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Abstract: The electrification of residential heating systems, crucial for achieving net-zero emissions,
poses significant challenges for low-voltage distribution networks. This study develops a simulation
model to explore the integration of heat pumps within active building systems for community
heating decarbonisation. The model optimises heat pump operations in conjunction with thermal
energy storage units to reduce peak demand on low-voltage networks by using real-time measured
electricity demand data and modelled heat demand data for 76 houses. The study employs an
algorithm that adjusts thermal storage charging and discharging cycles to align with off-peak periods.
Three scenarios were simulated: a baseline with unoptimised heat pumps, a fixed threshold model,
and an active building model with daily optimised thresholds. The results demonstrate that the active
building model achieves a 21% reduction in peak demand on the low-voltage substation compared
to the baseline scenario; it also reduces the total electrical energy consumption by 12% and carbon
emissions by 17%. The fixed threshold scenario shows a 16% improvement in peak demand reduction,
but it also shows an increase in energy consumption and emissions. These findings highlight the
potential of active buildings to enhance the efficiency and sustainability of residential energy systems,
marking a significant step toward decarbonising residential heating while maintaining grid stability.

Keywords: heat decarbonisation; active buildings; community energy; heat pump optimisation;
electrification challenges

1. Introduction

The reduction in greenhouse gas emissions remains a crucial global issue, with residen-
tial heating systems recognised as major sources of carbon emissions [1]. Many countries,
including the United Kingdom (UK), have set targets to produce electricity from Renewable
Energy Systems and achieve net-zero carbon emissions by 2050 [2]. This transition to
carbon-neutral residential heating has become a fundamental element of international
energy policies [3], with the Climate Change Committee emphasising that space heating
and domestic hot water contribute approximately 18% of overall UK carbon emissions [4].

Decarbonising the heating sector fully to meet governmental targets presents signifi-
cant challenges [5], with electricity emerging as the most promising substitute for fossil-
fuel-based heating due to its growing utilisation of renewable and low-carbon sources [6].
Among the technologies facilitating this transition, Heat Pumps (HPs) are particularly
notable for their energy efficiency [7,8]. HPs demonstrate a higher energy output compared
to the input, with a Coefficient of Performance (COP) typically ranging from three to
four, compared to less than one for resistive electric heaters [9,10]. Research conducted in
Germany has emphasised that HPs are poised to play a pivotal role in the electrification of
heating systems in buildings [11], with air-source heat pumps projected to be the dominant
technology in the field of heat electrification [3].

However, the widespread implementation of these heat pumps faces technical ob-
stacles, primarily the production of relatively low-temperature water (40 ◦C to 50 ◦C)
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compared to traditional gas boilers (70 ◦C) [10,12]. This necessitates either substantial
retrofitting of existing buildings [13] or the use of high-temperature HPs capable of produc-
ing water at 65 ◦C to 70 ◦C [14,15]. While high-temperature HPs offer a viable alternative,
they typically exhibit lower COPs at elevated temperatures, impacting overall energy effi-
ciency and cost-effectiveness. Integrating HPs with thermal energy storage (TES) systems,
which require water temperatures over 50 ◦C and ideally over 60 ◦C, could play a crucial
role in balancing load demands on the grid by storing excess heat during off-peak times
and releasing it when needed.

The transition towards electrification in heating and transportation, while environmen-
tally advantageous, presents challenges for the Low-Voltage (LV) grid [16–18]. Increased
demand for heating and electric vehicles can overload local electricity networks, especially
during peak times [19]. This predicament is further compounded by the increasing de-
mand for electric vehicles, necessitating significant investments in low-carbon electricity
production and conducive policies [5,20,21]. Managing this demand surge is essential to
maintain power delivery stability and efficiency, requiring innovative grid management
and infrastructure upgrades.

Active buildings offer a potential solution, with their capacity to control and pro-
duce their own energy, incorporating technologies like solar panels, battery storage, and
heat pumps [22,23]. These structures not only reduce the carbon footprint related to resi-
dential heating but also aid in stabilising demand on the LV grid by generating surplus
energy during peak load periods [23]. The integration of HPs within active buildings,
particularly when combined with TES and smart control systems, represents a promising
avenue for exploring how to effectively minimise stress on the LV network amid increased
electrification.

This study is set against the backdrop of the Trent Basin project, a development
of up to 500 energy-efficient residential homes in the waterside regeneration zone of
Nottingham, UK [24]. The unique community-based setup of Trent Basin allows for
a detailed examination of heat decarbonisation strategies within an integrated urban
planning framework. Despite the acknowledged benefits of HPs, optimal methods for
their implementation, particularly in diverse residential settings, remain underexplored.
Therefore, this study investigates the potential of these technologies to manage the energy
load dynamically, analysing the interplay between HP operations, TES cycling, and usage
patterns of electricity and heat in residential settings. This approach seeks to reduce
peak demand pressures on the grid, offering a proactive solution to the challenges posed
by rising electricity demands. Furthermore, the research explores how smart controls
can enhance the efficiency of these interactions by adjusting to both user needs and grid
capacity in real-time, thus potentially easing the burden on existing infrastructure without
compromising household energy needs.

The aim of this research is to develop a model that optimises the installation and
operational strategies of HPs with TES, informed by real-time domestic energy demand
data. By focusing on the Trent Basin project, this model provides a replicable framework
for similar urban decarbonisation initiatives, utilising hourly data on electricity and heat
demand to maximise efficiency. By examining the potential of HPs and TES systems within
the Trent Basin project, this study provides valuable insights into optimising residential
heating practices and energy management. It contributes to the ongoing efforts of heat
decarbonisation and smart heating solutions, offering an understanding of how such
systems can be effectively implemented in community-scale projects.

2. Method

This research employs a comprehensive modelling approach to explore and optimise
heat decarbonisation strategies within the Trent Basin project’s Phases 1 and 2, which
comprise 76 houses. The methodology centres around the development and application
of a dynamic simulation active building model constructed in MATLAB version R2023a,
which integrates real-time and empirically modelled data to assess the performance and
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energy management potential of HPs and TES solutions. This model has been constructed
to replicate real-world conditions with high fidelity by integrating hourly data on electricity
and heat demand, ambient temperatures, and substation capacities. Its primary objective is
to pinpoint the most effective operational tactics that reduce energy usage and peak load
effects on the electricity distribution substation, all the while ensuring thermal satisfaction
throughout the community. The following sections detail the specific data collection
procedures, model development, and the optimisation techniques employed to achieve
these goals.

2.1. Data Collection and Demand Modelling

Many properties within Phases 1 and 2 of the Trent Basin development are outfitted
with devices and sensors that capture a wealth of information, including indoor environ-
mental conditions and electricity consumption [25]. A publicly accessible Application
Programming Interface (API) was employed, facilitating the retrieval of real-time and
historical data that are available at varying granularities from hourly to yearly intervals.
This resource was instrumental not only in data collection but also in validating the data
used in our simulations, ensuring that our model’s inputs were accurate and reflective of
actual conditions [24].

To capture the electricity demand with sufficient granularity, sensors within each
home were set to record the maximum power usage for each hour, focusing on peak usage
instances rather than average consumption. This approach ensures that the model considers
potential stress on the electrical infrastructure by operating under a worst-case scenario
assumption, wherein each house reaches its maximum demand simultaneously.

Directly measured heat demand data were not fully available for Trent Basin properties.
Consequently, an alternative strategy employing the Integrated Environmental Solution’s
(IES, Glasgow, UK) Digital Twin Toolset was adopted. Through the Integrated Community
Design (iCD) tool version 2023 [26], simulated heat demand data were generated, utilising
detailed 3D models of the residences. These models incorporated extensive specifications,
such as building dimensions and thermal properties of construction materials, to yield an
accurate representation of the heat demand.

The iCD tool uses a physics-based simulation engine, similar to that which underpins
the Virtual Environment tool but allows for scalability with a simplified version for large-
scale projects. This setup restricts the number of modelled parameters to provide results
suitable for community-level analysis. Each building’s specific characteristics—type, floor
area, number of bedrooms, number of storeys, storey height, and roof type—were input
into the model.

Additionally, the settings for hours of use were based on typical occupancy profiles
(6 a.m. to 10 a.m. and 4 p.m. to 11 p.m.), simulating a worst-case scenario to assess potential
impacts on energy demand. The U-values for walls, windows, and roofs were aligned with
UK building standards for the respective construction years of the phases, enhancing the
models’ realism and applicability.

The simulation data from the iCD tool, detailed at an hourly resolution, complemented
by peak electricity demand data from monitored properties, provided a comprehensive
analysis of energy consumption patterns. This dataset was essential for exploring effective
heat decarbonisation strategies within the Trent Basin project. A detailed description of
this modelling process and its validation can be found in our previous work [27].

Further enriching the dataset, hourly external ambient temperature readings recorded
by the Trent Basin weather station were also retrieved using the API. This data source
was a critical parameter in assessing and adjusting the performance of the heat pumps.
The model accounted for the dynamic nature of HP’s COP, which was calibrated against
varying outdoor temperatures using the manufacturers’ performance tables [28,29]. This
specific local data integration ensures that the simulation reflects realistic environmental
conditions affecting HP operations within the community. Table 1 shows a sample of the
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COP/Performance table for an 8 kW high-temperature HP at a Leaving Water Temperature
(LWT) of 55 ◦C.

Table 1. Performance/COP table for 8 kW high-temperature HP [28].

LWT = 55 (◦C)

Ambient Temperature (◦C) −15 −10 −7 −2 2 7 12 15 20 25
COP 1.65 1.94 2.33 2.74 2.96 3.40 3.57 3.82 4.29 4.76

Although the overall capacity of the LV substation, as provided by the National
Grid, is known to be 800 Kilowatts (kW) [30], the lack of hourly load data necessitated an
assumption that the collective load of the 76 houses represents the total demand on the
substation. It is important to acknowledge that other houses and businesses may also be
connected to this substation, potentially increasing its total load. However, for the purposes
of this study, this assumption allows the model to simulate the electrical demand against
the substation’s known capacity, ensuring that the community’s energy usage remains
within the infrastructural limits.

The hourly grid carbon intensity was obtained from National Grid ESO—Electricity
System Operator—Data Portal [31], which further enriched the dataset, allowing for a nu-
anced evaluation of the carbon footprint associated with the community’s
energy consumption.

This comprehensive suite of data not only fed into the development of the simulation
model but also provided a foundation for the subsequent stages of analysis, laying the
groundwork for the robust optimisation processes that form the foundation of this research.

2.2. Model Development

The model, designed in MATLAB, reflects the operational dynamics of HPs and
TES systems, as well as their interaction with the electrical grid infrastructure. It is also
underpinned by several key assumptions. Firstly, the collective load of the 76 houses is
considered to represent the total demand on the substation, simplifying the grid interaction
model. Secondly, in the active building model scenario, historical data serve as a proxy for
forecasts, allowing for the simulation of predictive control strategies. Finally, it is assumed
that thermal comfort is maintained whenever the heat demand is met, linking system
performance directly to occupant satisfaction.

The model incorporates three distinct scenarios to evaluate and compare different
control strategies:

2.2.1. Baseline Scenario

This scenario simulates the operation of heat pumps without thermal storage or
demand-side management. It serves as a reference point to assess the effectiveness of more
advanced control strategies.

In the baseline scenario, each building’s heat pump operates independently to meet its
heating demand without any consideration of grid conditions or energy storage. The heat
pumps turn on whenever there is a heating demand and turn off when the demand is met.
This represents a traditional, non-optimised approach to building heating. The electricity
consumption in this scenario is directly tied to the heating demand and the heat pump’s
COP based on the outdoor temperature. This scenario helps quantify the potential benefits
of more sophisticated control strategies by providing a comparison point.

2.2.2. Fixed Threshold Scenario

In this scenario, fixed LV demand thresholds are set for the entire year to control HP
operation and TES charging. Two key thresholds are established:

• 140 kW for direct HP activation to meet heating demand.
• 180 kW for using HP to charge TES.
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These thresholds were determined through an iterative process, analysing historical
electricity and heat demand data to optimise system efficiency without overloading the
substation. The process involved testing various threshold combinations over the entire
year’s data to find the set that minimised peak demand while ensuring heat demand was
met; in addition, it was found that using a combination of 2 thresholds helped reduce the
peak electrical demand on the grid. This scenario uses the same control logic as the active
building model but with fixed thresholds that do not change throughout the year.

The fixed threshold scenario represents a middle ground between the baseline and the
fully optimised active building model. It introduces smart control based on grid conditions
but does not adapt to daily variations in demand patterns or weather conditions. This
approach offers improved grid integration compared to the baseline while being simpler to
implement than daily optimisation.

2.2.3. Active Building Model Scenario

This advanced scenario implements the daily optimisation of thresholds for each
building. The model determines optimal thresholds for each day based on forecasted
demand profiles, allowing for more adaptive and efficient system operation.

The active building model dynamically manages the operation of HPs and TES based
on projected demands, optimising energy usage and managing the load on the local
electricity grid effectively. While the model is designed to use forecasted data, the current
implementation uses historical data as a proxy for forecasts, simulating the decision-making
process that would occur with real-time predictive capabilities.

The optimisation algorithm for the active building model works as follows:

• For each day and each building, the model tests a range of threshold combinations
(30–200 kW for both thresholds).

• For each threshold combination, it simulates the building’s operation for the day,
calculating the resulting peak electricity demand.

• The threshold combination that minimises the building’s peak electricity demand is
selected for that day.

This daily optimisation allows the system to adapt to changing weather conditions,
occupancy patterns, and grid dynamics, potentially leading to more efficient operation
compared to fixed thresholds.

The control logic for fixed threshold and active building scenarios operates as follows:

• When the projected peak electrical power on the substation remains below Threshold 1
(T1), HPs are activated to satisfy immediate heating needs, optimising responsiveness
and efficiency.

• If the peak is anticipated to stay below Threshold 2 (T2) and immediate heating de-
mand is low, energy is diverted to thermal storage, leveraging off-peak electricity peri-
ods to build up thermal energy reserves for use during high electricity
demand times.

• When the load exceeds T2, the system prioritises using stored thermal energy to meet
heating demands, minimising the electrical load on the grid during peak periods.

This algorithm continuously analyses input data, including current load conditions
and ambient temperatures, to align operational decisions with the overarching goal of
reducing peak electricity demand and enhancing system efficiency. This proactive man-
agement approach ensures optimal system operations across varying environmental and
demand scenarios.

The model’s development constitutes a rigorous process that synthesises real-time and
historical data to accurately represent and optimise the performance of the active building
model within the Trent Basin project. By comparing the three scenarios (baseline, fixed
thresholds, and active building), the study provides valuable insights into the potential
benefits of more sophisticated control strategies in active building systems. A schematic
diagram for the system’s inputs, outputs, and control algorithm is presented in Figure 1.
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Figure 1. Active building model schematic.

2.3. System Configuration

The system configuration of the model is illustrated in Figure 2, showcasing the
community infrastructure and the individual building system. At the community level,
it shows the Trent Basin project with 76 houses connected to the LV substation via the
electrical network. The figure also shows the communication between the buildings and
the LV substation, highlighting the data exchange that provides the buildings with the
necessary information about substation capacity to make decisions regarding optimising
the thresholds, as described in the model development section.
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Figure 2. System configuration of the model on both community and building levels.

At the individual building level, each building is equipped with an individual heating
system consisting of a high-temperature HP, capable of producing water at temperatures
up to 65 ◦C, suitable for space heating and domestic hot water, and coupled with TES
units for each house. The HP and TES units are connected to the heating elements, which,
in the model, represent the heat consumers, such as the space heating system (radiators
or underfloor heating) and domestic hot water system. While the control unit manages
the operation of the HP and TES units based on the heating demand, grid conditions,
and the real-time data from the sensors utilise the algorithm mentioned in the model
development section.
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2.4. Sizing HP and TES Units

The sizing strategy adopted in this research is simplified, aiming to ensure each
element is adequately dimensioned to meet energy demands while facilitating the optimi-
sation process. Also, it is only specific to the Trent Basin project and may not be directly
applicable to other scenarios without adaptation.

While community-scale district heating could potentially offer greater efficiency, this
study focuses on individual high-temperature HPs and TES units. This choice reflects a
more realistic solution for the existing UK building stock, requiring lower infrastructure
and cost investment compared to community-scale systems. Cost considerations were not
factored into the sizing methodology at this stage, although efforts were made to maintain
realistic sizes for both HPs and TES units.

HP capacity is determined based on the average heat demand observed during the
coldest days, providing a buffer for colder-than-average periods. TES units are sized to
independently meet the heat demand for a 3 h duration, based on the average demand
during cold days. Table 2 summarises the capacities of the HPs and TES units, categorising
houses into TES/HP capacity groups. These capacities underpin the optimisation algorithm,
which tests various threshold combinations to minimise peak electricity demand while
meeting heating needs efficiently.

Table 2. Summary of the HP and TES units used in the model.

Category Number HP Size (kW) TES Size (kWh) Number of Houses

1 5 10 6
2 6 15 31
3 8 20 16
4 16 30 23

This simplified approach allows the model to implement the control logic and adapt
to changing conditions daily. While not optimised for cost, it provides a foundation for
exploring system behaviour and optimisation strategies.

2.5. Model Outputs and Analysis

Upon processing the inputs and applying the operational strategies based on the
predefined scenarios, the model generated a series of outputs that provided detailed
insights into the energy management of the Trent Basin project. These outputs included
the operational status of HPs and TES units, the satisfaction of heat demand, hourly
electricity consumption, and overall system efficiency. The following subsections describe
the equations used to calculate the model output, which was derived from fundamental
principles of thermodynamics and electrical engineering.

2.5.1. Electricity Consumption and Grid Impact

The model calculated total electricity consumption for each hour, factoring in the
operation of HPs, the energy used in charging or discharging the TES, and existing building
demands. These data were vital for monitoring the impact on the low-voltage substation
and ensuring that the total demand did not exceed the substation’s capacity of 800 kW.
Additionally, the model evaluated the peak demand scenarios and provided strategies to
mitigate potential overloads, thereby enhancing grid stability. The following equations
were used within the model to calculate the electricity demand and peak demand:

EHP(t) =
QHeat(t)
COP (t)

(1)

EHP(t) is the electricity demand of the heat pump at time t.
QHeat(t) is the heat demand at time t.
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COP (t) is the coefficient of performance of the heat pump at time t, which is a function
of the outdoor temperature.

Etotal(t) = EHP(t) + Eother(t) (2)

Etotal(t) is the total electricity consumption in the building at time t.
Eother(t) represents other electrical loads in the building at time t.

EPeak = maxt ∈ T Etotal(t) (3)

EPeak is the peak electricity demand over the period T.

2.5.2. Operational Status and Demand Satisfaction

For each hour, the model generates outputs about the status of HP activation, charg-
ing and discharging of the TES, and the building’s heat demand satisfaction. These
granular data allowed for a precise understanding of how energy resources were being
utilised in real-time and were crucial for assessing the responsiveness of the system to the
occupants’ needs.

The operational dynamics of the TES were critically influenced by the charging and
discharging rates, which were designed to optimise both energy use and system durability.
During the charging process, the model operated the HP at half its total capacity when
charging the TES. This approach was sufficient for the Trent Basin project case to meet the
model’s objectives and prevent demand from peaking during charging times.

It is important to note that this charging strategy is specific to this model and the Trent
Basin project. In real-world applications, the charging process would be controlled by the
specific TES technology used and could vary significantly based on the project’s unique
requirements and constraints.

Conversely, the discharging process in the model was not similarly restricted, allowing
the TES units to release stored heat as needed to meet real-time demand. The follow-
ing equations represent the hourly TES charge state calculations and the corresponding
HP consumption:

S(t) = S(t− 1)±QCharge/Discharge (t) (4)

EHP(charging)(t) =
EHP(MAX)/2

COP (t)
(5)

S(t) is the amount of thermal energy available in the TES unit at time t.
QCharge (t) is the amount of energy charged into the TES unit at time t.
QDischarge (t) is the amount of energy provided by the TES unit at time t.
EHP(charging)(t) is the electricity demand of the HP while charging the TES at time t.
EHP(MAX) is the maximum capacity of the HP.

2.5.3. Carbon Emissions Analysis

Integrating grid carbon intensity data into the model was pivotal for evaluating
the sustainability of the energy solutions implemented and for aligning with broader
environmental objectives. The optimised model computed the carbon emissions for each
operational scenario, providing a quantitative measure of the environmental impact.

The equation used to calculate the carbon emissions related to HP electrical consump-
tion is

CO2 Emissions = ∑T
t=1 CI (t)× EHP(t) (6)

CO2 Emissions are the carbon emissions related to HP operation in (kgCO2) during
period of time T.

CI (t) is the electrical grid’s carbon intensity at time t in (kgCO2/kWh).
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2.5.4. Comparative Scenario Analysis

To demonstrate the efficacy of the optimised model, the outputs of the three scenarios—
as introduced in the model development section—are compared. This comparison high-
lights the advantages of the model in terms of reduced energy consumption, lower carbon
emissions, and improved grid stability.

The insights derived from these outputs are critical for ongoing optimisation and
decision-making processes. They allow for the continual refinement of operational strate-
gies and provide a robust framework for managing energy efficiently within the Trent
Basin project.

3. Results and Discussion

The outcomes of the active building model simulation for the Trent Basin project are
presented and analysed in this section, utilising historical data from 2022. Energy demand
patterns are first examined to provide context for the subsequent analysis. Three scenarios
are then compared: the baseline scenario with a standard heat pump operation, the fixed
threshold scenario, and the active building model with daily optimised thresholds. Key
aspects of system performance, including energy consumption, grid impact, and carbon
emissions, are evaluated. The effectiveness of the active building approach in optimis-
ing energy use, reducing peak demand, and enhancing grid stability while maintaining
occupant comfort and reducing carbon emissions is demonstrated through this analysis.

3.1. Energy Demand Analysis

This subsection presents a detailed analysis of the energy demands within the Trent
Basin project during the coldest week of the year (7 January 2022–13 January 2022). The heat
demand data were modelled using the Integrated Community Design (ICD) tool, while the
electricity demand and substation load data were based on actual measurements, providing
a real-world snapshot of the current energy usage without heat pump integration.

Figure 3 illustrates the simulated heat demand for a typical building from Category 2
throughout the coldest week of the year, with demand fluctuating between 1 kW and 7 kW,
as generated by the ICD tool. The chart captures the fluctuations in heat demand during
the day with peak periods during early morning and late evening, which likely reflect
occupancy patterns, such as increased heating requirements when residents are home and
active, which is crucial for assessing the heating needs under traditional systems.
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Subsequently, Figure 4 displays the hourly peak electrical power for this building
during the same period as previously noted. This chart captures the maximum power
usage for each hour, detailing daily fluctuations and highlighting peak demand times. The
sharp spikes seen across the graph occur at various times throughout the week, illustrating
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the building’s maximum electrical load under current conditions without the influence
of heat pumps. This detailed insight into hourly peaks is crucial for understanding the
building’s energy consumption patterns, allowing for more precise energy management
and planning to efficiently handle peak loads and enhance overall energy efficiency during
extreme weather conditions.
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Figure 5 illustrates the low-voltage substation demand during the same week, repre-
senting the total maximum power demand for all buildings, assuming the maximum power
for each household occurs simultaneously within each hour period. The peak demand
reaches around 300 kW, while the base demand is approximately 45 kW. It is important
to note that this figure represents the maximum power for each hour, aggregating the
combined demand of all houses. Additionally, as mentioned in the methodology section,
this analysis assumes the scenario where only buildings from the Trent Basin project are
connected to the substation; there may be other loads, such as businesses, industries, or
additional residential units connected to the substation. These data offer a crucial baseline
for understanding how the substation manages loads without the influence of heat pumps.
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To provide context for the subsequent scenario analyses, Figure 5 illustrates the
relationship between the COP of a Category 2 HP and the outdoor temperature during
the analysed week. This graph demonstrates the inverse relationship between the outdoor
temperature and heat pump efficiency, which is crucial for understanding the variations in
electricity demand for heating in the following scenarios.
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As shown in Figure 6, the COP fluctuates between 2.9 and 3.4 during the analysed
week, while the outdoor temperature varies from near 0 ◦C to about 10 ◦C. These variations
in temperature and the resulting changes in COP play a significant role in the energy
demand patterns and system performance across different scenarios, which will be explored
in the following subsections.
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3.2. Baseline Scenario

In this section, we explore the baseline scenario, where heat pumps are installed
without any thermal storage, to directly meet the heating demand of the buildings within
the Trent Basin project. This scenario serves to illustrate the impact of heat pump inte-
gration on both individual building electricity consumption and the overall load on the
low-voltage substation.

Figure 7 presents a comprehensive view of the energy dynamics in the same building
presented in the energy demand analysis subsection and during the same week, includ-
ing the heat demand in kW, the electricity demand from the heat pump alone, and the
total electricity demand for the building, which combines the heat pump load with other
electrical loads within the building.
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It can be observed from the figure that the total electricity demand for the building
peaks around 10 kW on certain days, reflecting the combined impact of the heat pump
and other household electrical loads. The heat pump, with a capacity of 6 kW and a
Coefficient of Performance (COP) of around three, based on the manufacturer’s data sheet
and outdoor temperature, operates efficiently. This results in a peak electricity demand
from the heat pump alone being just below 2 kW. The efficiency of the heat pump minimises
its impact on the building’s overall electricity consumption while effectively meeting the
heating demands.

3.3. Fixed Threshold Model Scenario

This section presents the results of the simulation model integrating heat pumps with
thermal storage using fixed thresholds. The analysis focuses on a typical building from
Category 2, equipped with a 6 kW heat pump and a 15 kWh thermal storage unit, before
examining the broader impact on the Trent Basin project.

The model employs two fixed thresholds, 140 kW and 180 kW, to optimise energy
usage by activating the heat pump and thermal storage based on real-time electricity
demand and grid conditions. These thresholds determine when to activate the heat pump,
charge the thermal storage, or use stored energy.

Figure 8 displays the state of charge of the thermal storage, the total electricity demand
from the heat pump and the building, and the building’s heat demand over a week-long
period. It demonstrates how the thermal storage discharges to meet heating needs during
peak hours, reducing the direct load on the heat pump and, consequently, on the substation.
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This fixed threshold approach shows improvements over the baseline scenario, with
some smoothing of electricity demand peaks. The thermal storage acts as a buffer, allowing
for a more balanced use of the heat pump throughout the day. However, the fixed nature of
the thresholds limits the system’s ability to adapt to varying daily conditions.

While this scenario demonstrates the potential benefits of integrating thermal storage
with heat pumps, there is still room for further optimisation, as will be explored in the
subsequent active building model scenario.

3.4. Active Building Model Scenario

The active building model scenario represents the most advanced approach in our
study, employing daily optimised thresholds for each building. This section examines the
performance of a typical building under this model and its implications for the broader
Trent Basin project.
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Unlike the fixed threshold scenario, the active building model dynamically adjusts
its thresholds daily to optimise energy usage. The following Table 3 illustrates the daily
variations in Threshold 1 (T1) and Threshold 2 (T2) for a typical building over a week.
These daily adjustments allow the system to adapt to changing conditions, potentially
offering more efficient energy management than the fixed threshold approach.

Table 3. Summary of the LV substation operating thresholds within the active building model during
the analysed week.

Day T1 (kW) T2 (kW)

1 170 40
2 110 140
3 30 160
4 140 80
5 180 40
6 110 100
7 140 90

Figure 9 demonstrates the intricate interplay between heat demand (blue line), build-
ing electrical power, including the heat pump (green line), and the thermal energy storage
(TES) state (orange line). The dynamic nature of the system is evident in the varying pat-
terns of TES charging and discharging, which align with the fluctuations in heat demand
and electrical power consumption. The active building model’s ability to adjust thresholds
daily allows it to account for changing conditions, potentially leading to more optimal heat
pump and thermal storage utilisation. The energy flow patterns shown in the figure reveal
how the system manages to balance heat demand with electrical power consumption, using
thermal energy storage as a buffer.
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3.5. Comparison of Scenarios

To evaluate the effectiveness of the different control strategies, the performance of the
three scenarios: baseline, fixed threshold model, and active building model, was compared.
This comparison focuses on their impact on the total electrical power demand, key annual
metrics, and the frequency of high peak power occurrences.

Figure 10 illustrates the hourly peak electrical power on the LV substation for all three
scenarios over the coldest week of the year. The baseline scenario (orange line) exhibits
the highest and most volatile demand patterns, with frequent sharp peaks reaching up to
500 kW. The fixed threshold model (blue line) shows a more balanced profile with reduced
peak heights, generally staying below 400 kW. The active building model (green line)
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demonstrates the most stable demand pattern, effectively flattening many of the peaks seen
in the other scenarios and rarely exceeding 350 kW.
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This weekly pattern provides insight into the broader annual performance of each
scenario, which is summarised in Figure 11, presenting key yearly metrics.
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For the peak power demand, the baseline scenario exhibits the highest peak power
demand at approximately 500 kW. The fixed threshold model shows a notable reduction to
about 420 kW, representing a 16% decrease. The active building model achieves the most
substantial reduction, lowering the peak to around 395 kW, which translates into a 21%
decrease from the baseline. This significant reduction in peak demand demonstrates the
active building model’s superior ability to manage load and potentially alleviate stress on
the local grid infrastructure.

In addition to the peak electrical power, the total electrical energy and carbon emissions
related to the HP operation were analysed. While similar energy consumption could be
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expected across scenarios, given that they all meet the same heat demand, the results show
notable differences.

The fixed threshold model, despite showing improvements in peak demand, unex-
pectedly consumes more electrical energy (270 MWh) than the baseline (245 MWh). This
10% increase suggests that the fixed threshold model is triggering heat pump operations
during periods of lower Coefficient of Performance (COP), such as colder nighttime hours
in winter when ambient temperatures are lower. Consequently, carbon emissions for this
model are also higher at about 49,000 tons, a 4% increase from the baseline’s 47,000 tons.

In contrast, the active building model demonstrates the most efficient use of electricity,
reducing consumption to about 215 MWh, a 12% reduction from the baseline. This translates
to the lowest carbon emissions at approximately 39,000 tons of CO2, a significant 17%
reduction from the baseline. The superior performance of the active building model can be
attributed to its ability to optimise operation times for each building individually, likely
prioritising periods of higher COP and avoiding less efficient operating conditions.

These results underscore the importance of not just managing peak demand but also
considering the efficiency of heat pump operations when designing control strategies. The
active building model’s approach of optimising at the individual building level proves
to be the most effective strategy for managing total electricity consumption and reducing
carbon emissions while still meeting all heating demands.

To further assess the impact of each scenario on grid stability, the annual number
of hours where the peak demand on the LV substation exceeded certain thresholds were
analysed. Figure 12 illustrates this analysis.
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The baseline scenario shows the highest frequency of peak demand events, with over
1400 h exceeding 200 kW and a significant number of hours above 300 kW and 25 times
above 400 kW. The fixed threshold model reduces these occurrences, particularly for the
higher thresholds, where the substation only exceeds 400 kW three times during the whole
year. The active building model demonstrates the most significant improvement, with the
fewest hours exceeding all thresholds, particularly above 300 kW and 400 kW.

These results underscore the effectiveness of the active building model in managing
peak demand, reducing overall energy consumption, and minimising carbon emissions.
Its ability to dynamically adjust to changing conditions on a building-by-building basis
proves superior to both the baseline and fixed threshold approaches. This adaptive strategy
not only enhances energy efficiency but also contributes to grid stability by significantly
reducing the frequency and magnitude of high-demand events.
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4. Conclusions and Future Work

This study demonstrates the potential of integrating TES units with HPs to manage peak
electricity demand in community heating systems. By comparing three scenarios—baseline,
fixed threshold model, and active building model—we have identified significant improvements
in energy management and grid stability.

The active building model emerged as the most effective approach, achieving approx-
imately a 21% reduction in peak demand compared to the baseline scenario, lowering it
from 500 kW to 395 kW. This decrease in peak loads on the LV substation offers a promis-
ing pathway to decarbonise heating systems while maintaining grid stability. The model
also showed improvements in overall energy efficiency and carbon emissions, with a 12%
reduction in total electrical energy consumption and a 17% decrease in carbon emissions
compared to the baseline. In contrast, the fixed threshold model demonstrated a 16% reduc-
tion in peak demand but showed increases in energy consumption by 10% and emissions
by 4%, highlighting the importance of dynamic optimisation in achieving comprehensive
energy efficiency.

These findings have important implications for the transition to low-carbon heating
systems. The reduction in peak demand suggests that the integration of TES and HPs
could delay the need for costly infrastructure upgrades, providing a more gradual and
manageable transition to fully electrified heating. The active building model’s ability
to smooth out demand peaks contributes to enhanced grid stability, which is crucial
as we move towards increased the electrification of heating and transport. The model
demonstrates that it is possible to make progress in decarbonising heating systems without
immediately requiring extensive enhancements to electricity infrastructure.

While this study provides valuable insights, it is important to acknowledge certain
limitations. The model assumes that the 76 houses represent the total load on the substation,
which may not fully reflect real-world conditions where other loads are likely present.
Additionally, the study uses historical data as a proxy for forecasts, which may not capture
the unpredictability of real-time energy demand and weather patterns. The simplified
sizing strategy for HPs and TES units, while practical for this study, may not be optimal in
all real-world scenarios. These limitations provide opportunities for further refinement in
future research.

Future work should focus on expanding the model to incorporate a more comprehen-
sive representation of the LV substation, including other potential loads such as businesses,
additional residential buildings, and electric vehicles. This would provide a more realistic
assessment of the substation’s total load and the model’s effectiveness in a real-world
scenario. Investigations into advanced TES technologies, such as phase change materials,
could reveal further improvements in system performance and efficiency.

Exploring how changing energy demand patterns due to factors like improved build-
ing insulation or changing occupancy behaviours might affect the long-term effectiveness
of the proposed system would be valuable. A detailed cost–benefit analysis to assess
the economic viability of implementing TES and HPs on a community scale, including
potential savings from delayed infrastructure upgrades, would provide crucial information
for decision-makers. Future work should also address the incorporation of time-varying
electricity prices and system costs into the optimisation model, considering different elec-
tricity unit prices per hour to provide a more comprehensive economic assessment of the
proposed strategies.

Further research could examine how the active building model could be optimised
to work in conjunction with local renewable energy generation, such as solar PV or wind
power. Extending the simulation period to assess the model’s performance over multiple
years, accounting for seasonal variations and long-term climate trends, would provide
insights into its long-term viability. Finally, it would be beneficial to investigate the impact
of user behaviour and preferences on the system’s performance.
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By addressing these areas, future research can build upon the promising results of this
study, further refining and validating the active building model as a key strategy in the
transition to sustainable, low-carbon community heating systems.
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