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Abstract: The reliance of the commercial transportation industry on fossil fuels has long contributed
to pollutant and greenhouse gas emissions. Since full electrification of medium- and heavy-duty
vehicles faces limitations due to the large battery capacity required for extended driving ranges, this
study explores a Range-Extended Electric Vehicle (REEV) for medium-duty Class 6 pick-up and
delivery trucks. This hybrid architecture combines an electric powertrain with an internal combustion
engine range-extender. Maximizing the efficiency of REEVs requires an Energy Management Strategy
(EMS) to optimally split the power between the two power sources. In this work, a hierarchical
EMS is developed through model-based design and validated via Hardware-In-The-Loop (HIL)
simulations. The proposed EMS demonstrated a 7% reduction in fuel consumption compared to a
baseline control strategy, while maintaining emissions and engine start frequency comparable to a
benchmark globally optimal EMS obtained with dynamic programming. Furthermore, HIL results
confirmed the strategy’s real-time implementation feasibility, highlighting the practical viability of the
controller. This research underscores the potential of REEVs in significantly reducing emissions and
fuel consumption, as well as providing a sustainable alternative for medium-duty truck applications.

Keywords: range-extended electric vehicle; optimal energy management strategy; dynamic programming;
equivalent consumption minimization strategy; hardware-in-the-loop simulation

1. Introduction

The ground transportation sector has relied on fossil fuels for decades, significantly
contributing to pollutant and greenhouse gas emissions. While regulations have increas-
ingly targeted harmful pollutant emissions from combustion processes since the 1970s [1],
recent regulations have also mandated a reduction in carbon dioxide CO2 greenhouse
gas (GHG) emissions [2]. As CO2 emissions are inherent to fossil fuel combustion, the
primary strategy for reducing them is to decrease fuel consumption and transition from
carbon based fuels to alternative forms of energy storage. Consequently, the automotive
industry is shifting toward electrified propulsion systems, which can significantly reduce
both pollutant tailpipe emissions and GHG emissions. For passenger cars, battery electric
vehicles (BEVs) have reached maturity, with numerous models available on the market.
BEVs eliminate the combustion process and depend on a fully electric powertrain, which
consists of a high-voltage battery, an electric motor generator, and power electronics. Hy-
brid electric vehicles (HEVs), which combine a conventional internal combustion engine
with some degree of electrification (i.e., a high-voltage battery and an electric machine),
have also gained acceptance in the passenger car market. Even though HEVs do not en-
tirely eliminate tailpipe emissions, they can significantly reduce energy consumption and
emissions while providing the reliability and driving range of traditional fuel-powered
vehicles [3].
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For medium- and heavy-duty applications that require higher power and energy, the
current state-of-the-art battery technology presents certain limitations [4]. Among the
most critical limitations is battery capacity—the energy that can be stored—which restricts
the driving range [5]. Only large battery packs (hundreds of kWh) can meet the driving
range requirements for medium- and heavy-duty trucks, adding significant weight to the
vehicles [6]. Therefore, the automotive industry is exploring the development of hybrid
electric powertrains for these vehicle classes [7].

There are various hybrid powertrain configurations that utilize a high-voltage bat-
tery pack and an electric motor-generator in conjunction with another power source
(e.g., an internal combustion engine (ICE) or a hydrogen fuel cell (FC)). These config-
urations differ in the sizing and coupling of their components [8]. This work considers a
Range-Extended Electric Vehicle (REEV) architecture, which is essentially a battery electric
vehicle augmented with a range-extender unit [9]. As the name suggests, the range-extender
is an additional power converter used solely to provide more energy and extend the vehi-
cle’s driving range. In this work, the range-extender unit is an ICE. The REEV powertrain
architecture falls under the category of plug-in series hybrids, where the ICE is connected to
an electric generator and is used exclusively to convert fuel into electric energy, which can
be sent to the electric drive system for traction or stored in the battery pack. However, the
ICE is not mechanically connected to the drivetrain and does not directly power the wheels.
The battery pack can be recharged by plugging it into the electric grid. This powertrain
architecture is particularly advantageous for medium-duty Class 6 delivery trucks (gross
combined vehicle weight between 8846 and 11,793 kg), which serves as the case study
in this work [10]. For instance, in urban pick-up and delivery scenarios, the vehicle is
often required to stop multiple times [11], and a larger electric motor can enhance energy
recovery through regenerative braking [12]. Additionally, the range-extender allows for a
reduction in battery pack weight while still meeting desired driving ranges or accommodat-
ing unplanned route variations. Finally, REEVs do not necessitate significant investments
in recharging infrastructure, and fuel savings can offset the higher initial investment costs
over the vehicle’s lifecycle [13].

The effectiveness of an HEV in reducing energy consumption and emissions heavily
depends on the powertrain control strategy, also referred to as the energy management
strategy (EMS) [14]. Optimization algorithms can be employed to maximize the energy
benefits of hybridization and combine multiple optimization objectives, such as minimizing
fuel consumption, reducing emissions, improving driveability, and mitigating battery
aging [15,16]. However, these optimization routines can be computationally intensive, and
even if their effectiveness is demonstrated through simulation, they may not be suitable
for implementation in real vehicle control units. Thus, it is essential to demonstrate
the real-time capabilities of the control strategy for vehicle implementation. This work
employs model-based design to develop an optimized EMS for a range-extended electric
delivery truck and presents its hardware-in-the-loop (HIL) implementation to validate its
real-time capabilities. The proposed EMS, introduced in [17], is based on a hierarchical
control approach that integrates elements of optimal control with dynamic programming
(DP) [18], Equivalent Consumption Minimization Strategy (ECMS) [19], and a rule-based
strategy. In previous work, many Authors use optimal control theory to demonstrate the
optimality of a blended energy management strategy for REEVs [20–23]. In such a strategy
the engine blends in with the battery to supply power to the electric motor, resulting in
an approximately linear depletion of the battery state of charge with time. This strategy
achieves minimum fuel consumption but may result in undesired emissions and excessive
engine start-stops [24–26]. To the best of the Authors’ knowledge, the studies reported in the
published literature limit their analysis to Model-in-the-Loop (MIL) simulations and lack
the development of an easily implementable blended EMS. To fill this gap in the literature,
in this work, a combination of rules and the Equivalent Consumption Minimization Strategy
(ECMS) is used to demonstrate an implementable blended EMS that retains near-optimal
performance. In addition, the analysis is not just limited to MIL simulations. HIL testing
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is used to demonstrate the real-time implementation of the proposed control strategy.
The contribution of this work is the development and demonstration using HIL methods
of an easily implementable rule-based hierarchical EMS (H–EMS) to achieve blended
operation. One of the relevant characteristics of the proposed EMS is that it achieves
near-optimal energy consumption while requiring only minimal route information for
its implementation.

Section 2 provides a more detailed description of the model-based design used in
this work. Sections 3 and 4 outline the development of the optimized EMS and its online
implementation in an HIL simulation setup that utilizes MATLAB® R2020b/Simulink® 10.2,
dSPACE® ControlDesk R2021-B, a dSPACE® Midsize HIL Simulator, and a MathWorks®

Speedgoat Real-time Target Machine. Finally, Section 5.1 presents the results, comparing
the proposed optimized strategy with a baseline EMS and showcasing the comparison of
HIL results concerning vehicle performance against results obtained in a purely virtual
environment (MIL simulations).

2. System Description and Modeling

In Model-based design (MBD), a model of the system is central to the development of
control systems [27]. MBD involves multiple design phases paired with their corresponding
test phases, collectively known as “X-In-The-Loop” (XIL) simulations. The various testing
stages in this process—Model-In-The-Loop, Software-In-The-Loop (SIL), Processor-In-The-
Loop (PIL), and Hardware-In-The-Loop—are illustrated in Figure 1 [28]. Additionally,
there is a final stage known as Vehicle-In-The-Loop simulation. Together, these are the
stages for the validation procedure in the cycle of automotive control development.

Figure 1. Various simulation stages of the model-based design for the controller development:
(a) Model-In-The-Loop simulation. (b) Software-In-The-Loop simulation. (c) Processor-In-The-Loop
simulation. (d) Hardware-In-The-Loop simulation.

The process of MBD control development begins with MIL, where a virtual model of
the physical system (plant) is created to design and test control strategies in a simulated
environment using high-precision floating-point arithmetic [29]. SIL follows by converting
the control strategy developed during MIL development into executable code using an
automatic code generator and using a code wrapper, i.e., S-function to interface with the
plant model. Automatic code generation ensures that the control algorithm is compiled
correctly with no potential errors that can be introduced by manual programming [30]. SIL
validation ensures that the developed control strategies work with fixed-point arithmetic
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and that the compiled code is ready for hardware deployment. PIL tests this compiled code
on the target processor in a closed-loop simulation to verify functionality. The focus of PIL
is to ensure that controller code runs without any issues on the intended hardware, and
therefore, the plant is still in the virtual environment with interaction between plant and
controller occurring through a direct interface using Ethernet. Finally, HIL separates the
controller and plant, using real-time simulations on dedicated hardware to validate the
control strategy and test communication interfaces such as the Controller Area Network
(CAN) protocol.

The system studied in this work is a pick-up and delivery (P&D) Class 6 REEV truck,
shown in Figure 2. These trucks are typically used by parcel delivery service providers
like Amazon and UPS in the United States. The powertrain is designed to meet all the
performance requirements of an equivalent conventional (diesel, ICE-powered) truck of the
same class. The REEV direct-drive powertrain configuration, as depicted in Figure 3, has
a large capacity energy storage system (Battery) and an engine-generator unit (Genset or
range-extender), both connected to a DC electric bus that powers the Electric Traction Motor
(EM), which finally delivers mechanical power to the wheels. The REEV configuration
allows for a significant portion of the energy demand required for traction to be provided
by the onboard battery (assumed to be fully charged from the electric grid at the start of
the day), whereas the genset is employed as a range-extender unit when the energy stored
in the battery is insufficient for fulfilling the powertrain demands.

Figure 2. Class 6 pick-up and delivery truck.

Figure 3. Direct drive powertrain architecture (the EM is directly connected to the Axle with-
out a transmission). The arrows represent the allowed direction of the energy flow through the
REEV powertrain.

In this work, the system (i.e., plant) model is developed in MATLAB® R2020b Simulink®

10.2 and dSPACE® R2021-B environments, following the energy-based modeling approach.
Based on the energy flow and the constraints associated with every powertrain component,
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two-vehicle simulators are designed for the REEV delivery truck: the HEV forward sim-
ulator for the development of the supervisory controller, and the dynamic programming
(DP) backward simulator to calculate the benchmark performance. In the next section,
the modeling approach adopted for powertrain components is discussed, followed by the
details of the two-vehicle simulators.

2.1. Road Load and Powertrain Components Modeling

Since the focus of this study is on energy consumption, the dynamics of greatest
significance are the vehicle road load dynamics in the longitudinal direction, which are
given by the first-order differential equation as in Equation (1), considering a lumped
inertia consisting of the vehicle mass, M and an equivalent rotational mass due to the
inertia of the wheels, Iwheels and the wheel radius of gyration, Rk,wheels.(

M +
Iwheels

R2
k,wheels

)
dV
dt

=
Taxle − Tbrakes

Rwheel
− Fload (1)

Taxle is the axle torque applied on the wheels, and Tbrakes represents the combined torque
due to the mechanical friction (or service) brakes mounted on all the wheels. Rwheel is the
wheel radius. The last term Fload is the total resistance acting on the vehicle (aerodynamic
drag resistance, rolling resistance, and grade force), as expressed in Equation (2).

Fload =
1
2

CdρA f V2 + Mg sin(θ) + Cr Mg cos(θ) (2)

Here, Cd is the drag coefficient, ρ is the air density, A f is the frontal area of the vehicle,
V is the longitudinal speed of the vehicle, θ is the road grade, g is the gravity constant and
Cr is the rolling resistance coefficient of the tires. The values of the vehicle parameters that
are used in the subsequent simulations are listed in Table 1.

Table 1. Class 6 vehicle and powertrain specification.

Parameter Value

Mass [kg] 8890
Rolling resistance coefficient [-] 0.0072

Wheel radius [m] 0.4191
Frontal area [m2] 5.41

Aerodynamic drag coefficient [-] 0.622
Genset peak power [kW] 148.5

Electric motor peak power [kW] 245
Battery pack energy [kWh] 74

The range-extender consists of a spark-ignition engine coupled with an electric mo-
tor/generator, modeled with a constant efficiency of 0.9 to account for the conversion
from mechanical to electrical power. The REEV architecture decouples the engine from
the wheels, such that the engine speed and torque are independent from the speed and
traction request of the vehicle. Therefore, the engine can be operated at maximum efficiency
regardless of the vehicle power demand. Connecting the points of maximum efficiency at
different powers on the engine map, the optimal operating line (OOL) of the engine has
been derived. Finally, assuming that the range-extender will only be operated on the OOL,
its performance is characterized by the relationship between generated power and fuel
consumption, as depicted in Figure 4 with normalized values.
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Figure 4. Range-extender optimal operating line: fuel consumption vs electrical power.

The electric motor can provide either traction or regenerative braking. The normalized
efficiency map, ηEM as a function of EM speed, ωEM and EM torque, TEM, is shown in
Figure 5. The model relies on the data of a synchronous permanent magnet machine rated
at 245 kW peak power.

Figure 5. Electric motor normalized efficiency map.

The battery pack’s nominal voltage is 700 V and the capacity is 74 kWh. The cell
chosen for the battery pack is a commercially available NMC cell characterized at The Ohio
State University Center for Automotive Research [31]. The battery pack is modeled with a
zeroth order equivalent circuit model (ECM), which is sufficient to estimate the State of
Charge (SOC) dynamics required for the purpose of control-oriented energy consumption
modeling. The Kirchhoff equation for the zeroth order ECM can be written as

Vt = Voc(SOC)− I · R0(SOC, T, sign(I)) (3)
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Here, Voc is the open circuit voltage, R0 is internal resistance in charge and discharge
as a function of SOC, cell temperature T, and direction of current. The battery power, Pbatt
can be obtained from Equation (3) by multiplying both sides by current I:

Pbatt = I · Voc(SOC)− I2 · R0(SOC, T, sign(I)) (4)

and the resulting quadratic equation given in Equation (4) can be solved univocally for the
battery current:

I =
Voc(SOC)−

√
Voc(SOC)2 − 4PbattR0(SOC, T, sign(I))

2R0(SOC, T, sign(I))
(5)

Additionally, current limitations of 2.5C-rate in discharge, Imax, and 1C-rate in charge,
Imin, are imposed for longevity of the battery pack.

Imin ≤ I ≤ Imax (6)

Finally, the expression for the SOC dynamics is obtained by replacing I from
Equation (5) in Equation (7):

dSOC
dt

= −ηC
I

Qbatt
(7)

where the Coulomb efficiency, ηC accounts for the losses in the power electronics that are
not modeled explicitly, and Qbatt is the nominal battery capacity. Furthermore, the SOC
variation is allowed to be within the hard upper and lower bounds of 100% and 20%,
respectively. To maximize the utilization of electrical energy, the battery pack is charged
overnight to have maximum SOC at the beginning of the working day, and by the end of
the day, it is desired that the SOC reaches the minimum value.

SOCmin ≤ SOC(t) ≤ SOCmax

SOC(0) = SOCmax

SOC(t f ) = SOCmin

(8)

For the REEV, the full torque demand at the wheels, Tw, is satisfied by the electric
traction motor:

TEM =
Tw

τdi f f
· 1

η
γ
di f f

(9)

where TEM is the traction motor torque, τdi f f is the final gear ratio and ηdi f f the differential
gear efficiency. The exponent γ is 1 in traction (PEM > 0), and –1 during regenerative
braking (PEM < 0). The energy management strategy controls the power split between the
battery and the range-extender genset:

Pbatt + Pgenset =
PEM

η
γ
EM

+ Paux (10)

PEM is the traction motor power, Paux is the auxiliary power load and Pgenset the genset
electric power. During braking, the EM is used as a generator to perform regenerative
braking up to a maximal extent of the battery charging limits. Beyond this point, the service
brakes are used to fulfill the outstanding braking torque to the wheels.

Finally, the models for the genset emissions and the after-treatment three-way catalytic
converter (TWC) are used to determine the amount of nitrogen oxides (NOx) released into
the atmosphere by the vehicle.

Since engine operation is limited to the operating points specified by the OOL, the
engine NOx emissions, ṁNOx,eng, are experimentally obtained for the engine operating
points on the OOL as shown in Figure 6.
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Figure 6. Normalized NOx engine emissions.

The exhaust flow is calculated based on the mass flow rate of the charge entering the en-
gine for combustion. It is assumed that the combustion process occurs at the stoichiometric
level and AFR = 17.2 is the corresponding air-to-fuel ratio:

ṁexh = ṁ f + ṁair

= ṁ f (1 + AFR)
(11)

The emissions from the genset are treated by the TWC, which oxidizes/reduces the
harmful gasses before releasing them from the tailpipe. The conversion efficiency of the
TWC changes drastically from 0 to near 100% as the temperature rises above the light-off
temperature, Tlighto f f , which is defined by 50% TWC conversion efficiency. This behavior
is modeled in the simulation by a sigmoid function as given below:

ηTWC(TTWC) = ηTWC,max

(
1

1 + e−r(TTWC−Tlighto f f )

)
(12)

where the ηTWC,max is the maximum TWC conversion efficiency, r determines the slope of
the curve at Tlighto f f , and TTWC is the TWC temperature. Finally, the tailpipe NOx emissions
are determined as follows:

ṁNOx,tp = ṁNOx,eng(1 − ηTWC(TTWC)) (13)

The after-treatment thermal dynamics are modeled to predict the TWC temperature,
which greatly impacts the tailpipe emissions. The exhaust temperature out of the engine is
simply modeled as a static map and is experimentally obtained for the engine operating
points on the OOL as shown in Figure 7.

The temperature of the TWC is considered a lumped quantity and is modeled using
the energy balance in Equation (14):

(mcp)
dTTWC

dt
= h1 A1(Texh − TTWC)− h2 A2(TTWC − Tamb) + q̇exh (14)

Here, mcp is the thermal capacity of the TWC, h1(= h1(ṁexh)) and h2 are the convective
heat transfer coefficients between exhaust gasses-TWC, and TWC-ambient, respectively. A1
and A2 are the areas of the heat transfer surfaces of the TWC. The last term q̇exh represents
the exothermic heat release during the catalytic conversion process and is a function of
ηTWC and ṁexh.
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Figure 7. Engine exhaust temperature.

2.2. Backward-Looking Simulator for Dynamic Programming Solution

A backward-looking simulator is used to formulate an optimal control problem and
solve it using dynamic programming, a numerical algorithm that assumes complete knowl-
edge of the future driving conditions and returns the globally optimal control policy
(power-split) that minimizes fuel consumption. The flow of information in the backward-
looking simulator is illustrated in the block diagram in Figure 8. The vehicle speed defined
by the drive cycle, which is assumed to be known, is the input. From the drive cycle,
the total torque and corresponding power request required at the wheels are calculated.
This information is then passed downstream to the energy management system, with
adjustments made based on the components’ efficiency and gear ratio. The DP algorithm is
subsequently used to determine the optimal power split for each time instant depending
on the system states.

Figure 8. Block diagram of the backward simulator showing the information flow.

2.3. Forward-Looking Simulator for Online Control Implementation

The forward-looking simulator, as illustrated by the block diagram in Figure 9, is
modeled in the Simulink virtual environment for the development of the supervisory
controller. The driver model generates the accelerator and the brake pedal position re-
quests based on the difference between the drive cycle-specific reference speed and the
current vehicle speed. The pedal positions are converted into powertrain commands by
the supervisory controller, and passed on to the various powertrain components. The
powertrain responds to these commands and generates the torque at the wheels, producing
traction or braking. Based on the wheel torque command, the corresponding power request
is calculated and split between the genset and the battery by the energy management
strategy in the supervisory controller. The plant (vehicle) and controller are developed in
the MATLAB/Simulink environment and are used in MIL simulations for designing and
testing the energy management strategy.
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Figure 9. Block diagram of the forward simulator showing the information flow.

The forward-looking simulator is also utilized in the HIL simulation to validate the
real-time implementation of the proposed control strategy. The details of the HIL setup are
provided in the next section.

2.4. Hardware-in-the-Loop Simulation Setup

The HIL setup is used for validation of the online implementation of the energy
management strategies. The schematic of transitioning from the MIL to HIL simulation
setup is shown in Figure 10 with the component description of the HIL setup provided
in Table 2.

Figure 10. Transitioning from MIL simulation framework in MATLAB/Simulink to HIL simulation
using dSPACE and Speedgoat setup.

A Speedgoat Baseline Real-Time Target Machine and a dSPACE Midsize HIL simulator
are utilized for the real-time execution of the controller and plant model, respectively. Both
hardware components are equipped with CAN channels for communication. The details of
the control strategy developed and tested in the controller, such as the energy management
strategy, will be discussed later. The Simulink model used in the MIL simulation is divided
into two separate files for the plant and controller models. To facilitate signal transmission
through CAN communication, the dSPACE proprietary RTICAN, and Simulink Real-Time:
Speedgoat I/O blocksets are integrated into the plant and controller models, respectively.
The signals virtually exchanged between the plant and controller in MIL are transmitted
according to CAN communication protocols using these blocksets. Finally, the Simulink



Energies 2024, 17, 5294 11 of 21

Coder automatically generates standalone C code for these models, enabling deployment
of the plant and the controller on the corresponding hardware.

Table 2. HIL setup component description.

Software/Hardware Description

MATLAB® R2020b/Simulink® 10.2
Automatic C code generation
Post-processing of HIL results

dSPACE® ControlDesk R2021-B
To set up and monitor the real-time

HIL experiment

dSPACE® Scalexio Midsize HIL system

DS1006 processor board for running complex
plant model

DS2211 HIL I/O board for
CAN communication

SpeedGoat® Real-time Target Machine Baseline
Target machine for controller code execution

IO613 board for CAN communication

Communication Protocols
High-speed CAN

Custom database file for CAN messages
Baud Rate 500 Kbit/s

2.5. Representative Pick-Up and Delivery Drive Cycle Description

The performance of the REEV simulator is evaluated using a specific driving cycle,
illustrated in Figure 11. To generate a representative pick-up and delivery daily duty-
cycle (approximately 8 h) in an urban environment, 12 repetitions of the Federal Urban
Driving Schedule (FUDS) have been assembled in a sequence, including delivery stops.
The zoomed-in view in Figure 11 shows a single instance of the FUDS speed trace. During
longer stops, such as the lunch break between 210 and 240 min and intermediate breaks of
15 min after every two repetitions of the FUDS drive cycle, the vehicle is turned off to save
fuel and battery energy. The relevant statistical features of the drive cycle are summarized
in Table 3.

Figure 11. Representative pick-up and delivery (P&D) drive cycle. (Zoom-in insert shows one
instance of the FUDS cycle).

Table 3. Drive cycle statistics.

Parameter Value

Duration 450 min
Distance covered 148 km
Maximum speed 116 km/h
Average speed 40 km/h
Maximum acc. 1.15 m/s2

Maximum decel. 1.90 m/s2
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3. Optimal Energy Management Strategy Using Dynamic Programming

The Dynamic Programming function developed in MATLAB® by [32] is utilized in
this work to derive the globally optimal energy management strategy for the REEV. The
optimization problem is formulated as a constrained optimal control problem as in the
following Equation (15):

[P∗
gen, u∗

gen] = arg min
∫

cycle
ṁ f (Pgen)dt + Φ|∆ugen|

subject to:

Pbatt(t) + Pgen(t) = PEM,elec(t) + Pacc(t)

TEM,min,cont(ωEM(t)) ≤ TEM(t) ≤ TEM,max,cont(ωEM(t))

dSOC(t)
dt

= −ηC
I(t)

Qbatt

SOCmin ≤ SOC ≤ SOCmax

SOC(0) = SOCmax

SOC(t f ) = SOCmin

Imin ≤ I(t) ≤ Imax

dTTWC(t)
dt

=
1

mcp
[h1 A1(Texh(t)− TTWC(t))

− h2 A2(TTWC(t)− Tamb) + q̇exh(t)]

TTWC(0) = Tamb

(15)

The states of the system are the battery state of charge, SOC, the genset on-off status,
xgen, and the temperature of the TWC, TTWC. The control inputs are the genset state control,
ugen, and the genset power level, Pgen. Φ is a penalty term on the range-extender start-stops
(|∆ugen|). The cost function not only includes fuel consumption (see

∫
cycle ṁ f (Pgen)dt in

Equation (15)) as the optimization objective, but also the frequency of genset start-stops
(see Φ|∆ugen| in Equation (15)). Reducing start-stops is expected to enhance component
durability, reduce NOx emissions, and improve driver comfort. Moreover, it is found that
explicitly incorporating emissions into the cost function does not provide any additional
benefits, as the tailpipe NOx emissions are implicitly kept below the prescribed regulatory
limits (0.2 g/bhp-h) for a Class 6 vehicle by controlling the start-stops. Nevertheless,
following 2027, regulations will become significantly more stringent, with the limit reduced
to 0.05 g/bhp-h, making it essential to include emissions directly in the cost function [33].
For further details on how emissions can be incorporated into the cost function, readers
are encouraged to refer to previous work [34]. The model used for system dynamics is the
backward-looking model, which considers a priori knowledge of vehicle speed as well as
perfect speed tracking by the vehicle. The optimal energy management results obtained
with DP form the benchmark solutions for the development of the onboard implementable
energy management strategy, the details of which are provided in the next section.

4. Online Implementable Energy Management Strategies

This section describes two different strategies for energy management. First, a simple
baseline heuristic-based charge-depleting–charge-sustaining (CD–CS) strategy, widely
utilized for plug-in hybrid electric vehicles, is explained. This is followed by a description
of the proposed Hierarchical Energy Management Strategy (H–EMS) for REEV.

4.1. Charge-Depleting–Charge-Sustaining Strategy

The implementation of the CD–CS strategy is straightforward, as it does not rely on
any information from the drive cycle or the vehicle powertrain, other than the battery state
of charge [35–37]. Initially, the powertrain operates in pure electric mode, discharging the
battery from a high initial SOC until a lower threshold (20%) is reached (charge-depleting
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mode). After this, the genset starts to turn on and off based on a simple thermostatic
controller, and the vehicle operates in hybrid mode (charge-sustaining mode), maintaining
the SOC within a prescribed admissible range. When the SOC reaches the lower bound
of this range, the genset is activated and operates at the highest efficiency point of the
operating line that satisfies the power requested at the wheels, also considering the battery
power limits imposed by the battery management system (BMS). The genset is turned off
when the SOC reaches the upper bound of the admissible range.

4.2. Hierarchical Energy Management Strategy

The H–EMS is a multi-level decision-making process in which the higher-level con-
troller dictates the actions of the subordinate controllers. The H–EMS controller proposed
in this study is a development of the energy management strategy designed in our prior
research [17]. The hierarchical controller consists of a two-level architecture: a rule-based
controller at the higher level and a sub-optimal EMS called the Equivalent Consumption
Minimization Strategy (ECMS) at the lower level. The rule-based strategy at the higher
level acts as a supervisory controller that decides the mode of operation of the REEV:
whether to operate in pure electric mode (using only the battery) or in hybrid mode (using
a combination of the battery and the genset). This decision determines when to start and
stop the genset and is based on a reference battery SOC. A reference SOC (SOCre f ) that
linearly depletes the energy within the battery with distance is generated based on the
intended travel distance (dcycle), starting from full SOC (SOCmax) and terminating at the
desired final SOC (SOCmin):

SOCre f (t) = SOCmax −
SOCmax − SOCmin

dcycle
xveh(t) (16)

Delivery vehicles typically have a predetermined route provided at the start of the
day, allowing for the calculation of the total expected driving distance and enabling the
creation of this reference tracking profile. This SOC reference is inspired by the results of
previous works demonstrating the optimality of a blended energy management strategy
for REEVs, as discussed in the Introduction and further validated in this study with DP
simulations, as shown in the following.

The rule-based controller tracks the battery SOC while allowing it to deviate from
the reference SOC profile down to a lower bound (SOClb). The depiction of the H-EMS
higher-level controller decision-making process of operating the REEV powertrain in either
pure electric or hybrid mode is shown in Figure 12.

Figure 12. Depiction of H–EMS higher-level decision-making process of operating the powertrain in
pure electric or hybrid mode.

For the duration for which the REEV operates in pure electric mode, the genset remains
off. When the SOC falls below the lower bound, the genset is activated, and the operation
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mode shifts to hybrid, where both the battery and the genset share the driver’s power
requests. The genset continues to operate until the SOC returns to the reference value.
The lower bound is defined as the reference SOC with an offset of the SOC lower bound
threshold (SOClb,threshold), a calibration parameter that significantly affects the frequency of
genset start-stop events:

SOClb = SOCre f − SOClb,threshold (17)

The lower-level controller manages the powertrain components and involves the
decision process of splitting the total electric motor power request between the battery
and the genset. The battery supplies all required power during the all-electric mode.
However, ECMS is employed during hybrid mode to make power split decisions. ECMS
determines the combination of genset and battery power that minimizes instantaneous
equivalent fuel consumption. To calculate the equivalent fuel consumption for the battery,
ṁbatt,eq, the battery power request is normalized by the lower heating value of the fuel
(QLHV) and multiplied by an equivalence factor, s0. The combination of genset and battery
power that results in the least equivalent fuel consumption is sent as power requests to
the corresponding powertrain components. The flowchart detailing the implementation of
ECMS is illustrated in Figure 13. For a more detailed understanding of ECMS, readers are
encouraged to consult references [19,38,39].

Figure 13. ECMS controller implementation for REEV. The equivalent fuel consumption is calculated
for the combinations of genset and battery powers that satisfy the total power request. The genset
and battery powers that provide the minimum equivalent fuel consumption are the best solution.

5. Results and Discussion

The results of the DP simulations are first presented in this section, as they provide
a guideline and a benchmark for the development of the H-EMS. Then the results for the
H-EMS are presented both in MIL and HIL environments and compared.

5.1. Dynamic Programming Simulation Results

DP provides the globally optimal solution for minimizing the objective function.
However, to understand the effect of the genset start-stop penalty (Φ) on the optimal
solution, a parameter study is conducted. It is worth noting that limiting the number of
genset start-stops has a positive impact by reducing engine wear, improving drive quality,
and limiting emissions as the cold starts are reduced. The number of genset starts and the
fuel consumption for different values of Φ are shown in Figure 14. The values are tabulated
in Table 4.
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Figure 14. Number of genset starts and fuel consumption generated by successively increasing the
genset start-stops penalty parameter. Values in the brackets are the fuel penalty (in g) for the genset
start followed by the number of cold starts.

Table 4. Genset start-stop penalty parametric study results.

Fuel Penalty [g] Fuel Used [kg] Genset Starts [-] Emissions [g/bhp-h]

0 14.5 546 0.08
5 14.8 121 0.08
10 15.3 50 0.08
20 15.7 23 0.08
30 16.0 11 0.12
40 16.0 10 0.12
50 16.1 8 0.13

It can be observed that there is an inverse relationship between genset starts and fuel
consumption. As the fuel penalty increases, the number of genset starts decreases, but this
comes at the cost of higher fuel consumption. Moreover, significantly increasing the fuel
penalty results in longer intervals between stops, which will lead to a cold start when the
genset is used again. For optimal fuel consumption, the scenario without start-stop penalty
yields the best result, using only 14.5 kg of fuel, but this comes with 546 genset start-stops.
The optimal solution is achieved with a 20 g genset start-stop penalty, providing the best
overall outcome with 15.7 kg of fuel consumption, 23 genset start-stops (only one of which
is a cold start), and just 0.08 g/bhp-hr of NOx emissions, well below regulatory limits. This
result serves as the benchmark for the online implementable EMS.

5.2. Model-in-the-Loop Simulation Results

MIL simulation results were obtained for the two online implementable energy man-
agement strategies, CD–CS and H–EMS. These results were then compared against the DP
benchmark strategy, as shown in Table 5. The proposed H–EMS strategy provides a 7%
reduction in fuel consumption over the baseline CD–CS strategy, while the maximum possi-
ble reduction, as indicated by the DP benchmark, is 8.7%. H–EMS performs near-optimally
in terms of fuel consumption and emissions. Additionally, regarding genset start-stops,
H–EMS outperforms the DP benchmark by having four fewer starts.



Energies 2024, 17, 5294 16 of 21

Table 5. Comparison of MIL simulation results with DP benchmark.

EMS
Fuel Consumption
[kg] (Improvement

over Baseline)
Genset Starts [-] Emissions [g/bhp-h]

CD–CS (baseline, MIL) 17.2 21 0.08
DP (benchmark) 15.7 (−8.7%) 23 0.08

H–EMS (MIL) 16.0 (−7.0%) 19 0.08

Figure 15 shows SOC trajectories and the genset ‘on’ periods obtained from the simu-
lation results of the two online implementable control strategies in the forward simulator,
alongside benchmark results from the DP backward simulator. Notable differences exist
between the trajectories, which directly stem from how the operation of the range-extender
genset is integrated with the battery to provide the necessary power to the EM.

Figure 15. Comparison of SOC trajectories (top) and genset ‘on’ period (bottom) for CD–CS (baseline),
DP (benchmark), and H–EMS energy management strategies.

It is interesting to observe that with H–EMS, the SOC trajectory exhibits a behavior
that is closer to the DP optimal solution, particularly in terms of periodically operating
the vehicle in hybrid mode and allowing the genset to charge the battery pack during this
operation, thus achieving a blended EMS. In the case of DP, having complete knowledge
of the drive cycle beforehand enables strategic operation of the genset, optimizing the
trade-off between fuel consumption and genset start-stops. However, this optimization
is not guaranteed with H–EMS, as only the total driving distance is known, leading to
sub-optimal fuel consumption results compared to DP.

Finally, the Sankey diagram of the energy flow in the powertrain is illustrated in
Figure 16. The energy required to overcome the road load (158.4 MJ) remains consistent
across all simulations. However, the energy split at the source varies depending on the
EMS employed. In the CD−CS strategy, the genset is primarily used for load-following
during the charge-sustaining portion and for battery charging whenever possible. This
load-following operation prevents the genset from consistently operating at its highest
efficiency, resulting in the highest total electrical energy consumption from the genset,
amounting to 314.5 MJ. In contrast, the genset in the DP benchmark and H–EMS strategies
provides less electrical energy (283 MJ, approximately the same amount in the two cases),
which is about 60% of the total, with the remainder supplied by the battery. Another
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important observation concerns the energy lost during braking, represented as brake losses
in the Sankey diagram: the DP benchmark EMS maximizes kinetic energy recovery through
regenerative braking, resulting in the least brake energy loss of only 111.6 MJ, and the
H–EMS strategy has slightly higher brake energy losses, totaling about 118.7 MJ.

Figure 16. Sankey diagram for comparing energy flows in CD–CS (baseline), DP (benchmark) and
H–EMS energy management strategies.

5.3. Hardware-in-the-Loop Simulation Results

The results presented in the previous section show that the H–EMS strategy provides
near-optimal performance in the MIL simulations. To evaluate the deployment of the
strategy in a controller for real-time implementation, HIL simulations were conducted.
The controller is separated from the plant and deployed on an embedded target machine
(Speedgoat real-time target machine), while the plant model runs on a real-time simulator
(dSPACE mid-size HIL simulator), as explained earlier in the HIL setup. The plant emulates
the actual vehicle’s behavior by generating sensor output signals for the controller and
providing appropriate responses to the controller’s actions. The automatically generated
C−code for the controller is first tested through SIL and PIL simulation steps to verify the
proper execution of the compiled controller code before deployment in HIL testing.

To maintain consistency with the MIL simulations, the controller’s decision-making
frequency is kept the same, operating at a 100 ms time step, while the plant is updated at a
much higher rate of 5 ms. A zero-order hold is applied to the controller signal to manage the
discrepancy between the time steps of the controller and the plant. Additionally, the signals
exchanged between the plant and controller are communicated via CAN communication
protocols, which require signal quantization. The powertrain operation in terms of genset
power and EM torque as obtained during the HIL simulation of H–EMS controller is shown
in Figure 17. It can be observed that the plant provides the genset power and EM torque
requested by the H–EMS controller. In addition, H–EMS ensures that the EM torque is
always within the continuous torque limits. Moreover, when the vehicle is stationary, the
genset continues to operate at a lower power to recharge the battery.

The simulation results in terms of fuel consumption, genset starts-stops, and emissions
obtained in HIL simulation, along with a comparison to the results of the MIL simulation
for the H–EMS strategy, are presented in Table 6. The fuel consumption calculated in the
HIL simulation is 16.3 kg, which is only 1.8% higher than that in the MIL simulation, while
the number of genset starts and NOx emissions remain the same. The difference in fuel
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consumption is an artifact of running the plant model in the HIL simulation at a different
simulation timestep compared to the MIL simulation.

Figure 17. Range-extender (top) and EM (bottom) operation in HIL simulation using the H–EMS
strategy. The zoomed-in view on the right shows a detail in a two-minute window.

Table 6. Comparison of MIL and HIL simulation for H-EMS strategy.

EMS Fuel Consumption
[kg] Genset Starts [-] Emissions [g/bhp-h]

H–EMS (MIL) 16.0 19 0.08
H–EMS (HIL) 16.3 (+1.8%) 19 0.08

Finally, the SOC trajectory obtained from the HIL simulation is plotted against the
one from the MIL simulation in Figure 18. Both SOC profiles are similar, indicating that
the performance of H–EMS in the MIL simulation closely matches that of the real-time
HIL simulation. The minor differences observed can be attributed to the slightly different
genset operation in MIL and HIL simulations and the mismatch in power requested from
the battery due to the quantization step during the signal communication between the
plant and the controller in the HIL simulation.

Figure 18. Comparison of SOC trajectories obtained using H-EMS strategy along with genset ‘on’
period in MIL and HIL simulations.

6. Conclusions

This work presented the development, testing, and validation of a proposed H–EMS
controller designed for energy management in a medium-duty Class 6 range-extended
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electric vehicle for pick-up and delivery applications. The controller’s performance was
verified against two different EMS: a baseline CD–CS strategy and a benchmark EMS
obtained using dynamic programming, a global optimization technique. The simulation
results from the MIL simulations demonstrated the effectiveness of the proposed H–EMS,
achieving near-optimal fuel consumption with approximately a 7% reduction compared to
the baseline, while providing comparable emissions and genset starts to the benchmark.
Finally, the HIL simulation showcased the real-time implementation capabilities of the
H–EMS for deployment in vehicles. Further improvements to the H–EMS controller are
anticipated by enhancing kinetic energy recovery during braking events and incorporating
emissions directly into the problem formulation to comply with upcoming stringent NOx
emissions regulations for medium- and heavy-duty engines.
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