this case, the curves’ extremes remain at zero, while the
heuristic relocates the reference curve. This phenomenon results in a decompensation,
whereby the generated curve differs from the original shape.

Notwithstanding, the discrepancy is insignificant, and the set of new scenarios exhibits
a high degree of alignment with the actual data. Additionally, a 5% margin of error has
been established to guarantee that none of the curves exhibit a bias of more than 5% of
the total required power. It is important to note that the algorithm has demonstrated its
scope in producing precise curves for overall power, with 1.77% and 0.144% for the cases
of PV generation and building consumption, respectively. The higher level of total power
error in the PV curves can again be explained by the special case itself. This also impacts
the intermediate part of the curve, which must now compensate for the shift caused by
the extremes.

The low error percentage indicates a precise objective of the generated scenarios;
such an error is significantly lower than the established limit of 5%. Additionally, the low
Euclidean distance demonstrates the correlation between different curves for both cases,
which confirms the validity of the scenarios.
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4. Conclusions

The presence of uncertain variables presents a challenge for optimizing power system
problems, as the uncertainty directly conditioning the solution’s accuracy. In response,
a variety of techniques have been developed for modelling variables that are difficult to
predict, such as renewable energies or consumption. Consequently, the effective modelling
of stochastic variables can contribute to the maximization of energy exploitation in the
system under evaluation and the provision of an effective response in advance.

The paper proposes an ACO-based SG method to find the set of scenarios for a two-
stage stochastic optimization problem. The focus of the work is on the development of
ACO applied to SG, which has great potential for generating new sets of scenarios based
on the input dataset. Moreover, this approach does not require a scenario reduction process
as it generates the predefined number of scenarios directly. In the case study, this approach
has been applied to both building consumption and PV generation, which have completely
different hourly curves to prove the model for different cases.

To verify whether the generated scenarios replicate the seasonal patterns presented
in the real dataset, both are compared using the Euclidean distance. This indicates the
correlation between several curves and demonstrates the adaptability of this approach to
any other variable with any characteristic of the hourly curve shape. Real data from the
Smart Savona Campus of the University of Genoa have been used for the case study.

Several avenues for future research can be explored based on this novel approach for
generating scenarios. For example, one possible area of research is to expand the scope of
the search to the continuous space or explore other encoding techniques. Another potential
area of research could consist of including physical factors, such as weather conditions, in
scenario generation.
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