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Abstract: We introduce a theoretical model for the photocurrent-voltage (I-V) characteristics designed
to elucidate the interfacial phenomena in photoelectrochemical cells (PECs). This model investigates
the sources of voltage losses and the distribution of photocurrent across the semiconductor–electrolyte
interface (SEI). It calculates the whole exchange current parameter to derive cell polarization data at
the SEI and visualizes the potential drop across n-type cells. The I-V model’s simulation outcomes
are utilized to distinguish between the impacts of bulk recombination and space charge region (SCR)
recombination within semiconductor cells. Furthermore, we develop an advanced deep neural
network model to analyze the electron–hole transfer dynamics using the I-V characteristic curve. The
model’s robustness is evaluated and validated with real-time experimental data, demonstrating a
high degree of concordance with observed results.

Keywords: photochemical cell; space charge width; recombination; I-V model and electron hole transfer

1. Introduction

Hydrogen is a clean and versatile energy carrier, pivotal for generating heat and
power in industrial applications. The adoption of hydrogen-powered fuel cell vehicles
(FCVs) is rapidly accelerating worldwide, largely due to their remarkable efficiency and
durability. Despite this, the widespread commercialization of FCVs is constrained by
the high costs associated with hydrogen production methods, such as steam electrolysis
and steam or natural gas reforming. Water electrolysis offers a promising alternative,
demonstrating 70% efficiency with zero greenhouse gas emissions. Since 2010, the volume
of hydrogen produced via electrolysis has doubled, leading to an increased integration of
renewable energy sources (RES) with water electrolyzer cells for micro grid energy storage.
RES electricity is converted into hydrogen gas by these cells and stored in metal hydride
reservoirs. This method offers a viable strategy for managing smart grids, providing
stability and security. However, hydrogen storage systems, while enhancing smart grid
reliability, are not yet scaled to meet local electricity-gas grid requirements. Additionally,
the electrolysis process remains costly and energy-intensive, with significant component
degradation occurring during peak electricity demand periods. To address these challenges,
adopting more cost-effective technologies, such as photoelectrochemical cells (PECs), could
provide a viable alternative for hydrogen production. PEC systems can be integrated into
“Power to Gas” grids, where hydrogen is injected into gas pipelines and transported to
energy storage facilities. The components of PEC absorb the photons in the sunlight to
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produce energy. The cell comprises light-sensitive nano-materials such as n- or p-type
semiconductors to absorb photons. Figure 1 depicts the schematic of the cell. The incident
photons irradiate the surface of the cell and form electron–hole pairs at space charge
regions. The holes are separated from the electron by the electric field at the surface of
the semiconductor. When the electrons depart toward the external circuit, the holes are
pushed into the SEI of the cell [1]. In an acidic environment, the electrons flow via the
external circuit and reach the interface of the counter electrode (CE). These electrons react
with H+ ions and form hydrogen gas at the CE. The holes at the SEI of the photo-electrode
react with water to form oxygen species [1]. The reaction steps of the cell are given in
Equations (1) and (2).

4H+ + 4e− ⇌ 2H2 E0 = 0 V vs : NHE and pH = 0 (1)

2H2O + 4h+ ⇌ 4H+ + O2 E0 = +1.23 V vs : NHE and pH = 0 (2)

In a basic environment, the holes generated at the semiconductor react with the
hydroxyl ions to form oxygen while the electrons in the CE decompose water into hydrogen
and hydroxyl ions [1]. Equations (3) and (4) provide the reactions associated with the
water splitting.

4H2O + 4e− ⇌ 2H2 + 4OH− E0 = −0 : 828 V vs : NHE and pH = 14 (3)

4OH− + 4h+ ⇌ 2H2O + O2 E0 = 0 : 401 V vs : NHE and pH = 14 (4)

FeO, also known as wüstite, exhibits significant potential for enhancing the perfor-
mance of photoelectrochemical (PEC) cells, particularly in terms of water splitting efficiency
and solar energy conversion. Its band gap, which falls within the visible spectrum, fa-
cilitates effective sunlight absorption, and the abundant availability of iron makes FeO a
cost-efficient material. The material demonstrates substantial photocatalytic activity, which
is crucial for driving the redox reactions in PEC processes. However, FeO encounters sev-
eral challenges, including instability under specific conditions, limited efficiency, and high
synthesis costs. Researchers are addressing these issues through various approaches, such
as doping with elements like cobalt or nickel to enhance electronic properties, creating com-
posites with materials like TiO2 to improve stability and catalytic activity, and developing
nanostructures to increase surface area and efficiency. Despite these challenges, ongoing
research continues to explore and refine FeO’s potential, positioning it as a promising
candidate for advanced PEC technologies. Detailed properties and performance metrics of
the materials utilized in PECs are summarized in Table 1.

The hydrogen production rate in PEC cells is critically dependent on the stability of the
semiconductor–electrolyte interface (SEI), which is comprised of three distinct regions: the
bulk semiconductor, the space charge region (SCR), and the Helmholtz region, as illustrated
in Figure 2. Understanding the interfacial interactions, mapping the photocurrent, and as-
sessing the SEI thickness in relation to cell performance remain complex and underexplored.
Accurate modeling of these layers requires a precise mathematical formulation of the SEI.
Mapping the voltage drop across the SEI provides insights into the transport phenomena
of hole–electron pairs and the hydrogen production rate. Key parameters such as surface
charge width and band gap size are crucial for characterizing hole–pair dynamics and quan-
tifying the rate of electron migration from the interface to the external circuit. Developing a
predictive model for transport and voltage loss breakdown within the SEI is challenging,
requiring detailed estimates of the cell’s transport and physicochemical properties.
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Table 1. Properties and performance of materials for photoelectrochemical cells.

Material Properties Voltage (V) Thermodynamic
Properties

Synthesis
Method

Electrolyte Efficiency
(%)

Kinetic Properties

Titanium
Dioxide (TiO2)

- Strong
photocatalytic
activity under
UV light

- Chemically stable-
High stability and
durability

- Non
- toxic
- Wide band gap

2.7–3.2 - High band
gap energy

- Low
electron
affinity

Sol-gel method,
hydrothermal

method

Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

3–5 - Slow charge
carrier
dynamics

- Low
recombination
rates under UV
light

Doped TiO2
(with Mo, Cr,

Nb, etc.)

- Enhances properties
based on dopant
type

- Improved
photocatalytic
efficiency

- Enhanced light
absorption

- Varying
physico-chemical
properties
depending on
dopant

Varies with
dopant

Varies with
dopant

Sol-gel method,
hydrothermal

method

Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

5–10 - Improved
charge carrier
dynamics

- Reduced
electron–hole
recombination

Molybdenum
(Mo)

- Good electrical
conductivity

- High stability
- Resistant to

corrosion

2.5–3.0 - Moderate
band gap
energy

- Moderate
electron
affinity

Chemical vapor
deposition

(CVD),
sputtering

Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

6–8 - Faster charge
carrier transfer

- Reduced
recombination
rates

Chromium
(Cr)

- Good electrical
conductivity

- High stability-
Resistant to
corrosion

- Resistant to
corrosion

2.3–2.8 - Moderate
band gap
energy

- Moderate
electron
affinity

CVD, sputtering Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

7–9 - Intermediate
charge carrier
dynamics

- Moderate
recombination
rates

Niobium (Nb) - Good electrical
conductivity

- High stability
- Resistant to

corrosion

2.6–3.1 - Moderate
band gap
energy

- Moderate
electron
affinity

CVD, sputtering Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

8–10 - Enhanced
charge
separation

- Reduced
recombination
rates

Silicon (Si) - High electrical
conductivity

- Good thermal
conductivity

- High mechanical
strength

0.8–1.1 - Low band
gap
energy

- High
electron
affinity

CVD, sputtering Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

15–20 - High charge
carrier
mobility

- Reduced
recombination
rates

Gallium
Arsenide
(GaAs)

- High electrical
conductivity

- Good thermal
conductivity

- High mechanical
strength

1.2–1.4 - Low band
gap
energy

- High
electron
affinity

CVD, molecular
beam epitaxy

(MBE)

Aqueous
electrolyte (e.g.,
Na2SO4, KNO3)

20–25 - High charge
carrier
mobility

- Low
recombination
rates
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Figure 1. Schematic of a PEC. Figure concept adopted from [2,3] and redrawn. 
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Figure 2. Schematic of the semiconductor–electrolyte interface, SCR: space charge region, IHP: inner
Helmholtz plane, OHP: outer Helmholtz plane. Figure concept adopted from [2,3] and redrawn.

Figure 2 presents a schematic of the SEI, highlighting the interactions among electrons,
donor ions containing holes, and ions in the electrolyte. Empirical models documented in
the literature elucidate the roles of reverse current, bias, and recombination parameters at
the SEI [4,5]. The precision of any model designed to analyze voltage loss across the SEI de-
pends on the quality of the photocurrent and potential data. While extensive historical data
have been used to develop interface models for forecasting, control, and optimization, these
models often suffer from diminished spatial accuracy due to their reduced dimensionality.
Additionally, modeling the semiconductor–electrolytic behavior and potential losses in
the cell is inherently complex. Zero-dimensional (0-D) models established in the literature
outline relationships between cell components and transport barriers at the semiconductor.
Gartner’s theoretical equations estimate the photocurrent generated by the photoelectrode
under reverse bias [4], but this model is constrained by the Schottky barrier and issues re-
lated to ion transfer at the SEI, and it does not address recombination challenges. Reichman
improved the 0-D model by providing equations to compute the potential drop across the
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bulk and SCR recombination regions at the SEI [5], using Equations (5)–(7) to calculate the
current due to minority carriers (Jp).

Jp =
Jg − Joe

qV
kT

(1 + Joe
qV
kT

Ip
o )

(5)

Jo =
qpoLp

ζ
(6)

po =
ni

2

Nd
(7)

where ni is the intrinsic carrier density (m−3), Nd is the carrier density (m−3), Jg corresponds
to current density in the Gartner model (A m−2), q corresponds to elementary charge (C),
I0 is the photon flux, (A-m−2) In

o and Ip
o are the electron and hole exchange current

parameters (A m−2), W is the space charge width (m), Lp is the hole diffusion length (m), α
is the optical absorption coefficient of the semiconductor (m−1), Jo is the saturation current
density (A m−2), and ζ is the hole lifetime (s).

Unlike zero-dimensional (0-D) models, one-dimensional (1-D) models represent the
PEC system along a single spatial axis. Wenger et al. [6] have developed 1-D models for
dye-sensitized cells (DSCs), where optical and electrical equations are coupled to capture
the behavior of DSCs. Their model provides an accurate depiction of how excited electrons
convert incident photons into electricity [7]. In DSCs, a photosensitive dye is absorbed
into a wide band gap semiconductor to facilitate photocurrent generation. Consequently,
the dye absorption rate, derived from the optical model, is crucial for determining the
steady-state dye electron injection efficiency and hole diffusion length [6]. Achieving a
balance between model complexity and computational efficiency is challenging for both
0-D and 1-D PEC models. As a result, two-dimensional (2-D) models have been reported
by Hernandez et al. [3], who analyzed oxygen bubbles covering the electrode by approx-
imating the inner surface layer as a two-dimensional flat surface. Giacoppo et al. have
introduced three-dimensional (3-D) models to provide a more accurate representation of
the PEC system. However, their model’s convergence is limited by computational complex-
ity [8]. Based on Gartner’s equations, their 3-D model demonstrated that the cell achieved
10 mA cm−2 at a bias voltage of 1 V, although recombination losses were not included
in their model. Despite extensive studies on DSCs and microscopic interfacial behavior
in PECs, focused research on modeling the semiconductor–electrolyte interface (SEI) and
probing recombination mechanisms in PEC nanomaterials remains limited. Reichman’s 0-D
models (Equations (5)–(7)) approximate experimental polarization plots well, showing that
recombination in the space charge region (SCR) and charge transfer across the SEI depend
on current exchange parameters. These parameters are influenced by (a) the overlap in
semiconductor bands, (b) interface states with redox ions, and (c) charge transfer transition
probabilities [5]. However, exchange current parameters for n- or p-type materials are not
readily available for scaling models to new photoelectrode nanomaterials, and efforts to
estimate these parameters for nanomaterials are lacking.

Operating strategies for PECs are determined by integrating theoretical models with
experimental data. Simplified semi-empirical models in the literature often use linear regres-
sion to achieve correlations among variables. This approach is insufficient for diagnosing
cause–effect mechanisms within PEC components. Increasing volumes of data generated
from PEC cells are not fully utilized to assess cell durability and performance. A model ca-
pable of (a) revealing electrochemical parameters, (b) classifying a large number of material
properties to enhance learning, (c) performing iterative tasks through repeated interactions
with the I-V dataset in a dynamic environment, and (d) exploring extensive I-V datasets
to identify features and patterns in PEC electrodes would be invaluable for setting design
metrics for next-generation cells. Identifying hidden patterns or features in the I-V dataset
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could provide new strategies and operating protocols for PECs. Currently, no such model
exists in the literature. Modern quantum chemistry methods also fall short in predicting
complex characteristics such as diurnal variations in cell performance. Machine learning
(ML) models could address these research needs by resolving performance decay related
to diurnal variations and establishing structure–property–performance relationships for
the cell. Integrating experimental data with ML techniques could uncover operating and
failure modes, providing common patterns, specific predicted electrochemical properties,
and strategies for real-world testing.

Predictive maintenance of PECs depends on the durability and I-V datasets. Machine
learning and deep learning models are essential for understanding the non-linearity in I-V
data collected from the cell. Deep learning models can process a wide range of datasets
and predict I-V characteristics more accurately than traditional machine learning or 0-D
models. They are capable of ingesting and processing datasets through multiple iterations
to learn non-linear features effectively. Advancements in algorithm development, compu-
tational efficiency, and database creation of PEC parameters could significantly enhance
the application of Deep Learning in Simulation (DLS) for the cell. Deep learning models
can handle data noise and make precise predictions based on historical data. They can
capture complex trends between photocurrent, voltage, and key intrinsic parameters in
PECs across different nanomaterials. Wang et al. [9] developed a machine learning model to
predict the effect of dopants on photoelectrode. Oral et al. [10] implemented Random Forest,
Decision Tree, and Association Rule Mining to predict band gap and photocurrent density,
using thirty-three features including electrode materials, synthesis methods, irradiation
properties, and electrolytes. Kharade et al. reported an Artificial Neural Network (ANN)
model predicting adsorption efficiency in DSCs with a three-layer approach, considering
parameters such as fill factor, short-circuit current, and open-circuit voltage [11]. Despite
existing ML models for predicting photocurrent using feature and voltage datasets, they
require significant computational power and time. To effectively capture real-time cell
events while minimizing the computational demands of 0-D modeling, a robust model
is absolutely essential. This method is distinguished by its ability to seamlessly integrate
detailed cell dynamics with efficient computational techniques, enabling rapid analysis
and valuable insights. When compared with the existing literature, the results highlight the
paramount importance of this approach in enhancing the understanding of cell behavior
and material interactions. Through the combination of a 0-D model with DLS algorithms,
we can significantly expedite the development of new diagnostic tools for PECs, showcasing
a more efficient and impactful approach to research and innovation in this field.

Based on the current state of research, this work aims to achieve the following objec-
tives: (a) Develop a theoretical model to assess the current density across the SEI for two
different PEC components; (b) Approximate the hole exchange current parameter (Ipo);
(c) Evaluate the photocurrent across the SEI; (d) Demonstrate voltage loss breakdown in
relation to cell parameters for gallium arsenide and pristine silicon cells; and (e) Develop an
ANN model to predict photocurrent for the cell. This work will provide a novel framework
that integrates both analytical and machine learning models to determine parameters such
as space charge width and photocurrent.

2. Materials and Methods

In Section 2.1, we focus on formulating equations for the I-V model. We present a
derivation to estimate the hole current parameter and the photocurrent density across
the SEI. Section 2.2 focuses on developing an ANN-based DLS model to predict the pho-
tocurrent density across the SEI. Table 2 provides key properties for photoelectrochemical
materials, including FeO, GaAs, Si, and doped TiO2, used in the model.
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Table 2. Comparison of key properties for photoelectrochemical materials: FeO, GaAs, Si, and
doped TiO2.

Property FeO GaAs Si Doped TiO2 (with Mo, Cr, Nb)

Band gap (eV) 1.3–1.5 1.43 1.12 Varies with dopant (e.g., 3.0–3.2 for undoped TiO2)
Absorption Coefficient Moderate High High Improved with doping (e.g., higher for Mo-doped TiO2)

Carrier Mobility Moderate High Very high Improved with doping (e.g., higher for Nb-doped TiO2)
Carrier Lifetime Moderate High Very high Improved with doping (e.g., longer for Cr-doped TiO2)
Crystal Structure Rock salt Zincblende Diamond Varies with dopant (e.g., rutile for undoped TiO2)

Chemical Stability Moderate High High High (generally)

2.1. I-V Model

The voltage loss in the cell depends on the stability of the band gap, number of photons
collected by the semiconductor, recombination occurring in the photoelectrode, and the
performance of the individual cell components. The photo-oxidation of the electrode
materials and their reaction with water molecules is limited by the presence of the surface-
trapped holes at the surface. The voltage loss in the cell is contributed by the rate anodic
decomposition and cathodic photo-reduction reactions. Understanding the role of the
layers in the SEI such as SCR and inner and outer Helmholtz layers is the first step in
identifying the voltage loss contributors. The SCR is the first region in the SEI where the
electrons in the semiconductor and the ions in the bulk regions form the electric fields.
The optimization of the SCR width and the electric charge in this region is significant to
improve overall efficiency of the cell. The region formed between the ions (protons and
hydroxide ions) adsorbed in the semiconductor and the solvated ions in the electrolyte is
called the Helmholtz region. The adsorption and desorption of protons and hydroxide ions
occurs continuously at the interface. The polarization of the SEI depends on the thickness
of these three SEI layers [12]. Two main drivers for the photocurrent generation are the
width of the space charge recombination and the distance between the inner and outer
Helmholtz layers. If the lattice structure of the photoelectrode is abnormally terminated or
not optimized, electronic states will be formed within its band gap. These states are filled
with the electrons supplied from the bulk region of the semiconductor. The ions originate
from the bulk free electrons regions create positive space charge regions [1]. Poisson’s
law is used to model the charge in the SCR and the space charge width. It correlates the
potential and the net amount of charge produced at the interface. The width of the SCR is
computed according to Equation (8).

W =

√√√√2ϵrϵ0

(
V − kT

q

)
qNd

(8)

where W is the width of the SCR (m), ϵr is the relative permittivity of the semiconductor
material (unitless), ϵ0 is the electric constant, V is the voltage across the SCR(V), k is the
Boltzmann Constant (JK−1), e is the elementary charge (C), and T is the temperature (K).

The charge accumulated in the SCR is computed using Equation (9).

QSC =

√
2ϵrϵ0eNd A2

(
V − kT

q

)
(9)

where A is the surface area of the semiconductor (m2).
The pH value at which the net adsorbed charge is zero is termed as the point of zero

charge (PZC). In this region, both the inner and the outer Helmholtz layer have adsorbed
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and solvated ions, respectively, at the electrolyte surface (Figure 2). The potential drop
across the Helmholtz region is calculated according to Equation (10).

VH =
2.3kT

q
(PZC − pH) (10)

where VH Helmholtz potential is a key parameter in our analysis. When dopants are used
in the photo-electrodes, the charge and the width of the space charge region (SCR) vary.
The carrier concentrations of doped species can be found in reference [13]. To evaluate the
voltage drops across a TiO2-doped semiconductor, we use a provided value of the point of
zero charge (PZC) as 5.6, which can be found elsewhere [14]. The assumptions employed
in the derived model are as follows: (a) The charge transfer across the solid electrolyte
interface (SEI) is due to the movement of holes and electrons generating an electric current.
(b) The current density across the SEI is a function of the exchange current parameter. (c)
The ratio of concentration of holes and electrons across the interface is calculated based on
certain assumptions (cf. [4]). (d) The width of the Helmholtz layer is assumed to be small.
(e) The voltage across the Helmholtz layer is assumed to be constant. (f) Ion concentrations
at the interface are assumed to be constant. (g) No mass transfer effect is considered. (h) No
concentration polarization is taken into account. (i) Charge transfer reactions are assumed
to be first order with respect to minority and majority carriers at the interface. To calculate
the current density due to holes (Jp), we substitute it with the total current density from the
performance curves in the semi-empirical formula for the hole exchange current parameter,
as isolating the values of Jp requires highly sophisticated equipment. The current density
due to minority carriers (holes) [5] is computed using Equation (11).

Jp = Ip
o
(

ps
pso

− 1
)

(11)

where Jp is the current density driven by holes (A m−2), ps is the hole concentration at the
interface (m−3), and pso is the equilibrium hole concentration at the interface (m−3). The
hole carrier density across the interface is obtained by solving the diffusion equation for
minority carriers in the neutral region of the semiconductor.

D
d2p
dx2 −

p − po
ς

+ Ioαe−αx = 0 (12)

where D is the diffusion coefficient (m2/s), τ is the hole lifetime (s), p_eq is the equilibrium
hole density (m−3), and G is the monochromatic photon flux (A/m2) incident on the
semiconductor after accounting for loss corrections. The correction factor accounts for
interface reflections and electrolyte absorption, and α is the optical absorption coefficient
(m−1). The first term in Equation (12) represents the change in the hole density across the x-
axis inside the semiconductor, which depends on the diffusion of holes at the semiconductor
surface. The second term refers to the recombination of holes driven by the completion
of their lifetimes. The third term represents the formation of new holes due to incident
monochromatic photon flux. The Gartner model assumes that there is no recombination
in the SCR or the SEI. Therefore, the hole concentration at the SCR is zero. Equation (13)
presents the Gartner model used to evaluate Jg. Equation (13) can be considered as a
solution derived from Equation (12).

Jg = Jo + qIo

(
1 − e−αW

1 + αLp

)
(13)

The SCR width can be approximated using Equation (14).

W =

√
2ϵrϵoϕb

qNd
(14)
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where ϕb = ϕb0 − V, ϕb0 is the flat-band potential of the semiconductor, and V is the volt-
age across the SCR. The current density due to electron flow is given in Equation (15).
The Reichman model (Equation (5)) considers the increasing rates of recombination in
the neutral region and neglects the recombination effect in the SCR and the interface.
Equations (5) and (15) describe the hole carrier current density (Equation (5)) and the
current density measured due to flow of electrons, respectively (Equation (15)). By com-
bining these two equations, the polarization plot for neutral recombination regions can
be obtained.

Jn = −In
o
(

e
qV
kT − 1

)
(15)

The recombination current is expressed using K and the ratio of hole concentration and
the equilibrium hole concentration at the SEI. Reichman studied the recombination in the
SCR using a method proposed by Sah et al. [15] According to their model, the recombination
current depends on the parameters A, B, and K. Equations (16)–(20) summarizes the
modified method adopted in this study based on [5,15].

JSCR
R = K

√(
ps

pso

)
(16)

A = Ip
o + Joe

qV
kT (17)

ps

ps0
=


{
−K +

√
(K2 + 4AB)

}
2A

2

(18)

B = Ip
o + Jg (19)

K = πkTniWe
qV
2kT (20)

where JSCR
R is the recombination current (A m−2), T is the temperature of operation (K),

and W is the SCR width (m) (Equation (14)). Since no hole exchange current parameter
values Ip

o are available for the PEC components, we derive an analytical expression to
estimate the Ip

o by solving Equations (9) and (16). The assumptions considered in the

derivation are given below. Ip
o >> Joe

qV
kT , Jg >> Ip

o, and Ip
o >> z

The current exchange parameter values found in the literature are significantly lower
than the current density according to the Gartner model and higher than the saturation
current density with the multiplied exponential, as assumed initially. The hole exchange
current parameter values are selected from the J-V curves, meeting all the assumptions
for further analysis in the model, justifying the assumptions made. The data points from
performance curves, which yield total photocurrent density, are used to calculate the value
of all instances. Obtaining the values of hole current density requires highly sophisticated
equipment. The mean of all values satisfying the above assumptions is further used for
calculation using Equations (5) and (15). The derivation for the hole exchange current
parameter (Equation (21)) is provided in Appendix A.

Ip
o =

−K
√

Jg +
√

JgK2 + 8
(

Jp − Jg
)
K2

4
(

Jp − Jg
) (21)

2.2. DLS Model

The DLS approach is used to predict the photocurrent as it reduces the complexity
in numerical calculations and provide the I-V curve for the PEC. It needs an Artificial
Neural Network (ANN) algorithm which includes the data extraction, data cleaning, and
pre-processing. The data used for training the model are obtained from [16]. The data were
split into 80% for training and 20% for testing and are used in the DLS models. To prepare
the dataset, we applied standard scaling to ensure that all features have a mean of zero and
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unit variance. To focus on the most impactful features, feature selection is performed to
eliminate those that were less significant. This process not only reduces the dataset size
but also enhances model interpretability and efficiency, leading to shorter training times
and a lower risk of overfitting. Following the methodology of Wang et al., we used Extra
Trees for feature selection, given the large number of input features. This ensemble method
creates multiple randomized decision trees from various data subsamples, each built using
a random subset of features. The best feature for splitting the data is chosen based on
criteria like the Gini Index. This randomness results in a collection of uncorrelated decision
trees, each providing an importance score for the input features.

The klib library is employed to expunge and clean the data and assess its data quality.
Repeated rows and empty columns are dropped in the data cleaning process. It reduces
dimensionality and the memory required for further processing. We used the Standard
Scalar method to normalize the data points. The treated datasets are normalized to enable
the faster convergence. This is achieved by assessing the values of features to a common
scale and an algorithm is developed that is less sensitive to the feature sizes. The model
used to treat the dataset is given in Equation (22).

Z =
X − µ

σ
(22)

The normalized dataset is split into training and testing sets in an 80–20 ratio before
invoking the regressor for training the model. The regressor is initialized with the number
of nodes, type of kernel initializer, and activation functions. The ANN model used in DLS
is given in Equation (23).

y = f (w1x1 + w2x2 + w3x3 + . . . + ..wnxn + b) (23)

where x1, x2, . . ., xn represent the inputs to the ANN model, w1, w2, . . ., wn are the
corresponding weights for each input, b represents the bias term, and f represents the
activation function. The perceptron algorithm applies a weighted sum to the given inputs
and a bias term is added. It passes the result through an activation function to produce
an output. The ANN model used for this research consists of 2 hidden layers with 8 and
2 nodes in the first and second hidden layers, respectively. The model uses random uniform
as the kernel initializer to ensure that the weights are initialized with a uniform range of
values, preventing vanishing or exploding gradients during model training. If the neurons
are initialized with weights having very small or large values, it makes it difficult for the
network to learn and update the weights properly, leading to poor performance. Each
neuron works in cohesion with a weight initialized by the initializer, a bias value, and
the activation function. The activation function used for the ANN model is the rectified
linear function (ReL), which is a piecewise linear function that ensures the qualities of
linear regression. The model uses a stochastic gradient descent model (Adam) based on
the adaptive estimations of lower order moments. This model calculates the error between
the predicted and the training data and adjusts the values of the bias and the weight in
the neurons to increase the model’s efficiency. A regressor is used to predict the output
features based on the training dataset, and the efficiency of the model is calculated. Mean
squared error is the metric used for error estimation and model validation.

3. Results and Discussions
3.1. I-V Model

The I-V experimental plots for several semiconductor materials are widely recorded.
However, quantifying the voltage loss contributed by the oxidation half-reaction on metal
oxide surfaces poses challenges in predicting photocurrent-voltage characteristics for the
cathodic and anodic reactions. An empirical model is required to compute the I-V simu-
lation. The data points from experimental characteristics and the resulting photocurrent
density are used to calculate the values for all materials assessed in this study (Table 3).
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Since isolating the values of hole current density is not straightforward, the mean of all
values calculated from the total current density is taken. Solving Equations (5) and (15)
provides the magnitude of the photocurrent generated due to migration of holes across the
interface, and the electron migration, respectively. The total photocurrent across the SEI is
computed by summing the individual photocurrent densities evaluated from the equations.
The hole current density across the SEI is compared with the experimental performance
curve of pristine silicon to identify and validate trends between them. The variation of
SCR width against the potential drop across the SEI between TiO2 with different dopants is
plotted in Figure 3a. The SCR width of Mo-doped TiO2 is widest among the dopants, while
Cr-doped TiO2 has the lowest SCR width. The availability of excess valence electrons in
the case of Cr-doped TiO2 increases the carrier density, leading to an increase in charge and
width of the SCR. The reduced electron availability in the case of Mo-doped TiO2 leads to a
weaker electric field, thus providing a larger SCR width. Figure 3b shows the variation in
space charge width of hematite with changes in carrier concentration. The carrier density
depends on the dopant and the amount of doping performed. Therefore, doping level is a
deciding parameter in determining the SCR width. Transfer of free electrons from the bulk
is the other factor that determines the formation of the SCR. Any increase in the carrier
density results in a dramatic increase in the charge in the SCR (Figure 3c,d). The charges in
the SCR and the width of the SCR show an inverse relation with each other. The changes
in voltage across the Helmholtz layer as a function of the pH value of the electrolyte for
anatase TiO2 is analyzed in Figure 3e. A positive to negative shift in voltage is observed
when the pH reaches 5.9. The shift in Helmholtz layer voltage occurs due to the decreasing
number of protons (or increasing amounts of hydroxide ions) with increasing pH and the
number of electrons available at the surface states of the semiconductor. An increase in
pH leads to a subsequent increase in hydroxide ion concentration (or reduction in proton
concentration) in the electrolyte. The increased concentration causes more adsorption of
hydroxide ions than protons, causing a reversal of Helmholtz voltage. The performance
of the cell is given in Figure 4. The details related to the energy conversion efficiency
as a function of potential created by the illumination conditions and intrinsic properties
of the cell, sign of the photocurrent (anodic or cathodic), onset potential, the limitation
related to the electron–hole transport, and the transient effects can be inferred using the cell
performance data. The changes observed in photocurrent density, after accounting for bulk
recombination and the recombination current, are plotted against voltage in Figure 4a. The
model prediction is validated with the data collected from the literature [5]. The Reichman
equation does not emphasize the recombination current separately, but the 0-D model
proposed in this study can provide the loss contributed by the recombination effect. We
observe that the current density is decreasing due to an increase in bulk recombination, as
inferred by following the decreasing voltage trend in the characteristic curve. The onset
of bulk recombination is observed at 0.4V. SCR recombination current starts rising from
0.3V and reaches a maximum near 0.45V. The values of the low diffusion coefficient and
the defects in the semiconductor lead to bulk recombination, hindering the flow of carriers
between the electrodes and SEI. The minority carrier is building up at the SEI due to the
rate-limiting effect and affects interface charge at higher voltage regions [1]. The total
current density across the SEI obtained by summing the SCR and bulk recombination
currents is given in Figure 4b. The effect of SCR recombination is more pronounced at
higher voltage regions where the SCR recombination current opposes the generation of
the photocurrent. The effect of SCR is consistent with the similar observations reported in
Figure 4a. At 0.4 V, we observe an 80.78% reduction in the photocurrent density between
the effects of bulk and the combined effects of bulk and SCR recombination. This reduction
is caused by the reduction in SCR width, consequently causing the holes and electrons to
come close together, leading to a higher probability of recombination in the SCR region.
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Table 3. Parameters used in the model [1,3–12,17–19].

Parameters Silicon Gallium Arsenide

Hole diffusion length 2 × 10−6 (m) 0.5 × 10−6 (m)
Carrier Concentration 1025 (m−3) 1022 (m−3)
Optical Absorption Coefficient 3.105 × 105 (m−1) 3 × 106 (m−1)
Intrinsic carrier density 9.65 × 1015 (m−3) 1013 (m−3)
Relative Permittivity 11.7 12
Flat-band Potential −0.4 (V) 0.7 (V)
Hole Lifetime 1.3 × 10−4 (sec) 10−9 (sec)
Monochromatic illumination flux 1000 (Am−2) 10 (Am−2)
Hole exchange current parameter Not available 10−4 (Am−2)
Electron exchange current parameter Not available 10−9 (Am−2)
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3.2. DLS Model

The DLS simulations for the PEC study utilized a high-performance computing setup
with an Intel i7 processor, 16 GB of DDR4 RAM on Windows 12. A total of 300 samples,
each with an average data size of 10 MB, were processed and split into a training set
of 250 samples, a validation set of 25 samples, and a test set of 25 samples. The model
training lasted approximately 1 h, with validation and testing taking about 10 min and
5 min, respectively. The training involved 300 iterations with a learning rate of 0.001 and a
batch size of 32. Python v 3.12.7 was used for the simulations, and output metrics included
accuracy, precision, recall, and F1-score, with data visualization conducted using Matplotlib
v 3.9.2. This thorough approach ensured a robust evaluation of model performance for the
DLS simulation in PECs. A visual representation of the ANN model with the input, output,
and hidden layers is depicted in Figure 5a. It simplifies the visualization of the flow of
the input feature through the network of neurons and helps understanding the complex
network of neurons present in the ANN model. The efficiency and R2 value of the model is
98.937% and 0.98937, respectively. A mean squared error of 0.0107 is observed. Figure 5b
shows a comparison between the actual and predicted data for a change in normalized
photocurrent density with normalized voltage. The predicted data closely correspond to
the trend of the original dataset with a slight deviation at low voltage. The low mean
squared error value is a clear indication that the model is able to capture the complex
relationship between the parameters in the dataset and thus is an excellent fit for the data.
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4. Limitations and Applicability of the Semi-Empirical and ANN Models

The empirical model presented in this study adopts a common derivative methodology
based on Gartner et al. A direct correlation between space charge width, Ip

o and voltage
for materials such as gallium arsenide and pristine silicon in a PEC system is established.
This exercise is not a straight-forward approach as it was impossible to obtain a correlation
between hole exchange current parameter and current in a mathematical model. The
framework uses a regression approach to solve the model and captures all experimental
measured data points. However, the accuracy of the prediction of voltage or current drop
relies on the extrapolation attempt and error minimization methods. The fundamental
transport mechanisms underlying the solid electrolyte interface is considered for the first
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time and correlated to obtain specific parameters. Therefore, it is extremely useful to
improvise Gartner’s model when a framework is unable to identify or differentiate Ip

o

to perform the analysis. The trend of the experimental data has accurately predicted the
behavior of the PEC. However, the model derivation and approach are lengthy. Since the
number of variables are more and data analysis methods presented here are cumbersome,
the model could yield unpredictable results when the size of the experimental data file
is large. To overcome this issue, data mining is needed to make a universal format to
present the data obtained from the model and the experiments. The predictability of the
empirical model is severely limited by the particular operating range or initial design of
the experiment carried out by the observer. However, the model can be directly used to
calibrate and predict preliminary experimental data [5,6] in the PEC.

We have used the Artificial Neural Network (ANN) toolbox models to improve the
prediction and assess the efficacy of the empirical model although this approach requires a
large base at specific operating conditions. Using the database, the polarization patterns are
recognized in the big dataset. The ANN model consists of an interconnected collection of
artificial neurons and connected input/output parameters where each connection has been
associated with the weight. It involves long training times because we have several pa-
rameters involved in the hydrogen conversion process. Furthermore, these parameters are
determined empirically in this study. The advantage of the proposed ANN model is (a) its
ability to handle many tasks at the same time, (b) its predictability improved by number of
cells and networks, (c) its ability to function even if the neural network is gradually broken
down, and (d) its functionality to learn from past events to make right decisions. However,
solving the ANN model and performing data mining are computationally expensive.

5. Conclusions

We report a semi-empirical and deep learning simulation model to assess the per-
formance of a PEC. The I-V model accurately computes the photocurrent density for n-
and p-type semiconductor nanoscaled materials using the modified equations provided in
this study. Hence, the performance of the cell as a function of voltage, which was difficult
to assess so far, can be accurately computed. The polarization curves for two different
nanomaterials, gallium arsenide and pristine silicon, were calculated with an R2 value of
0.997 (GaAs) between the calculated curve and the curve found in the literature. Similar
correlations are observed for FeO (0.92) and doped TiO2 (0.95). The ANN model predicts
the photocurrent values with voltage as the input feature with an efficiency of 98.937%
and a mean squared error of 0.0107. The polarization analysis and performance prediction
pave the way for model-assisted analysis and optimization of the SEI in PECs. The present
model can be extended to the analytical approximation for the electron exchange current
parameter and calculate the electron’s contribution to the current density across the SEI.
Nevertheless, the model as presented here is a valuable tool for assessing the performance
across the SEI, identifying loss channels, and optimizing the interface parameters for the
highest efficiency.
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Appendix A

The hole exchange current parameter is derived using the following equations
(Equations (A1)–(A5)).

A = Ip
o + Joe

qV
kT (A1)
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{
−K +

√
(K2 + 4AB)

}
2A

2

(A2)

B = Ip
o + Jg (A3)

K = ΠkTniWe
qV
2kT (A4)

Jp = Ip
o
(

ps

pso
− 1
)

(A5)

Assuming Ip
o >> Joe

qV
kT and Jg >> Ip

o, the parameters A and B are reduced to simpler
expressions (Equation (A6)).

A = Ip
oand B = Jg (A6)

On substituting ps
ps0

, A, and B from Equations (A2) and (A6), respectively, in Equation (A5),
we obtain the following expression on simplification (Equation (A7)).
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We can further simplify the expression by extracting K from the component under the
square root of the expression (Equation (A9)).
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 K2

2Ip
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K −
√

K2 + Ip
o Jg

K

+ Jg − Ip
o

 (A9)

The terms Jg and Jp both represent the current across the SEI and thus have been
brought to the same side of the equation (Equation (A10)).

Jp − Jg =

(
K

2Ip
o

(
K −

√
Jg

√
K2

Jg
+ Ip

o

)
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o

)
(A10)

K2

Jg
is assumed to be equal to a new term z to simplify the expression (Equation (A11)).

Jp − Jg =

(
K

2Ip
o

(
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√
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√
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o
)
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o
)

(A11)

2(J p − Jg) is substituted with a new term m to obtain Equation (A11).
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Assuming Ip
o >> z, Equation (A13) is re-written as Equation (A14).

Ip
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mIp
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Assuming
√

Ip
o as x,

2Kx4 + mx2 + K
√

Jgx − K2 = 0 (A16)

Since Ip
o is a very small number,

(
Ip

o)2 << Ip
o which implies that x4 << x2. Thus the

fourth order term of the equation is neglected to obtain a quadratic equation.

mx2 + K
√

Jgx − K2 = 0 (A17)

The root of the quadratic equation has been calculated and the negative root has been
neglected.

The final expression for the hole exchange current parameter is as follows in Equation
(A18).

Ip
o =

−K
√

Jg +
√

JgK2 + 8
(

Jp − Jg
)
K2

4
(

Jp − Jg
) (A18)

The above expression (Equation (A18)) is the derived analytical equation for the hole
exchange current parameter.
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