An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruminš, J.; Klavinš, M. Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future. Energies 2023, 16, 3612. [Google Scholar] [CrossRef]
- IAEA. Safety related design and economic aspects of HTGRs. In Proceedings of the Technical Committee Meeting, Beijing, China, 24 November 1998. IAEA-TECDOC-1210. [Google Scholar]
- Fukaya, Y.; Goto, M.; Ohashi, H.; Tachibana, Y.; Kunitomi, K.; Chiba, S. Proposal of a plutonium burner system based on HTGR with high proliferation resistance. J. Nucl. Sci. Technol. 2014, 51, 818–831. [Google Scholar] [CrossRef]
- Ohashi, H.; Sato, H.; Yan, X.L.; Sumita, J.; Nomoto, Y.; Tazawa, Y.; Noguchi, H.; Imai, Y.; Tachibana, Y. Conceptual Design of Small-Sized HTGR System-Plant Design and Technical Feasibility; JAEA-Technology 2013-016; Japan Atomic Energy Agency: Ibaraki, Japan, 2013. [Google Scholar]
- Huning, A.J.; Chandrasekaran, S.; Garimella, S. A review on recent advances in HTGR CFD and thermal fluid analysis. Nucl. Eng. Design 2021, 373, 111013. [Google Scholar] [CrossRef]
- Yamashita, K.; Shindo, R. Nuclear design of the high-temperature engineering test reactor (HTTR). Nucl. Sci. Eng. 1996, 122, 212–228. [Google Scholar] [CrossRef]
- Inaba, Y.; Nishihara, T. Development of fuel temperature calculation code for HTGRs. Ann. Nucl. Energy 2017, 101, 383–389. [Google Scholar] [CrossRef]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Okamoto, K. Comparison of SiC and graphite oxidation behavior under conditions of HTGR air ingress accident. Mech. Eng. Lett. 2022, 8, 22–00315. [Google Scholar]
- Okita, S.; Mizuta, N.; Takamatsu, K.; Goto, M.; Yoshida, K.; Nishimura, Y.; Okamoto, K. Research on improvement of HTGR core power-density: (4) feasibility study for a reactor core. In Proceedings of the 30th International Conference on Nuclear Engineering, Kyoto, Japan, 21–26 May 2023. [Google Scholar]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Sharma, A.K.; Okamoto, K. Kinetic modelling of IG-110 oxidation in inert atmosphere with low oxygen concentration for innovative high-temperature gas-cooled reactor applications. Nucl. Sci. Technol 2023, 61, 802–809. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sagawa, W.; Ahmed, Z.; Nishimura, Y.; Okamoto, K. Integrated experimental assessment and validation of oxidation with real-scale SiC fuel compact in HTGR. Int. J. Heat Mass Transf. 2024, 220, 124930. [Google Scholar] [CrossRef]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Sharma, A.K.; Okamoto, K. Modeling passive/active transition in high-temperature dry oxidation of reaction-sintered SiC for innovative fuel matrix in high-temperature gas-cooled reactors. J. Eur. Ceram. Soc. 2024, 44, 3031–3038. [Google Scholar] [CrossRef]
- Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.S.; Kondo, S.; Petti, D.A. Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 2007, 371, 329–377. [Google Scholar] [CrossRef]
- Hishida, M.; Takeda, T. Study on air ingress during an early stage of a primary-pipe rupture accident of a high-temperature gas-cooled reactor. Nucl. Eng. Des. 1991, 126, 175–187. [Google Scholar] [CrossRef]
- Takeda, T. Air ingress phenomena in a depressurization accident of the very-high-temperature reactor. High Temp. React. Technol. 2008, 48548, 633–640. [Google Scholar]
- Oh, C.H.; Kang, H.; Kim, E.S. Air-ingress analysis: Part 2—Computational fluid dynamic models. Nucl. Eng. Des. 2011, 241, 213–225. [Google Scholar] [CrossRef]
- Yanhua, Z.; Fubing, C.; Lei, S. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM. Nucl. Eng. Des. 2014, 271, 397–403. [Google Scholar] [CrossRef]
- Xu, W.; Shi, L.; Zheng, Y. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor. Nucl. Eng. Des. 2016, 306, 138–144. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Z.; Zheng, Y.; Sun, J.; Chen, F.; Shi, L.; Zhang, Z. Study on air ingress of the 200 MWe pebble-bed modular high temperature gas-cooled reactor. Ann. Nucl. Energy 2016, 98, 120–131. [Google Scholar] [CrossRef]
- Raine, M. Effect of Delays in Afterheat Removal on Consequences of Massive Air Ingress Accidents in High-Temperature Gas Cooled Reactors. J. Nucl. Sci. Technol. 1984, 21, 824–835. [Google Scholar]
- Elfrida, S.; Roziq, H. Study of oxidation effects on HTGR graphite in air ingress accidents condition. AIP Conf. Proc. 2019, 2180, 020013. [Google Scholar]
- Braun, J.; Gueneau, C.; Alpettaz, T.; Sauder, C.; Brackx, E.; Domenger, R.; Gossé, S.; Balbaud-Célérier, F. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels). J. Nucl. Mater. 2017, 487, 380–395. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.G.; Park, J.Y.; Park, Y.Y.; Kim, W.J. Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment. Corros. Sci. 2015, 98, 304–309. [Google Scholar] [CrossRef]
- Snead, L.L.; Venneri, F.; Kim, Y.; Terrani, K.A.; Tulenko, J.E.; Forsberg, C.W. Fully ceramic microencapsulated fuels: A transformational technology for present and next generation reactors. ANS Trans. 2011, 104, 6. [Google Scholar]
- Powers, J.J.; Lee, W.J.; Venneri, F.; Snead, L.L.; Jo, C.K.; Hwang, D.H.; Terrani, K.A. Fully Ceramic Microencapsulated (FCM) Replacement Fuel for LWRs; National Technical Information Service: Springfield, VA, USA, 2013; ORNL/TM-2013/173. [Google Scholar]
- Dai, X.; Cao, X.; Yu, S.; Zhu, C. Conceptual core design of an innovative small PWR utilizing fully ceramic microencapsulated fuel. Prog. Nucl. Energy 2009, 75, 63–71. [Google Scholar] [CrossRef]
- Kamalpour, S.; Salehi, A.A.; Khalafi, H.; Mataji-Kojouri, N.; Jahanfarnia, G. The potential impact of Fully Ceramic Microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor. Nucl. Eng. Des. 2018, 339, 39–52. [Google Scholar] [CrossRef]
- Terrani, K.A.; Kiggans, J.O.; Katoh, Y.; Shimoda, K.; Montgomery, F.C.; Armstrong, B.L.; Snead, L.L. Fabrication and characterization of fully ceramic microencapsulated fuels. J. Nucl. Mater. 2012, 426, 268–276. [Google Scholar] [CrossRef]
- Kiegiel, K.; Herdzik-Koniecko, I.; Fuks, L.; Zakrzewska-Kołtuniewicz, G. Management of Radioactive Waste from HTGR Reactors including Spent TRISO Fuel—State of the Art. Energies 2022, 15, 1099. [Google Scholar] [CrossRef]
- Guittonneau, F.; Abdelouas, A.; Grambow, B. HTR Fuel Waste Management: TRISO Separation and Acid-Graphite Intercalation Compounds Preparation. J. Nucl. Mater. 2010, 407, 71–77. [Google Scholar] [CrossRef]
- Roy, J.; Chandra, S.; Das, S.; Maitra, S. Oxidation behaviour of silicon carbide-a review. Rev. Adv. Mater. Sci 2014, 38, 29–39. [Google Scholar]
- Chatillon, C.; Teyssandier, F. Thermodynamic assessment of the different steps observed during SiC oxidation. J. Eur. Ceram. Soc. 2022, 42, 1175–1196. [Google Scholar] [CrossRef]
- Tanaka, H. Silicon carbide powder and sintered materials. J. Ceram. Soc. Jpn. 2011, 119, 218–233. [Google Scholar] [CrossRef]
- Omori, M.; Takei, H. Pressureless sintering of SiC. J. Amer. Ceram. Soc. 1982, 65, 92–96. [Google Scholar] [CrossRef]
- Osborne, M.; Hay, J.C.; Snead, L.L. Mechanical- and physical-property changes of neutron-irradiated chemical-vapor-deposited silicon carbide. J. Amer. Ceram. Soc. 1999, 82, 2490–2496. [Google Scholar] [CrossRef]
- Popper, P. (Ed.) The preparation of dense self bonded silicon carbide. In Special Ceramics; Heywood: London, UK, 1960; pp. 209–219. [Google Scholar]
- Terrani, K.A.; Snead, L.L.; Gehin, J.C. Microencapsulated fuel technology for commercial light water and advanced reactor application. J. Nucl. Mater. 2012, 427, 209–224. [Google Scholar] [CrossRef]
- Gould, D.; Franken, D.; Bindra, H.; Kawaji, M. Transition from molecular diffusion to natural circulation mode air-ingress in high temperature helium loop. Ann. Nucl. Energy 2017, 107, 103–109. [Google Scholar] [CrossRef]
- Das, D.; Farjas, J.; Roura, P. Passive-Oxidation Kinetics of SiC Microparticles. J. Am. Ceram. Soc. 2004, 87, 1301–1305. [Google Scholar] [CrossRef]
- Deal, B.E.; Grove, A.S. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 1965, 36, 3770–3778. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, K.K.; Moon, B.W.; Park, K.B.; Park, S.; Seok, C.S. Prediction of growth behavior of thermally grown oxide considering the microstructure characteristics of the top coating. Ceram. Int. 2021, 47, 14160–14167. [Google Scholar] [CrossRef]
- Ramachandran, K.; Chaffey, B.; Zuccarini, C.; Bear, J.C.; Jayaseelan, D.D. Experimental and mathematical modelling of corrosion behavior of CMAS coated oxide/oxide CMCs. Ceram. Int. 2023, 49, 4213–4221. [Google Scholar] [CrossRef]
- Kageshima, H.; Shiraishi, K.; Uematsu, M. Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission. Jpn. J. Appl. Phys. 1999, 38, 971–974. [Google Scholar] [CrossRef]
- Ogawa, S.; Takakuwa, Y. Rate-Limiting Reactions of Growth and Decomposition Kinetics of Very Thin Oxides on Si (001) Surfaces Studied by Reflection High-Energy Electron Diffraction Combined with Auger Electron Spectroscopy. Jpn. J. Appl. Phys. 2006, 45, 7063–7079. [Google Scholar] [CrossRef]
- Uematsu, M.; Kageshima, H.; Shiraishi, K. Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation. J. Appl. Phys. 2001, 89, 1948–1953. [Google Scholar] [CrossRef]
- Du, B.; Li, H.; Zheng, W.; He, X.; Ma, T.; Yin, H. Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario. Nucl. Eng. Technol. 2023, 55, 71–79. [Google Scholar] [CrossRef]
- Massoud, H.Z.; Plummer, J.D.; Irene, E.A. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime: Ⅰ. Experimental Results. J. Electrochem, Soc. 1985, 132, 2685–2693. [Google Scholar] [CrossRef]
- Massoud, H.Z.; Plummer, J.D.; Irene, E.A. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime: Ⅱ. Physical Mechanism. J. Electrochem, Soc. 1985, 132, 2693–2700. [Google Scholar] [CrossRef]
- Hijikata, Y.; Yamaguchi, H.; Yoshida, S. A Kinetic Model of Silicon Carbide Oxidation Based on the Interfacial Silicon and Carbon Emission Phenomenon. Appl. Phys. Express 2009, 2, 021203-1–021203-3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Okamoto, K. An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies 2024, 17, 5366. https://doi.org/10.3390/en17215366
Nishimura Y, Gubarevich A, Yoshida K, Okamoto K. An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies. 2024; 17(21):5366. https://doi.org/10.3390/en17215366
Chicago/Turabian StyleNishimura, Yosuke, Anna Gubarevich, Katsumi Yoshida, and Koji Okamoto. 2024. "An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions" Energies 17, no. 21: 5366. https://doi.org/10.3390/en17215366
APA StyleNishimura, Y., Gubarevich, A., Yoshida, K., & Okamoto, K. (2024). An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies, 17(21), 5366. https://doi.org/10.3390/en17215366