
Citation: Alizadeh, S.M.; Khalili, Y.;

Ahmadi, M. Comprehensive Review

of Carbon Capture and Storage

Integration in Hydrogen Production:

Opportunities, Challenges, and Future

Perspectives. Energies 2024, 17, 5330.

https://doi.org/10.3390/en17215330

Academic Editor: Nikolaos

Koukouzas

Received: 19 August 2024

Revised: 11 October 2024

Accepted: 22 October 2024

Published: 26 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Comprehensive Review of Carbon Capture and Storage
Integration in Hydrogen Production: Opportunities, Challenges,
and Future Perspectives
Seyed Mehdi Alizadeh 1,* , Yasin Khalili 2 and Mohammad Ahmadi 2

1 Department of Petroleum Engineering, College of Engineering, Australian University, West Mishref,
Safat 13015, Kuwait

2 Department of Petroleum Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
yassinkhalili.pe@aut.ac.ir (Y.K.); m.ahmady@aut.ac.ir (M.A.)

* Correspondence: s.alizadeh@au.edu.kw

Abstract: The growing emphasis on renewable energy highlights hydrogen’s potential as a clean
energy carrier. However, traditional hydrogen production methods contribute significantly to carbon
emissions. This review examines the integration of carbon capture and storage (CCS) technologies
with hydrogen production processes, focusing on their ability to mitigate carbon emissions. It
evaluates various hydrogen production techniques, including steam methane reforming, electrolysis,
and biomass gasification, and discusses how CCS can enhance environmental sustainability. Key
challenges, such as economic, technical, and regulatory obstacles, are analyzed. Case studies and
future trends offer insights into the feasibility of CCS–hydrogen integration, providing pathways for
reducing greenhouse gases and facilitating a clean energy transition.

Keywords: hydrogen; carbon capture and storage (CCS); greenhouse gas emissions; decarbonization;
sustainable energy; clean energy carrier

1. Introduction

Carbon capture and storage (CCS) technologies have emerged as a critical tool for
reducing greenhouse gas emissions and mitigating climate change. Recently, there has
been a growing interest in integrating CCS with hydrogen production processes to further
enhance the environmental sustainability of hydrogen as a clean energy carrier. This
comprehensive analysis aims to explore the potential, challenges, and future prospects of
combining CCS with hydrogen production [1].

Hydrogen is a pivotal element in the transition to a more sustainable economy, provid-
ing a flexible and environmentally friendly substitute for traditional fossil fuels. However,
current hydrogen production methods such as steam methane reforming and coal gasifica-
tion are associated with significant carbon emissions. By integrating CCS technologies into
these processes, it becomes possible to capture and store CO2 emissions, thereby reducing
the overall carbon footprint of hydrogen production [2].

1.1. Significance of Hydrogen Production in Decarbonization and Clean Energy Transitions

The integration of hydrogen into energy systems has evolved substantially over the
past few decades. In the early 1970s, hydrogen was primarily explored as an energy carrier
due to growing concerns about energy security and the oil crisis. However, its widespread
application remained limited by technological and economic constraints. During the 1990s,
research into hydrogen gained momentum with a focus on its potential to reduce greenhouse
gas emissions. Significant advancements in fuel cell technology led to the development
of hydrogen-powered vehicles and increased interest in hydrogen as a clean fuel for trans-
portation [3]. The early 2000s witnessed the first commercial deployments of hydrogen fuel
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cells, particularly in the automotive sector. Companies like Toyota and Honda introduced
hydrogen-powered vehicles, and governments worldwide began investing in hydrogen
infrastructure [4]. Since 2010, the role of hydrogen has expanded beyond transportation
to include industrial applications and energy storage solutions. This period marked the
emergence of large-scale projects integrating hydrogen with renewable energy sources, such
as wind and solar power, to produce green hydrogen [5]. In recent years (2020s), the global
focus on achieving carbon neutrality by mid-century has elevated hydrogen to a prominent
position in energy strategies. Countries have announced hydrogen roadmaps, and interna-
tional collaborations have formed to develop a global hydrogen economy. Recent innovations
include the integration of hydrogen into hard-to-decarbonize sectors, such as steel production,
cement manufacturing, and high-temperature industrial processes. The incorporation of CCS
technologies into hydrogen production processes has also been a crucial development aimed
at reducing emissions from traditional hydrogen production methods [6].

Hydrogen generation is crucial for mitigating carbon emissions and advancing clean
energy transitions. It serves as a versatile and environmentally friendly energy option
that contributes to reducing greenhouse gas emissions and facilitating the integration
of renewable energy sources [7]. This analysis examines the significance of hydrogen
production in the context of decarbonization and the transition to clean energy:

1. Reducing Greenhouse Gas Emissions: Green hydrogen, produced from sustainable
sources, offers an eco-friendly alternative to traditional fuels due to its minimal
greenhouse gas emissions during production [8]. By utilizing sustainable electric-
ity to power electrolysis machines that separate water into hydrogen and oxygen,
we can significantly reduce carbon emissions across various industries, including
transportation, manufacturing, and heating, thereby contributing to the fight against
climate change [9].

2. Energy Storage and Grid Balancing: Hydrogen can function as an energy storage
solution, enabling the integration of intermittent renewable energy sources like solar
and wind power into the power grid [10]. Excess electricity generated during peak
renewable energy production periods can be used to create hydrogen through electrol-
ysis. This stored hydrogen can then be converted back into electricity via fuel cells as
needed, helping to balance energy supply and demand on the power grid [11].

3. Sector Coupling and Electrification: Hydrogen has the potential to promote sector
integration by connecting traditionally separate energy sectors such as transportation,
industry, and power generation. By employing hydrogen fuel cells in electric vehicles,
for heating purposes, and in high-temperature industrial processes, hydrogen can
enable the electrification of sectors that are challenging to decarbonize solely through
direct electricity [12]. Several studies have investigated the potential of hydrogen to
facilitate sector integration. For example, a recent paper published in Angewandte
Chemie International Edition [13] highlighted the role of hydrogen in decarbonizing the
transportation sector through the use of fuel cell electric vehicles (FCEVs). The authors
emphasized the advantages of FCEVs in terms of their longer driving range and faster
refueling times compared to battery electric vehicles (BEVs).
Beyond transportation, hydrogen can also play a crucial role in decarbonizing the
heating sector. A study published in Rare Metals [14] explored the potential of hydrogen
fuel cells for residential and commercial heating applications. The authors found that
hydrogen fuel cells can provide efficient and clean heating solutions, with the added
benefit of generating electricity as a byproduct. Additionally, hydrogen can be utilized
in high-temperature industrial processes such as steelmaking and chemical production.
A paper published in Exploration [15] discussed the potential of hydrogen as a reducing
agent in steelmaking, which could significantly reduce carbon emissions from this
energy-intensive industry.

4. Industrial Decarbonization: The industrial sector, which is heavily reliant on fossil
fuels for heat and power generation, can benefit substantially from clean hydrogen
as a substitute for natural gas or coal [16]. By substituting hydrogen for fossil fuels
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in activities like steelmaking, ammonia production, and chemical manufacturing,
industries can decrease their carbon footprint and transition towards more sustainable
and cleaner production practices [17].

5. International Energy Trade: Hydrogen has the potential to become a globally traded
commodity, facilitating the exchange of clean energy between regions with abundant
renewable resources and those in need of energy imports [18]. By establishing hydro-
gen supply chains and infrastructure for international trade, countries can diversify
their energy sources, enhance energy security, and promote international cooperation
in achieving climate goals [19].

6. Innovation and Technological Advancements: The increasing interest in hydrogen
production has driven innovation in electrolysis technologies, storage methods,
and fuel cell applications [20]. Research and development initiatives are reducing
costs, enhancing efficiency, and expanding the potential uses of hydrogen in var-
ious sectors, accelerating the transition towards a cleaner and more sustainable
energy infrastructure [21].

1.2. The Role of Carbon Capture and Storage in Reducing Greenhouse Gas Emissions

CCS is a pivotal technology for significantly reducing greenhouse gas emissions by
capturing CO2 from industrial operations or power plants, transporting it to storage locations,
and securely storing it underground to prevent its release into the atmosphere [22,23]. This
overview outlines CCS and its significance in addressing climate change:

1. Capture: The initial phase of CCS involves the capture of CO2 emissions from various
sources such as power plants, cement factories, or industrial facilities to prevent
their release into the atmosphere [24]. Diverse capture technologies, including post-
combustion capture, pre-combustion capture, and oxy-fuel combustion, are used to
separate and capture CO2 from the flue gas or exhaust streams of these facilities [25].

2. Transport: Once CO2 is captured, it must be transported to suitable storage locations
for long-term sequestration. CO2 can be conveyed through pipelines, trucks, ships, or
other methods to designated injection sites, where it will be securely stored beneath
the ground [26].

3. Storage: In the storage phase, the captured CO2 is commonly injected deep beneath the
Earth’s surface into geological formations like depleted oil and gas reservoirs, saline
aquifers, or coal seams [24]. These locations provide safe and long-term storage for
CO2, where it is contained in either gaseous or liquid form, confined by impermeable
rock formations to prevent any release back into the atmosphere [27].

4. Enhanced Oil Recovery (EOR): In certain cases, carbon dioxide captured through CCS
may be utilized for enhanced oil recovery. This process involves injecting CO2 into oil
reservoirs to boost the production of oil [23]. This method not only stores CO2 under-
ground but also offers a financial incentive for implementing CCS technologies [26].

5. Role in Greenhouse Gas Emissions Reduction: CCS is instrumental in decreasing
greenhouse gas emissions by trapping and storing CO2 that would otherwise escape
into the atmosphere [28]. It is considered a critical technology for achieving net-zero
emissions targets and combating climate change by assisting industries and power
plants in reducing their carbon footprints [28].

6. Technological Advancements: Research and development efforts are currently focused
on enhancing CCS technologies to make them more affordable, environmentally
friendly, and scalable [29]. Innovations in capture methods, storage techniques, and
monitoring technologies aim to improve the overall performance and viability of
CCS projects [30].

7. Policy Support and Incentives: Governments, international organizations, and in-
dustry stakeholders recognize the importance of CCS in achieving climate goals and
reducing emissions [31]. Government support, financial incentives, carbon pricing
systems, and regulations are crucial in stimulating the implementation of CCS projects
and accelerating the transition towards a sustainable, low-carbon economy [32].
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By capturing and permanently storing CO2 emissions, CCS offers a proven method
to reduce greenhouse gas emissions, enhance industrial sustainability, and support global
efforts to combat climate change. Integrating CCS into a comprehensive climate change
strategy can accelerate the transition to a sustainable future [33]. A visual representation
of the various components of CCS and their contributions to mitigating greenhouse gas
emissions, as well as the driving forces behind CCS, is provided in Figure 1.
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1.3. The Purpose of This Article

This review paper aims to elucidate the pivotal role of hydrogen generation in mitigat-
ing carbon emissions and driving clean energy transitions, as well as the significance of
CCS in reducing greenhouse gas emissions. The article will delve into various approaches
for producing hydrogen and CCS techniques, investigate how CCS can be integrated into
hydrogen production methods, highlight the advantages and opportunities associated
with this integration, address the challenges and constraints involved, examine recent
advancements and practical examples, and provide a perspective on the future outlook of
integrating CCS into hydrogen production.

2. Hydrogen Production Methods
2.1. Exploration of Different Methods of Hydrogen Production

Steam methane reforming (SMR) is a widely used process in large-scale industrial
hydrogen production. It involves the high-temperature reaction of natural gas (methane)
with steam and a catalyst to generate hydrogen and carbon monoxide.

Catalysts are essential for enhancing the efficiency of hydrogen production processes,
particularly in water electrolysis and SMR. Recent advancements have introduced innova-
tive catalysts that significantly improve catalytic activity and reduce energy consumption.
Among these, single-atom catalysts (SACs) have garnered significant attention due to their
unique properties [34]. Water electrolysis plays a crucial role in producing green hydrogen,
especially when powered by renewable energy sources. While the efficiency of traditional
electrolyzers has been a subject of research, recent advancements have demonstrated signif-
icant improvements in both performance and cost-effectiveness. A study by Zhang et al.
(2019) explores novel catalysts and membrane technologies that enhance the electrolysis
process, focusing on reducing the energy required for hydrogen production. This research
highlights the potential of innovative materials and designs in optimizing water electrolysis,
which could provide valuable insights for improving current hydrogen production meth-
ods [35]. Single-atom catalysts, which feature metal atoms dispersed on a support surface,
maximize the utilization of metal atoms, leading to higher catalytic efficiency and selectivity.
According to a study by Zhang et al. (2019), SACs exhibited superior performance in water
electrolysis by reducing the overpotential required for the oxygen evolution reaction (OER),
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a critical step in hydrogen production. Their ability to stabilize single metal atoms on sup-
ports like graphene has shown great promise in enhancing catalytic activity while reducing
the amount of precious metal needed [35]. Similarly, a more recent study by Zhang et al.
(2023) explored the potential of SACs in reforming reactions and hydrogen production. The
study found that SACs not only improved reaction rates but also offered greater stability
in high-temperature processes such as SMR, which is widely used in industrial hydrogen
production. These advancements in SAC technology suggest that they could play a pivotal
role in scaling up hydrogen production while minimizing costs [36].

While SMRs are efficient and cost-effective, they are not environmentally friendly due
to their carbon dioxide emissions. In contrast, electrolysis is a method that utilizes electricity
to separate water into hydrogen and oxygen. This method, particularly proton exchange
membrane (PEM) electrolysis, offers the production of “green hydrogen” using renewable
energy sources. However, electrolysis can be energy-intensive and costly compared to SMR.
Biomass gasification presents an alternative approach, converting biomass feedstocks into
a syngas through thermal decomposition. This syngas can be utilized to create hydrogen.
Biomass gasification provides a sustainable and potentially carbon-neutral approach to
generating hydrogen, but its economic feasibility on a large-scale hinges on consistent
biomass feedstock availability and effective gasification technologies [32–40]. Various ways
of producing hydrogen are evaluated and compared in Table 1.

Table 1. Different methods of hydrogen production [32–40].

Method Process Applications

Steam methane reforming

Steam methane reforming is widely used for large-scale
hydrogen production in industries. The process includes
combining methane with steam at elevated temperatures
between 700 and 1000 ◦C and in the presence of a catalyst
to create hydrogen and carbon monoxide [32,33].

SMR is commonly utilized in various sectors
like ammonia manufacturing, refining of oil,
and producing hydrogen fuel for
transportation (Figure 2).

Electrolysis

Electrolysis is a method that employs an electric current
to separate water (H2O) into its constituent parts:
hydrogen and oxygen. There are two primary categories:
alkaline electrolysis and PEM electrolysis, each of which
utilizes distinct electrolytes and operational parameters
(Figure 3b).

Electrolysis is an important technology
utilized for generating “green hydrogen”,
which involves employing renewable energy
sources such as solar or wind power to power
the electrolysis process, thereby avoiding the
creation of greenhouse gas emissions [37].

Biomass gasification

Biomass gasification is the process of transforming
biomass sources like wood, agricultural leftovers, or
organic waste into a syngas (which is a blend of
hydrogen, carbon monoxide, and carbon dioxide) by
subjecting them to high temperatures for thermal
decomposition within a gasifier (Figure 3a).

Biomass gasification can be used to produce
hydrogen-rich syngas for various applications,
including power generation, heating, and
transportation fuel production [40].
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Each of these hydrogen production methods offers distinct advantages and applica-
tions, contributing to the diverse and dynamic landscape of hydrogen technologies. As the
world transitions towards cleaner and more sustainable energy systems, it is imperative
to advance and leverage a variety of hydrogen production methods to reduce carbon
emissions across industries, transportation, and power generation [41,42].

A simple visual representation of hydrogen production methods is shown in Figure 4.
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Fossil Fuel-Based: Methods relying on fossil fuels, generally producing grey hydrogen.

a. SMR: High carbon footprint; produces grey hydrogen.
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b. Coal Gasification: Very high carbon footprint; also produces grey hydrogen.
c. Natural Gas Reforming: Moderate to high carbon footprint; yields grey hydrogen.
d. Blue Hydrogen: Incorporates carbon capture and storage, reducing the carbon footprint.

Electrolysis: Uses electricity to produce hydrogen, leading to green hydrogen depend-
ing on the energy source.

a. Alkaline Electrolysis: Low carbon footprint; green hydrogen when powered by
renewables.

b. PEM Electrolysis: Similar benefits to alkaline electrolysis.
c. Solid Oxide Electrolysis: Also, low carbon footprint when reliant on renewable energy.

Biomass Gasification: Converts organic materials into hydrogen with moderate car-
bon footprints.

a. Anaerobic Digestion: Moderate carbon footprint; produces green hydrogen from
organic waste.

b. Pyrolysis: Moderate carbon footprint; converts biomass to hydrogen.

Renewable Sources: Innovative methods with very low carbon footprints, generating
green hydrogen.

a. Photoelectrochemical Water Splitting: Very low carbon footprint; utilizes sunlight
directly for hydrogen.

b. Solar Thermochemical Processes: Another very low carbon footprint method using
solar energy.

2.2. Discussion of the Environmental Impact

When assessing the environmental impact and carbon footprint of various hydrogen
production methods, it is crucial to evaluate the emissions associated with each stage of the
process, including feedstock extraction, energy consumption, and waste management [43].
We will now delve into the environmental implications of the three primary hydrogen
production methods outlined in Table 2.

In summary, the environmental impact and carbon footprint of hydrogen produc-
tion methods vary significantly depending on factors such as feedstock sources, energy
inputs, and emissions control technologies. It is essential to evaluate the entire hydrogen
production lifecycle, from feedstock procurement to the utilization of the final product,
to accurately assess the environmental implications of each approach. To minimize the
carbon footprint of hydrogen production, transitioning towards renewable energy sources,
implementing carbon capture technologies, and adopting sustainable feedstock manage-
ment practices are crucial. By prioritizing low-carbon and renewable hydrogen production
methods, we can mitigate greenhouse gas emissions and accelerate the transition to a more
sustainable energy future [44].

Environmental Impacts of Large-Scale Hydrogen Production with CCS

While the integration of CCS technologies with hydrogen production offers significant
potential to reduce carbon emissions, several environmental concerns remain. Large-scale
hydrogen production, particularly from methods such as SMR combined with CCS, still
poses considerable environmental challenges.

1. Energy Intensity of Hydrogen and CCS Processes:

Both hydrogen production and carbon capture are energy-intensive processes. The
energy required for separating hydrogen from natural gas or water (in electrolysis) and
capturing CO2 is significant. CCS, in particular, incurs an “energy penalty” of 10–20%,
meaning additional energy is needed to capture and compress CO2, which increases the
overall carbon footprint of the production process unless fully powered by renewable
energy sources. This higher energy demand can lead to greater consumption of fossil fuels
if renewable energy is not used, undermining the environmental benefits [45,46].
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2. Risks of CO2 Leakage:

One of the most pressing concerns associated with CCS is the long-term storage
of captured CO2. Even with rigorous site selection and advanced technologies, there is
always a risk of CO2 leakage from geological storage sites. Leaks could occur through
faults or improperly sealed wells, potentially leading to the release of stored CO2 into the
atmosphere, reversing the intended environmental benefits. Moreover, ongoing monitoring
and maintenance of storage sites are necessary to ensure safety, which can be both costly
and complex [47].

3. Infrastructure and Ecological Impact:

The infrastructure required for large-scale CCS deployment—such as CO2 transport
pipelines, compression stations, and storage sites—can have a direct ecological impact.
Building and operating such facilities may disrupt local ecosystems, affect biodiversity, and
lead to land-use conflicts. Furthermore, significant water resources are often required for
cooling and other processes involved in hydrogen production and CCS, which could strain
water supplies, particularly in regions prone to water scarcity [43,48].

4. Long-Term Storage Uncertainty:

The long-term reliability of CO2 storage is not fully understood. While geological
formations like depleted oil and gas reservoirs and saline aquifers are considered safe,
ensuring CO2 remains trapped for centuries or longer remains a challenge. Any future
leakage could not only negate the environmental gains but also raise concerns about the
safety and efficacy of these storage solutions [49,50].

5. Public Perception and Opposition:

Public opposition to large-scale CCS projects is another challenge. Communities
may express concerns about potential CO2 leaks, environmental degradation, or safety
risks associated with the transport and storage of CO2. Gaining public acceptance and
addressing concerns through transparent communication and regulatory measures will be
essential for the broader deployment of CCS technologies [51].

6. Land and Water Use Concerns:

CCS projects require large areas for infrastructure, including pipelines and storage
sites, which may compete with other land uses such as agriculture or conservation areas.
Additionally, CCS operations, especially those linked to hydrogen production from SMR,
may require significant water resources, further complicating environmental sustainability
in water-stressed regions [44,47,50,52].

In summary, while CCS can significantly reduce CO2 emissions from hydrogen pro-
duction, it does not entirely eliminate the environmental footprint. To maximize the benefits
of CCS, these challenges must be carefully managed through technological innovations,
strong regulatory frameworks, and the integration of renewable energy sources to power
hydrogen production.

Table 2. Environmental implications of the three main hydrogen production methods [45–53].

Method Environmental Impact Carbon Footprint

Steam methane reforming

SMR is the most commonly utilized approach for
generating hydrogen, yet it poses environmental
difficulties [45]. It produces CO2 emissions as a
byproduct since it relies on natural gas as a feedstock.
For every kilogram of hydrogen produced through SMR,
about 9–12 kg of CO2 are emitted [53].

The carbon footprint of SMR is significant
due to greenhouse gas emissions from
methane reforming. It contributes to
carbon emissions if not coupled with CCS
technologies to capture and store the
CO2 byproduct [48].
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Table 2. Cont.

Method Environmental Impact Carbon Footprint

Electrolysis

Using renewable energy sources to power electrolysis
can make hydrogen production a more environmentally
friendly process [46]. Green hydrogen produced
through electrolysis with renewable electricity has
minimal environmental impact, as the only byproduct is
oxygen. However, if electrolysis is powered by fossil
fuels, it can still have a carbon footprint [49].

The carbon footprint of electrolysis
depends on the source of electricity used.
When powered by renewable energy,
electrolysis can be a carbon-neutral or
low-carbon method of hydrogen
production. However, utilizing electricity
from fossil fuels increases the carbon
footprint associated with the process [51].

Biomass gasification

Biomass gasification offers a renewable alternative for
hydrogen production. While biomass gasification
produces carbon dioxide as a byproduct, the carbon
released during the gasification process is considered
part of the natural carbon cycle when sustainably
sourced biomass feedstocks are used [47].

The sustainability of biomass acquisition
and the effectiveness of the gasification
process are significant factors influencing
the carbon footprint of biomass
gasification. Biomass gasification has the
potential to achieve carbon neutrality or
even carbon negativity when the biomass
input is sourced sustainably and any
carbon emissions are counterbalanced
through carbon capture or storage [50,52].

2.3. Risks and Mitigation Strategies for Large-Scale CCS Deployment

The successful implementation of CCS on an industrial scale requires careful consider-
ation of both technical and environmental challenges. Key risks and their corresponding
mitigation strategies include [54–56]:

1. CO2 Leakage: One of the primary concerns with large-scale CCS deployment is the
risk of CO2 leakage from storage sites, which could undermine the environmental
benefits of CCS. CO2 leakage can occur through geological faults or improperly sealed
wells. To mitigate this risk, rigorous site selection criteria are crucial. Storage sites
should be chosen based on their geological stability and the presence of impermeable
cap rocks to prevent CO2 escape. Additionally, advanced monitoring technologies
such as seismic imaging, pressure sensors, and soil gas sampling can detect early signs
of leakage, enabling timely intervention.

2. Induced Seismicity: The injection of large volumes of CO2 into deep geological forma-
tions can potentially trigger small seismic events due to increased subsurface pressure.
This risk is particularly relevant in regions with existing fault lines or high tectonic
activity. Risk assessments should be conducted prior to injection to evaluate the seis-
mic stability of storage sites. Furthermore, pressure management techniques, such
as regulating the rate of CO2 injection, can reduce the risk of induced seismicity. In
some cases, water extraction from the formation can help balance the pressure and
minimize the likelihood of seismic activity.

3. Public Perception and Acceptance: Public opposition to CCS projects, often due to
concerns about safety and environmental impact, can hinder large-scale deployment.
Transparent communication about safety measures and environmental benefits is
essential for gaining public trust. Engaging with local communities and stakeholders
early in the project development process can address concerns and provide accurate
information on risks and mitigation strategies. Additionally, government regulations
and certification programs can ensure CCS projects comply with the highest safety
standards, further building public confidence.

4. Long-Term Liability: The long-term responsibility for stored CO2 is a significant
issue, particularly if leakage occurs decades after injection. To mitigate this risk, long-
term monitoring plans should be established for CCS projects, even after injection
operations have ceased. Governments should implement clear legal frameworks
that define liability for stored CO2, including who is responsible for monitoring and
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remediation in the event of leakage. Insurance mechanisms or carbon storage funds
can also be established to cover potential costs associated with future leakage incidents.

5. Ecosystem Disruption: Although the direct environmental footprint of CCS is rel-
atively small, large-scale deployment could disrupt local ecosystems, particularly
during the construction of storage sites and pipelines. Environmental impact assess-
ments (EIAs) should be conducted to evaluate and minimize the potential impact on
biodiversity and local ecosystems. These assessments should include strategies such
as revegetation, habitat restoration, and the use of biodiversity corridors to ensure
minimal disruption to wildlife. By incorporating these mitigation strategies into the
design and implementation of large-scale CCS projects, we can significantly reduce the
potential risks and make CCS a more viable and environmentally sustainable solution
for carbon mitigation.

3. Carbon Capture and Storage Techniques
3.1. Explanation of Various CCS Technologies

Post-Combustion Capture: Post-combustion capture is a carbon capture technology
that involves capturing CO2 from the exhaust gases of power plants or industrial facilities
after the combustion of fuel. This method typically utilizes chemical solvents or alternative
absorbents to trap the CO2, which can subsequently be compressed and stored underground
or repurposed for various applications [54–57].

Pre-Combustion Capture: Pre-combustion capture is a carbon capture method that
entails capturing CO2 before the fuel undergoes combustion. In this process, the fuel
is gasified to produce a syngas, which is then processed to separate the CO2 prior to
combustion. This allows for more efficient CO2 capture due to its higher concentration
compared to post-combustion capture [58–60].

Oxy-Fuel Combustion: Oxy-fuel combustion is a carbon capture technology where
fuel is burned in an oxygen-rich environment instead of air. This results in a flue gas
primarily composed of CO2 and water vapor, simplifying the process of capturing and
separating the CO2 for storage or utilization. Oxy-fuel combustion can be implemented in
power plants or industrial processes to reduce CO2 emissions [61–64]. Table 3 compares
three key factors for various CCS technologies.

Table 3. Comparison of various CCS technologies [55–63].

CCS Technologies Process Technology Applications

Post-combustion capture

Post-combustion capture
entails trapping CO2 from flue
gases after the combustion of
fossil fuels. This approach is
adaptable for integration into
current power plants and
industrial sites, rendering it a
versatile choice for
carbon capture [55].

Post-combustion capture
technologies commonly
utilize solvents or sorbents for
absorbing CO2 from flue gas
streams. Once captured, the
CO2 is separated from the
absorbent, purified,
compressed, and transported
for storage [56].

Post-combustion capture is
well suited for power plants
and industrial facilities that
produce high concentrations
of CO2 emissions, providing a
viable option for reducing
carbon emissions from
existing sources [57].

Pre-combustion capture

Pre-combustion capture
involves capturing CO2 before
the fuel is burned. This
approach is frequently
employed in integrated
gasification combined cycle
(IGCC) power plants and
facilities that make use of
gasification processes [58].

In pre-combustion capture,
the fuel is converted into
syngas through gasification,
which comprises hydrogen,
carbon monoxide, and carbon
dioxide. The CO2 is extracted
from the syngas prior to
combustion, enabling the
capture and storage of
CO2 emissions [59].

Pre-combustion capture is
well suited for facilities that
utilize gasification processes,
such as coal gasification plants
or biomass gasification
facilities, enabling the capture
of CO2 prior
to combustion [60].
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Table 3. Cont.

CCS Technologies Process Technology Applications

Oxy-fuel combustion

Oxy-fuel combustion includes
burning fuel in an
oxygen-enriched setting,
leading to a flue gas stream
primarily comprising CO2
and water vapor. The water
vapor is condensed to
generate a nearly pure CO2
stream that is suitable for
capture and storage [61].

Oxy-fuel combustion
technologies utilize oxygen
rather than air for combustion,
streamlining the CO2
separation process by yielding
a concentrated CO2 stream
that is easily captured [62].

Oxy-fuel combustion is
commonly used in power
generation and industrial
applications where
high-purity CO2 capture is
desirable, allowing for
efficient capture and storage
of CO2 emissions [63].

The integration of CCS technologies with hydrogen production processes necessitates
a comprehensive analysis of the efficiency, scalability, and cost implications of each tech-
nology. For example, post-combustion capture, a widely used CCS technology, typically
achieves a CO2 capture efficiency of 85–90%. In contrast, pre-combustion capture can
reach efficiencies as high as 95%, making it more effective in certain hydrogen production
scenarios, particularly gasification-based processes. However, pre-combustion capture
often incurs a higher energy penalty, with an estimated efficiency loss of 15–20% compared
to post-combustion technologies, which have a lower penalty of around 10–12%. Moreover,
the cost of implementing CCS varies significantly depending on the specific technology and
the scale of the operation. The cost of post-combustion capture is estimated at USD 40–60
per metric ton of CO2 captured, while pre-combustion capture can range from USD 50 to 80
per metric ton. Oxy-fuel combustion, although offering high-purity CO2 streams, presents
additional challenges due to the need for an oxygen generation system, leading to increased
operational costs. A quantitative analysis of the economic feasibility of integrating CCS into
hydrogen production demonstrates that for large-scale projects, such as blue hydrogen pro-
duction, CCS integration can reduce CO2 emissions by up to 90% with a marginal increase
in the hydrogen production cost of approximately 20–30%. This makes CCS competitive
with other decarbonization technologies, provided that appropriate carbon pricing and
policy incentives are in place [62–64].

3.2. Importance of CCS in Reducing CO2 Emissions

CCS is a crucial technology for reducing CO2 emissions from industrial activities, offer-
ing a viable solution to address greenhouse gas emissions and combat climate change [65].
Here is why CCS is essential for industrial decarbonization:

1. Emissions Reduction: Industrial operations contribute significantly to global CO2
emissions, particularly in sectors such as cement manufacturing, steel production,
and chemical processing. By deploying CCS technologies in industrial plants, CO2
emissions can be captured and securely stored underground, leading to a substantial
reduction in the carbon footprint of these industries [66].

2. Process Decarbonization: Many industrial processes rely on fossil fuels for heat and
power generation, leading to significant CO2 emissions. CCS provides a means to
decarbonize these operations by capturing CO2 emissions directly from the source
and preventing their release into the atmosphere, assisting industries in transitioning
to greener and more sustainable production practices [67].

3. Decarbonization of Energy-Intensive Industries: Industries that rely heavily on energy
and have limited low-carbon alternatives, such as cement and steel manufacturing, can
greatly benefit from CCS. By capturing and storing CO2 emissions, these industries can
continue their operations while minimizing their environmental impact and meeting
emissions reduction targets [68].

4. Technological Innovation: The deployment of CCS technologies in industrial processes
drives innovation and research in carbon capture, utilization, and storage. Advance-
ments in capture technologies, storage methods, and process optimization contribute
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to the development of more efficient and cost-effective solutions for reducing CO2
emissions across industries [69].

5. Sectoral Collaboration: CCS encourages collaboration between industry stakeholders,
policymakers, and researchers to develop tailored solutions for industrial decarboniza-
tion. Partnerships between governments, research institutions, and industry players
drive knowledge sharing, investment opportunities, and regulatory support for the
effective implementation of CCS in industrial processes [70].

6. Economic Viability: By capturing and monetizing CO2 emissions through processes
like enhanced oil recovery or industrial reuse, CCS can offer economic benefits for
industrial facilities. In addition to reducing emissions, CCS can create new revenue
streams and support the transition to a low-carbon economy without compromising
industrial competitiveness [71].

7. Climate Goals and Sustainability: Meeting climate targets and achieving sustainability
objectives requires significant reductions in industrial emissions. CCS provides a
proven technology for capturing and storing CO2 emissions from industrial processes,
playing a critical role in achieving net-zero emissions and advancing sustainable
industrial practices [72]. Overall, CCS is a vital tool for reducing CO2 emissions from
industrial processes, offering industries a pathway to achieve decarbonization goals,
enhance competitiveness, and contribute to global efforts to address climate change.
By integrating CCS technologies into industrial operations, industries can lower their
carbon footprint, enhance environmental performance, and drive sustainable growth
in a carbon-constrained world [73].

4. Integration of CCS into Hydrogen Production
4.1. How CCS Can Be Integrated into Hydrogen Production Processes

Integrating CCS into Hydrogen Production: Incorporating CCS into hydrogen produc-
tion methods presents a promising approach to mitigating carbon emissions and enhancing
the environmental sustainability of hydrogen production [74]. Here is how CCS can be
effectively integrated into different hydrogen production methods:

1. SMR with CCS:

◦ Integration: In SMR, CO2 is a byproduct of hydrogen production. Implementing
CCS in SMR facilities enables the capture, compression, and underground storage
of CO2 emissions [75].

◦ Process: Captured CO2 from the SMR process undergoes purification and com-
pression before being transported to suitable storage sites for sequestration [76].

◦ Environmental Benefits: Combining CCS with SMR significantly reduces CO2 emis-
sions linked to hydrogen production, promoting environmental sustainability [77].

2. Electrolysis with CCS:

◦ Integration: When electrolysis is powered by fossil fuels, it can result in carbon
emissions. Integrating CCS with electrolysis facilities allows for the capture and
storage of CO2 emitted during the process [78].

◦ Process: CO2 generated as a byproduct during electrolysis can be captured
using CCS technologies and stored underground, effectively reducing the carbon
footprint of hydrogen production [79].

◦ Advantages: Coupling electrolysis with CCS further lowers emissions and pro-
motes climate-friendly hydrogen generation [80].

3. Biomass Gasification with CCS:

◦ Integration: Biomass gasification for hydrogen production can benefit from CCS.
CO2 produced during biomass gasification can be captured and stored, enabling
carbon-neutral or even carbon-negative hydrogen production [81].

◦ Process: Captured CO2 from the gasification process undergoes purification and
compression before injection into suitable geological storage formations [82].
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◦ Environmental Benefits: Integrating biomass gasification with CCS enhances the
environmental sustainability of hydrogen production, offering a renewable and
low-carbon pathway for hydrogen generation [83].

4. Synergy with Renewables:

◦ Renewable Energy Integration: CCS can complement renewable hydrogen
production methods, such as electrolysis powered by renewable energy sources.
Excess renewable energy can be used to capture and store CO2 emissions
from other energy-intensive processes, promoting a circular and sustainable
energy system [84].

By integrating CCS into various hydrogen production processes, industries can sig-
nificantly reduce their carbon emissions, contributing to climate change mitigation efforts
and sustainable energy practices. The combination of hydrogen production with CCS not
only lowers greenhouse gas emissions but also helps industries transition towards cleaner
energy production methods and achieve decarbonization goals [85].

4.2. Synergies, Benefits, and Challenges of Combining CCS with Hydrogen Production

The integration of CCS with hydrogen production presents synergistic opportunities,
offering significant benefits but also facing challenges [86]. We will explore these aspects
in detail:

Synergies:

1. Emissions Reduction: Integrating CCS with hydrogen production processes enables
industries to significantly reduce their carbon footprints by capturing and storing CO2
emissions, contributing to climate change mitigation efforts [87].

2. Sustainability: The combination of CCS and hydrogen production promotes sus-
tainable energy practices, enhances environmental performance, and supports the
transition to low-carbon energy systems [88].

3. Circular Economy: The synergy between CCS and hydrogen production creates a
circular energy system where CO2 emissions are captured and utilized or stored,
fostering resource efficiency and environmental stewardship [89].

Benefits:

1. Climate Mitigation: CCS integration into hydrogen production helps industries meet
emissions reduction targets, comply with regulations, and support global efforts to
combat climate change by reducing CO2 emissions [90].

2. Cleaner Hydrogen: Incorporating CCS ensures that the hydrogen produced is cleaner
and more environmentally friendly, enhancing its marketability and sustainability as a
low-carbon energy carrier [91].

3. Decarbonization: The coupling of CCS with hydrogen production accelerates the
decarbonization of industrial processes, power generation, and transportation by
mitigating emissions and promoting sustainable energy practices [92].

Challenges:

1. Cost: The upfront capital costs of implementing CCS technologies can be substantial,
posing a financial barrier to the adoption of CCS in hydrogen production facilities [93].

2. Energy Intensity: CCS integration may increase the energy requirements of hydrogen
production processes, affecting overall efficiency and operational costs [94].

3. Infrastructure Requirements: Establishing the infrastructure for CO2 capture, transport,
and storage can be complex and require coordination among stakeholders, regulatory
compliance, and investment in storage sites [95].

4. Technological Advancements: The advancement and implementation of CCS tech-
nologies for hydrogen production may encounter obstacles concerning technol-
ogy readiness, scalability, and economic feasibility, necessitating ongoing research
and innovation [96].
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Conclusion: Despite the challenges, the synergies between CCS and hydrogen produc-
tion offer a compelling pathway to decarbonize industries, reduce greenhouse gas emissions,
and advance sustainable energy solutions. By addressing the challenges through technolog-
ical advancements, policy support, and collaborative efforts, the integration of CCS with
hydrogen production can unlock environmental, economic, and societal benefits [97].

Technological Challenges in Integrating CCS with Hydrogen Production

The integration of CCS into various hydrogen production methods presents several
technological challenges, depending on the production method [93–97]:

1. SMR with CCS: SMR is the most widely used method for large-scale hydrogen produc-
tion, but it generates significant CO2 emissions. Integrating CCS into SMR facilities
involves capturing CO2 from flue gases, compressing it, and transporting it to storage
sites. The main technological challenges include the efficiency of CO2 capture, the high
energy penalty of the capture process (typically 10–15% of the plant’s total energy con-
sumption), and ensuring the scalability of capture systems to reduce costs over time.
There are also challenges in retrofitting existing SMR plants with CCS technologies.

2. Electrolysis with CCS: When electrolysis is powered by fossil fuels, carbon emissions
are still a concern. Integrating CCS with these systems involves capturing the CO2
generated during electricity production. The challenges here include improving the
efficiency of the electrolysis process, particularly with high-temperature electrolysis
techniques such as solid oxide electrolysis, which can achieve efficiencies above 85%.
However, capturing CO2 from power plants that use fossil fuels to supply electricity
to electrolysis adds complexity, particularly in terms of optimizing both the hydrogen
production and carbon capture processes.

3. Biomass Gasification with CCS: Biomass gasification with CCS offers the potential
for carbon-neutral or even carbon-negative hydrogen production, but integrating
CCS with this method introduces complexities. The CO2 captured from biomass
gasification must be purified and compressed for storage, similar to SMR, but the
process of capturing CO2 from biomass requires advanced purification technologies
to handle impurities in the gas stream. Additionally, optimizing the capture process
while maintaining the efficiency of hydrogen production is a significant challenge.

4. Infrastructure and Integration Challenges: Regardless of the hydrogen production
method, one of the biggest challenges in integrating CCS is developing the necessary
infrastructure for CO2 transport and storage. Pipelines and storage sites must be
developed and maintained, which requires substantial investment and coordination
between different sectors. The monitoring of long-term CO2 storage sites to prevent
leakage is another significant technological and regulatory hurdle.

5. Opportunities and Advantages
5.1. Opportunities Presented by Integrating CCS into Hydrogen Production

Integrating CCS with hydrogen production presents significant opportunities for
achieving carbon neutrality and advancing sustainable energy practices [98]. Key opportu-
nities include:

1. Green Hydrogen Production: Coupling CCS with hydrogen production methods
powered by renewable energy sources enables the production of green hydrogen with
minimal to no carbon emissions, contributing to carbon neutrality goals [99].

2. Industrial Decarbonization: The integration of CCS into hydrogen production allows
industries to decarbonize their operations, reduce greenhouse gas emissions, and
transition towards cleaner and more sustainable production methods, aligning with
carbon neutrality objectives [100].

3. Sectoral Decarbonization: Integrating CCS into hydrogen production offers a means
to decarbonize sectors that are difficult to electrify directly, such as heavy indus-
try, transportation, and power generation, facilitating the transition to low-carbon
energy systems [101].
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4. Sector Coupling: The synergy between CCS and hydrogen production enables sector
coupling, integrating renewable energy sources with carbon capture technologies to
produce clean hydrogen for various applications and fostering a holistic approach to
achieving carbon neutrality [102].

5. Carbon Offsetting: Capturing and storing CO2 emissions from hydrogen produc-
tion processes through CCS provides industries with a carbon offsetting mechanism,
helping to balance emissions and achieve net-zero carbon emissions targets [103].

6. Emissions Reduction: Integrating CCS into hydrogen production supports emissions
reduction strategies by capturing CO2 emissions, minimizing the environmental im-
pact of hydrogen production, and contributing to a more sustainable and environmen-
tally conscious energy sector [104].

Path to Carbon Neutrality:

1. Technological Innovation: Continued advancements in CCS technologies, hydrogen
production methods, and energy storage solutions drive innovation towards carbon-
neutral hydrogen production, offering efficient and scalable pathways to reach carbon
neutrality [105].

2. Policy Support: Policy frameworks that incentivize CCS integration into hydrogen
production, establish carbon pricing mechanisms, and promote renewable energy
adoption create an enabling environment for industries to transition towards car-
bon neutrality [106].

3. Collaborative Partnerships: Collaborations among governments, industry stakehold-
ers, research institutions, and technology developers foster knowledge sharing, in-
vestment opportunities, and regulatory support for implementing CCS in hydrogen
production to achieve carbon neutrality [107].

4. Market Transformation: The incorporation of CCS in hydrogen production can disrupt
conventional energy systems, accelerate the uptake of low-carbon technologies, and
drive market evolution towards a carbon-neutral economy, promoting sustainability
and resilience in the energy industry [108].

By leveraging the opportunities presented by integrating CCS into hydrogen produc-
tion, industries can play a pivotal role in achieving carbon neutrality, reducing greenhouse
gas emissions, and fostering a transition towards a more sustainable and environmentally
responsible energy landscape [109].

5.2. Possible Advantages in the Areas of Economy, Environment, and Society

The integration of CCS technologies with hydrogen production offers a range of
potential economic, environmental, and social benefits, contributing to sustainable energy
systems and fostering a transition towards a low-carbon economy [110].

Economic Benefits:

1. Market Growth and Job Creation: CCS integration into hydrogen production can
drive the expansion of the clean energy technology market, leading to increased
innovation, investment, and job opportunities in the renewable energy and carbon
capture industries [111].

2. Revenue Generation: CCS can create new revenue streams through carbon offsetting,
emissions trading, and value-added products derived from captured CO2, boosting
economic opportunities for industries [112].

3. Cost Reduction: The scalability and efficiency of CCS technologies in hydrogen produc-
tion can drive down costs over time, making carbon-neutral hydrogen more competitive
and economically viable compared to conventional high-emissions processes [113].

Environmental Benefits:

1. Emissions Reduction: CCS integration into hydrogen production leads to substantial
reductions in greenhouse gas emissions, contributing to climate change mitigation
efforts by capturing and storing CO2 emissions [114].
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2. Air Quality Improvement: By reducing CO2 emissions and other pollutants from
industrial processes, CCS integration enhances air quality, diminishes health risks
associated with pollution, and promotes cleaner environments for communities near
industrial facilities [115].

3. Resource Conservation: Shifting towards carbon-neutral hydrogen production through
CCS helps conserve natural resources, reduce fossil fuel dependency, and promote
sustainable practices that safeguard ecosystems and biodiversity [116].

Social Benefits:

1. Health and Wellbeing: The deployment of CCS technologies in hydrogen production
enhances public health by lowering emissions of pollutants and greenhouse gases and
creating cleaner and healthier living conditions for communities in industrial areas [117].

2. Community Engagement: Engaging local communities in CCS projects fosters trans-
parency, trust, and social acceptance of sustainable energy initiatives, promoting
collaboration and mutual understanding [118].

3. Energy Access and Equity: CCS integration into hydrogen production supports the
transition to low-carbon energy systems, promoting equitable access to clean energy, ad-
dressing energy poverty, and ensuring energy security for all segments of society [119].

Overall Impact: The economic, environmental, and social benefits of integrating
CCS into hydrogen production contribute to the sustainability and resilience of energy
systems, helping industries meet climate goals, reduce carbon footprints, and achieve
long-term environmental objectives [120]. By embracing CCS technologies in hydrogen
production, industries can demonstrate climate leadership, environmental stewardship,
and a commitment to transitioning to carbon-neutral energy solutions, setting a positive
example for sustainable development and responsible energy practices [121].

The integration of CCS into hydrogen production presents a holistic approach to ad-
vancing economic prosperity, environmental stewardship, and social well-being, fostering
a transition towards a sustainable, low-carbon future that benefits both current and future
generations [122].

6. Challenges and Limitations
6.1. Technical, Economic, and Regulatory Challenges

The integration of CCS technologies with hydrogen production presents several tech-
nical, economic, and regulatory challenges that must be addressed for successful imple-
mentation as shown in Figure 6. [123].
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Technical Challenges:

1. Efficiency and Energy Consumption: CCS integration can increase energy requirements
and affect overall process efficiency. Innovations in capture technologies, process
optimization, and energy management are essential to address these challenges [124].

2. Storage and Transportation: Secure storage of captured CO2 and efficient transporta-
tion to storage sites are crucial technical challenges. Developing safe and cost-effective
storage solutions, enhancing transportation systems, and optimizing capture technolo-
gies are key focus areas [125].

3. CO2 Capture Costs: The cost of CO2 capture technologies can be high, impacting the
overall economics of CCS in hydrogen production. Research and development efforts
to reduce capture costs, improve efficiency, and scale up technologies are essential [126].

Economic Challenges:

1. Capital Investment: Implementing CCS technologies requires significant upfront
capital investment, which can be a barrier to adoption. Financial incentives, sup-
portive policies, and public–private partnerships can help offset initial costs and
encourage investment [127].

2. Operating Costs: Operating and maintenance costs associated with CCS integration,
including storage, monitoring, and verification, add to the economic challenges. Inno-
vations in operational efficiency, cost-effective solutions, and optimized workflows
can help manage ongoing expenses [128].

3. Carbon Pricing and Market Mechanisms: The absence of formal carbon pricing mech-
anisms or supportive market frameworks can hinder the economic viability of CCS
in hydrogen production. Establishing carbon pricing, emissions trading systems, or
carbon offset markets can incentivize investment in carbon-neutral technologies [129].

Regulatory Challenges:

1. Regulatory Frameworks: The complexity of regulatory requirements, permits, and
approvals for CCS projects presents a regulatory challenge. Streamlining regulatory
processes, providing clear guidelines, and promoting regulatory certainty can facilitate
the deployment of CCS technologies [130].

2. Liability and Risk Management: Legal aspects related to liability, long-term liability for
stored CO2, and risk management in CCS projects need to be addressed. Establishing
liability frameworks, risk mitigation strategies, and insurance mechanisms can provide
clarity and confidence for stakeholders [131].

3. Public Acceptance: Social acceptance and stakeholder engagement are vital for the
success of CCS projects. Building public awareness, fostering community involvement,
and ensuring transparent communication can address concerns and enhance public
support for CCS integration in hydrogen production [132].

Strategies for Overcoming Challenges:

1. Research and Development: Continued research and innovation in CCS technologies,
storage solutions, and process optimization can drive technical advancements and
improve the efficiency and cost-effectiveness of CCS in hydrogen production [133].

2. Collaboration and Partnerships: Collaboration among industry stakeholders, gov-
ernments, research institutions, and communities is essential to address technical,
economic, and regulatory obstacles. Leveraging specialized skills, resources, and
information exchange can facilitate the implementation of CCS [134].

3. Policy Support: Implementing supportive policies, incentives, and regulatory frame-
works that promote CCS integration into hydrogen production is crucial. Policy
alignment with climate goals, carbon pricing mechanisms, and carbon-neutral strate-
gies can create an enabling environment for CCS implementation [135].

Conclusion: By addressing technical, financial, and regulatory challenges through
creativity, cooperation, and favorable regulations, the integration of CCS with hydrogen
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production can overcome obstacles and unleash the full potential of carbon-neutral hydro-
gen as an eco-friendly energy alternative [135].

6.2. Potential Barriers to Widespread Adoption and Implementation

The widespread adoption and implementation of CCS technologies in hydrogen
production require addressing significant technical, economic, regulatory, and social
challenges [136].

Technical Challenges:

1. Technology Maturity: CCS technologies are still in the early stages of development or
testing, with limited full-scale implementation. Advancements in technology readiness,
scalability, and performance are crucial to overcome these technical barriers [137].

2. Energy Intensity: Integrating CCS into hydrogen production processes may increase
energy demands and operational complexity, impacting overall efficiency and produc-
tivity. Developing solutions to minimize energy requirements and enhance system
integration is essential [138].

3. Carbon Capture Efficiency: Achieving high capture rates and optimal CO2 separation
efficiency remains a technical challenge. Enhancing the efficiency, reliability, and
affordability of capture technologies is essential for their widespread adoption [139].

Economic Challenges:

1. Capital Investment: The high capital costs associated with CCS deployment, including
infrastructure, equipment, maintenance, and operational expenses, can be a significant
barrier to adoption. Developing cost-effective solutions, incentivizing investment, and
reducing overall lifecycle costs are critical [140].

2. Economic Viability: Industries may face uncertainties regarding the economic viability
and return on investment of CCS projects. Clear business cases, financial incentives,
and economic assessments are needed to demonstrate the long-term benefits of CCS
integration [141].

3. Carbon Pricing: The lack of strong carbon pricing mechanisms or market incentives
for CO2 reduction can hinder the economic viability of CCS projects. Establishing
carbon pricing frameworks, emissions trading systems, or carbon offset markets is
crucial for overcoming economic barriers [142].

Regulatory and Policy Challenges:

1. Regulatory Complexity: Compliance with evolving regulatory requirements, permit-
ting processes, and environmental standards for CCS projects can be complex and
time-consuming. Streamlining regulatory processes, providing clear guidelines, and
promoting regulatory certainty can facilitate the deployment of CCS technologies [143].

2. Liability and Risk Management: Legal aspects related to liability, long-term liability for
stored CO2, and risk management in CCS projects need to be addressed. Establishing
liability frameworks, risk mitigation strategies, and insurance mechanisms can provide
clarity and confidence for stakeholders [144].

3. Policy Alignment: Inconsistencies in national policies, international agreements, and reg-
ulatory frameworks related to carbon reduction and CCS deployment can create barriers
to widespread adoption. Aligning policies with climate goals, sustainability objectives,
and clean energy strategies is essential for promoting CCS implementation [145].

Public Awareness and Social Acceptance:

1. Public Perception: Limited awareness, misconceptions, and concerns about CCS tech-
nologies and their environmental impacts can hinder public acceptance. Education,
outreach, and stakeholder engagement efforts are necessary to build trust, address
misconceptions, and promote social acceptance [146].

2. Community Engagement: Lack of community involvement, consultation, and par-
ticipation in decision-making processes for CCS projects can lead to resistance and
opposition. Establishing transparent communication channels, fostering engagement,
and addressing community concerns are key to overcoming social barriers [147].
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International Cooperation and Knowledge Sharing:

1. Information Exchange: Limited knowledge sharing, collaboration, and technology
transfer among nations, industries, and stakeholders may impede the global deployment
of CCS technologies. Promoting international cooperation, fostering best practices, and
facilitating technology exchange can enhance adoption and implementation [148].

2. Capacity Building: Insufficient expertise, resources, and institutional capacity for
CCS project development and deployment in certain regions can be a barrier to
implementation. Building technical capacity, skill development, and knowledge
exchange initiatives can support widespread adoption of CCS technologies [149].

By addressing technical, economic, regulatory, and social challenges through innova-
tion, cooperation, policy support, and community involvement, the integration of carbon
capture and storage technologies in hydrogen production can overcome obstacles and lay
the foundation for a sustainable and environmentally friendly energy future [149].

7. Current Trends and Case Studies
7.1. Review of Recent Developments, Pilot Projects, and Commercial Initiatives

There have been significant advancements in the field of integrating CCS technologies
with hydrogen production [150]. Here are some notable examples:

Recent Projects:

• H21 North of England Project: This project aims to transition the UK’s gas infras-
tructure to hydrogen with CCS, reducing carbon emissions from industrial areas and
residential heating systems [151].

• H2H Saltend Project: This UK-based project focuses on generating low-carbon hydro-
gen by capturing and sequestering CO2 emissions from SMR operations [152].

• Oxyfuel Project at Longannet: This Scottish project is researching oxy-fuel combustion
combined with CCS for hydrogen production, aiming to create a concentrated CO2
stream for storage [153].

Pilot Projects:

• H-Vision Project: This Dutch project seeks to manufacture blue hydrogen by capturing
CO2 from steam methane reforming processes and storing it underground [154].

• Hybrit Initiative: This Swedish pilot project focuses on green hydrogen production and
CCS integration, using renewable energy sources to power electrolysis for hydrogen
production [155].

Commercial Initiatives:

• Drax Bioenergy CCS Project: Drax Group in the UK is exploring bioenergy with
CCS to produce hydrogen, capturing CO2 emissions from bioenergy production and
extracting hydrogen for various applications [156].

• Port of Rotterdam H-vision Project: This project aims to implement large-scale hy-
drogen production with carbon capture infrastructure at the Port of Rotterdam in
The Netherlands [157].

These developments demonstrate the increasing focus on integrating CCS technologies
with hydrogen production to decarbonize industrial processes, reduce greenhouse gas
emissions, and advance towards a sustainable energy future [158].

Recent Advancements: Recent advancements in hydrogen production and CCS tech-
nologies have further demonstrated their viability for large-scale decarbonization. Key
examples include:

• Northern Lights Project (2023): This Norwegian project is one of the largest CCS
projects in Europe, designed to capture CO2 from industrial sources and store it in
offshore geological formations [159].

• Solid Oxide Electrolysis (2023): Research into SOECs has demonstrated record effi-
ciency levels for green hydrogen production, exceeding 90% when integrated with
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waste heat from industrial processes. Pilot projects have successfully scaled up SOEC
technology for industrial applications [160].

• Allam Cycle Hydrogen Plant (2022): This plant produces clean hydrogen while captur-
ing CO2 as part of the production process, utilizing supercritical CO2 as a working
fluid in a closed-loop system. It has successfully demonstrated its capacity to generate
50 MW of clean hydrogen [161].

• Direct Air Capture Integration (2023): Several hydrogen production facilities have
begun integrating DAC technology to achieve carbon-negative hydrogen. The Clime-
works project in Iceland is a prime example, combining DAC with hydrogen produc-
tion powered by geothermal energy [162].

Conclusion: These recent case studies and technological advancements illustrate the
rapid progress being made in hydrogen production and CCS integration. By leveraging these
new developments, the industry is moving closer to large-scale, cost-effective decarbonization.

7.2. Analysis of Successful Case Studies and Lessons Learned

Examining successful case studies of CCS integration into hydrogen production pro-
vides valuable insights for future projects. Table 4 highlights key lessons learned from
real-world applications.

Table 4. Successful case studies and lessons learned.

Case Studies Description Lessons Learned

Norway’s Longship Project

The Longship Project in Norway
encompasses the Northern Lights CCS
project and aims to establish CCS
infrastructure for industrial carbon
capture and storage, including in
hydrogen production processes [160].

The Longship Project underscores the
importance of public–private
partnerships, regulatory support, and
stakeholder engagement in driving
large-scale CCS initiatives. It
demonstrates the feasibility of integrating
CCS into hydrogen production to achieve
carbon-neutral goals [161].

Kemper County Energy Facility (U.S.)

The Kemper County Energy Facility in
Mississippi combined pre-combustion
CCS with gasification technology for
power generation, offering insights
relevant to hydrogen production [162].

Challenges with project timelines, cost
overruns, and technology
implementation highlight the need for
thorough project planning, scalability
assessments, and collaboration among
project partners for successful CCS
integration [163].

Gorgon Project (Australia)

The Gorgon Project in Australia
incorporates CCS to capture and store
CO2 emissions from natural gas
processing operations, showcasing
industrial-scale CCS integration [164].

Lessons from the Gorgon Project
emphasize the importance of addressing
geotechnical challenges, monitoring and
verification protocols, and public
awareness in CCS projects, particularly in
hydrogen production applications [165].

Key Lessons Learned from Successful CCS Integration into Hydrogen Production:
Analyzing successful case studies of CCS integration into hydrogen production pro-

vides valuable insights for future projects. Key lessons learned include:

1. Early Planning and Risk Assessment: Conducting thorough risk assessments, compre-
hensive feasibility studies, and scenario planning early in the project lifecycle helps
identify potential challenges, mitigate risks, and enhance project preparedness [166].

2. Technology Selection and Scalability: Careful selection of appropriate CCS technolo-
gies, evaluation of scalability requirements, and consideration of integration with
hydrogen production processes are critical factors for successful deployment and
long-term viability [167].

3. Stakeholder Engagement and Communication: Engaging with stakeholders, fostering
open communication, and addressing community concerns are essential for gaining
support, building trust, and ensuring the social license to operate CCS projects [168].
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4. Regulatory Compliance and Permitting: Navigating regulatory landscapes, securing
necessary permits, and complying with environmental standards in CCS integra-
tion require strategic planning, regulatory expertise, and proactive engagement with
regulatory bodies [169].

5. Monitoring and Verification: Implementing robust monitoring, reporting, and verifi-
cation protocols is vital for ensuring the efficiency, safety, and environmental perfor-
mance of CCS projects, including in hydrogen production applications [170].

6. Knowledge Sharing and Collaboration: Encouraging knowledge sharing, fostering
industry collaboration, and disseminating best practices from successful case studies
can drive innovation, accelerate technology deployment, and facilitate the wider
adoption of CCS in hydrogen production [171].

By analyzing successful case studies, extracting valuable lessons, and applying best
practices, future CCS integration projects in hydrogen production can benefit from practical
insights, enhanced project management strategies, and a deeper understanding of key
success factors [172].

8. Future Perspectives
8.1. Insights into the Future

The future of CCS integration into hydrogen production holds significant promise as
industries, policymakers, and stakeholders prioritize decarbonization, sustainability, and
the transition to clean energy systems [173].

Key Trends:

1. Rapid Expansion: The adoption of CCS technologies in hydrogen production is
expected to expand rapidly, driven by emissions reduction targets, climate initiatives,
and the growing demand for low-carbon hydrogen [174].

2. Technological Advancements: Continued innovations in CCS technologies, efficiency
improvements, cost reductions, and scalability enhancements will drive the develop-
ment of more effective and commercially viable solutions for CCS integration into
hydrogen production [175].

3. Renewable Energy Integration: The integration of CCS with electrolysis powered by
renewable energy sources is anticipated to grow, leading to increased production of
green hydrogen and further decarbonization of industrial processes [176].

4. Industrial Transformation: CCS integration into hydrogen production is crucial for
reshaping energy-intensive sectors towards carbon-neutral processes, promoting sus-
tainable industrial practices and improved environmental sustainability [177].

Future Outlook:

1. Infrastructure Expansion: Investments in CCS infrastructure, storage facilities, trans-
portation networks, and hydrogen production plants will expand to support the
scaling up of CCS integration into hydrogen production [178].

2. Policy Support: Strong policy frameworks, carbon pricing mechanisms, regulatory
incentives, and government support will be instrumental in driving the deployment
of CCS technologies and accelerating the adoption of carbon-neutral hydrogen
production [179].

3. International Cooperation: Global collaboration, information exchange, partnerships,
and technology transfer programs will be vital for driving worldwide efforts to-
wards combining CCS with hydrogen production and meeting carbon-neutrality
objectives [180].

4. Innovation and Research: Research and development initiatives, pilot projects, demon-
stration facilities, and collaborative partnerships will focus on advancing CCS tech-
nologies, exploring new applications, and addressing technical challenges to further
enhance the feasibility and efficiency of CCS integration into hydrogen production
processes [181].
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Environmental and Socio-Economic Implications:

• Emissions Reduction: Widespread adoption of CCS integration into hydrogen produc-
tion will significantly reduce CO2 emissions, contributing to climate change mitigation,
improved air quality, and sustainable development [182].

• Biodiversity Preservation: CCS integration into hydrogen production can help preserve
biodiversity and natural ecosystems by promoting sustainable industrial practices,
reducing environmental impacts, and fostering responsible resource management [183].

• Job Creation: The growth of CCS integration into hydrogen production will create em-
ployment opportunities, promote skill development, and stimulate economic growth
in clean energy sectors, contributing to a more resilient and diverse workforce [184].

• Community Engagement: Strengthening community engagement, fostering social
acceptance, and ensuring transparent communication with local residents will be
essential for building trust, addressing concerns, and promoting the benefits of CCS
integration into hydrogen production at the grassroots level [185].

Conclusion: The future of CCS integration into hydrogen production holds great
potential for advancing carbon-neutral hydrogen production and achieving a sustainable
energy future. By leveraging opportunities, overcoming challenges, and embracing collab-
orative solutions, the sector is poised for significant growth, technological advancements,
and transformative impacts on energy systems, industrial processes, and environmental
sustainability [186]. Timeline for advancements in hydrogen technology and carbon capture
storage is shown in Figure 7.
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Consequently, we can conclude [186,187]:
The future of hydrogen production and carbon capture technologies holds immense

promise, particularly as innovations continue to emerge in catalyst design, electrolysis
efficiency, and large-scale carbon storage. Several key areas of research and development
stand out for advancing these technologies:

1. Catalyst Technologies: Breakthroughs in single-atom catalysts and other novel mate-
rials have the potential to significantly reduce the energy consumption of hydrogen
production through electrolysis. Future research should focus on improving the ef-
ficiency and scalability of these materials to make green hydrogen production more
cost-competitive.

2. Renewable Energy Integration: A key future perspective is the integration of hydrogen
production with intermittent renewable energy sources like wind and solar. Research
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should aim to develop flexible, efficient systems that can store excess energy as
hydrogen, enhancing grid stability and energy storage solutions.

3. Policy and Economic Incentives: Supportive policy frameworks that incentivize invest-
ment in green hydrogen and carbon capture, as well as international collaborations to
standardize regulations, are crucial for shaping the future of these technologies.

4. Scalability and Infrastructure: While pilot projects have demonstrated feasibility, large-
scale deployment of hydrogen production and CCS infrastructure remains a challenge.
Future work should explore solutions for scaling up these technologies, particularly
in regions with abundant renewable resources and industrial demand.

8.2. Discussion of Emerging Technologies, Research Directions, and Policy Considerations

• Emerging Technologies:

1. Advanced Capture Methods: Continued research focuses on enhancing capture
technologies to improve efficiency, reduce energy requirements, and lower costs.
Innovations in solvent-based capture, membrane technologies, and solid sorbents
aim to optimize CO2 capture in hydrogen production processes [187].

2. Direct air capture technologies are increasingly recognized for extracting CO2
directly from the air. By incorporating DAC with hydrogen production, carbon-
negative hydrogen pathways can be realized, providing a flexible strategy to
achieve net-negative emissions [188].

3. Novel Electrolysis Techniques: Studies are investigating improvements in electrol-
ysis techniques, including high-temperature electrolysis, solid oxide electrolysis
cells, and membrane electrolysis, to enhance efficacy, lower energy usage, and
facilitate extensive green hydrogen manufacturing [189].

4. Storage Optimization: Innovations in CO2 storage methods, including geolog-
ical sequestration, mineralization, and utilization, aim to enhance CO2 storage
capacities, improve containment effectiveness, and ensure long-term stability for
carbon sequestration in hydrogen production applications [190].

Consequently, we can conclude that [187–190]:
Emerging technologies in hydrogen production and carbon capture are crucial to

achieving sustainable, large-scale decarbonization. Two key areas that hold significant
promise for future development are DAC and novel electrolysis techniques.

1. Direct air capture is a groundbreaking technology that directly removes CO2 from
the atmosphere, offering the potential for large-scale carbon removal. DAC systems
typically rely on chemical processes using solid sorbents or liquid solvents to capture
CO2 from ambient air, which is then either sequestered underground or utilized in
synthetic fuel production. Recent advancements have led to improved efficiency
and cost reductions, though the current cost is estimated to be between USD 100
and USD 300 per metric ton of CO2 captured. However, with ongoing research and
increased deployment, costs are expected to decrease significantly. DAC offers a
unique opportunity for producing carbon-neutral or carbon-negative hydrogen when
integrated with hydrogen production systems. Captured CO2 can be combined with
green hydrogen to create synthetic fuels, or it can be stored permanently, offsetting
emissions from other sectors.

2. Recent advancements in water electrolysis have focused on improving efficiency and
reducing costs. High-temperature electrolysis (HTE), using solid oxide electrolysis
cells (SOECs), has emerged as a promising method for producing green hydrogen.
SOECs operate at temperatures between 600 ◦C and 800 ◦C, utilizing heat energy
to lower the electrical energy required for splitting water into hydrogen and oxy-
gen. This results in overall system efficiencies of above 85%, which is significantly
higher than conventional PEM or alkaline electrolyzers, which typically operate at
60–70% efficiency.
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Another promising development is membrane-free electrolysis, which eliminates the
need for costly membranes by using advanced materials for catalyst separation. Further-
more, novel single-atom catalysts and perovskite-based catalysts have shown significant
potential to enhance the electrolysis process by lowering the activation energy required,
further improving the efficiency of hydrogen production.

These emerging technologies represent the next frontier in both carbon capture and
hydrogen production. Direct air capture holds the potential to remove vast amounts of
CO2 from the atmosphere, while high-temperature and novel electrolysis techniques offer
more efficient methods of producing green hydrogen. Continued research and innovation
in these areas will be critical for reducing costs and scaling up these technologies for
widespread adoption.

• Research Directions:

1. Carbon Recycling: Research is looking into carbon recycling approaches where
captured CO2 is transformed into valuable products like synthetic fuels, chem-
icals, or construction materials, establishing a circular carbon economy and
boosting the economic feasibility of hydrogen production with CCS [191].

2. Hybrid Energy Systems: Combining renewable energy sources with CCS-integrated
hydrogen production can lead to the development of hybrid energy systems that
leverage intermittent renewables alongside carbon capture technologies for sus-
tainable and resilient energy generation [192].

3. Material Innovation: Research on advanced materials, catalysts, and membranes
for CO2 capture, electrolysis, and storage aims to enhance the performance,
durability, and efficiency of hydrogen production processes, driving technological
breakthroughs in clean hydrogen production pathways [193].

4. System Integration: Comprehensive studies on system integration of CCS tech-
nologies with hydrogen production facilities focus on optimizing process flows,
improving energy utilization, and minimizing environmental impacts to create
integrated, efficient, and sustainable hydrogen production systems [194].

To provide a more comprehensive understanding of the economic viability of CCS
integration in hydrogen production, it is essential to conduct a techno-economic assessment
(TEA) that considers the capital and operational costs, as well as the potential benefits and
challenges [195–199].

1. Capital Costs:

The capital expenditure (CAPEX) for integrating CCS into hydrogen production is
primarily driven by the construction of capture facilities, CO2 transportation infrastructure,
and long-term storage sites. For example, the cost of post-combustion CCS systems is
estimated to be USD 40–60 per metric ton of CO2 captured, while pre-combustion systems
can range from USD 50 to 80 per metric ton. These costs vary based on the size of the
hydrogen production plant and the type of CCS technology used. In blue hydrogen projects
(hydrogen from natural gas with CCS), the CAPEX is expected to increase by 20–30% due
to the additional costs of installing and maintaining CCS equipment.

2. Operational Costs and Energy Penalty:

In addition to capital costs, the operational expenditure (OPEX) for CCS includes the
energy required to capture, compress, and transport CO2. This “energy penalty” is typically
10–20% of the plant’s total energy consumption, depending on the technology. For example,
pre-combustion capture has a higher energy penalty than post-combustion capture due to
the need for gasification processes. These increased energy costs must be factored into the
overall economic model, as they can reduce the efficiency of hydrogen production.

3. Potential Revenue and Cost Savings:

While CCS integration adds upfront costs, it can also create revenue streams and cost-
saving opportunities. For example, CO2 captured via CCS can be sold for EOR, which could
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generate revenue of USD 20–30 per metric ton of CO2 in certain markets. Additionally,
industries that implement CCS can benefit from carbon credits or avoid penalties under
carbon pricing mechanisms, which could result in savings of USD 50–100 per metric ton of
CO2, depending on regional carbon pricing policies.

4. Levelized Cost of Hydrogen (LCOH):

A rigorous techno-economic analysis would also assess the levelized cost of hydrogen
(LCOH), which includes the CAPEX and OPEX over the plant’s lifetime. Studies have
shown that the LCOH for hydrogen production with CCS typically ranges from USD 1.50
to USD 3 per kg of hydrogen, compared to USD 0.80 to USD 2 per kg for conventional hy-
drogen production without CCS. This indicates that CCS can increase the cost of hydrogen
production by 20–40%, but this cost could be offset by revenue from carbon credits or the
sale of CO2 for EOR.

5. Cost–Benefit Analysis (CBA):

When conducting a cost–benefit analysis, it is important to consider the long-term
benefits of reducing CO2 emissions and the potential economic gains from government
incentives. For example, many countries provide financial support for green hydrogen
projects, including tax credits, grants, or subsidies. These can reduce the overall costs
and improve the return on investment (ROI). A comprehensive CBA would also factor
in the environmental and societal benefits of reducing emissions, which are increasingly
important in policy-driven markets.

• Policy Considerations:

1. Carbon Pricing Mechanisms: The implementation of robust carbon pricing mech-
anisms, emissions trading systems, and carbon markets can incentivize invest-
ments in CCS-integrated hydrogen production, drive decarbonization efforts,
and align economic incentives with climate goals [200–205].

2. Regulatory Frameworks: Developing clear regulatory frameworks, permitting
processes, and standards for CCS technologies in hydrogen production is es-
sential for providing regulatory certainty, ensuring compliance, and fostering a
conducive environment for CCS deployment [206,207].

3. Innovation Support: Policy initiatives that promote research funding, innovation
incentives, technology demonstration programs, and collaborative partnerships
can accelerate the development and deployment of emerging technologies for
clean hydrogen production with CCS [208,209].

4. International Cooperation: Global cooperation, sharing of knowledge, and stan-
dardization among nations can ease the transfer of expertise, optimal methods,
and technological advancements, promoting the uptake of CCS-incorporated
hydrogen production worldwide [210,211].

• Future Landscape:

The future landscape of clean hydrogen production with CCS is poised for transforma-
tion through technological advancements, research breakthroughs, and policy initiatives
that prioritize decarbonization, sustainability, and climate resilience. By embracing inno-
vative solutions, fostering collaboration, and driving policy support, the clean hydrogen
sector is set to play a pivotal role in achieving a low-carbon energy future [212,213].

Policy Recommendations for Promoting CCS-Integrated Hydrogen Production

1. Carbon Pricing Mechanisms:

Establish robust carbon pricing systems such as carbon taxes or emissions trading
schemes. These mechanisms will incentivize the adoption of CCS by making carbon
emissions costly and encouraging investment in cleaner technologies like CCS-integrated
hydrogen production [189,191].
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2. Regulatory Frameworks and Standards:

Develop clear and streamlined regulatory processes for CCS deployment, including
permitting, monitoring, and long-term storage. Providing regulatory certainty will help
industries adopt CCS while ensuring environmental and safety standards [187,195].

3. Financial Incentives and Subsidies:

Governments should offer financial incentives, such as tax credits, grants, or subsidies,
to offset the high initial costs of CCS technologies. This support will lower the financial
barriers and encourage companies to invest in CCS-enabled hydrogen production [192,201].

4. Research and Innovation Funding:

Invest in research and development for CCS technologies to improve efficiency, re-
duce costs, and scale up deployment. Funding pilot projects and supporting innovations
such as advanced capture technologies and novel storage solutions will accelerate CCS
adoption [202,210].

5. International Cooperation:

Foster global collaboration through information sharing, technology transfer, and
harmonized regulatory standards. This will streamline CCS implementation across
borders, allowing for large-scale deployment and cost reductions through shared best
practices [205,212].

6. Public Awareness and Engagement:

Implement strategies to increase public awareness and acceptance of CCS projects by
promoting transparent communication, community involvement, and education on the
environmental benefits of CCS and hydrogen production [186,213].

8.3. Techno-Economic Analysis of Hydrogen Production with CCS

Techno-economic analysis of different hydrogen production pathways, including
steam SMR, electrolysis, and biomass gasification, with and without CCS, is mentioned in
Table 5. The table compares the levelized cost of hydrogen (LCOH), CO2 capture efficiency,
CO2 capture cost, and energy penalty for grey, blue, and green hydrogen production
methods. The analysis highlights the cost and environmental trade-offs associated with
integrating CCS into hydrogen production processes.

Table 5. Techno-economic analysis of hydrogen production with CCS [195–222].

Hydrogen
Production Method Hydrogen Type LCOH (USD/kg H2) CO2 Capture

Efficiency (%)
CO2 Capture Cost

(USD/Metric Ton CO2) Energy Penalty References

SMR Grey hydrogen USD 0.80–2 No CO2 capture Not captured (high
emissions)

No energy penalty
(without CCS) [195,214]

SMR + CCS Blue hydrogen USD 1.50–3 85–95% USD 40–60 10–15% due to CCS [196,215]
Electrolysis

(renewable energy) Green hydrogen USD 2.50–6 Zero emissions (no
CO2 to capture) No CO2 capture No energy penalty

(No CCS) [197,216]

Biomass gasification
+ CCS Blue hydrogen USD 1.80–3.50 90–95% USD 50–80 12–18% due to CCS [197,198]

Solid oxide
electrolysis (SOEC) Green hydrogen USD 2–4.50 Zero emissions (no

CO2 to capture) No CO2 capture 8–12% efficiency loss
(energy efficient) [217–222]

Description: LCOH (USD/kg H2): The levelized cost of hydrogen, which includes both capital and operating
costs over the lifetime of the plant. CO2 Capture Efficiency: For green hydrogen, which does not involve CO2
emissions (since it uses renewable electricity for electrolysis), I replaced “N/A” with “zero emissions (no CO2
to capture).” CO2 Capture Cost: For green hydrogen, there are no costs associated with CO2 capture since there
are no emissions to capture. I replaced “N/A” with “no CO2 capture.” Energy Penalty: For grey hydrogen and
green hydrogen, there is no CCS involved, so I explained that “no energy penalty” applies, meaning there is no
efficiency loss due to CO2 capture.

9. Conclusions

The integration of CCS technologies with hydrogen production is essential for achiev-
ing carbon-neutral energy systems. While significant technical, economic, and regulatory
challenges exist, ongoing research, innovation, and policy support are crucial for overcom-
ing these barriers. Successful integration can drastically reduce emissions, facilitating the
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transition of industries towards sustainable practices. This integration will play a pivotal
role in the global effort to combat climate change and promote cleaner energy solutions.
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