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Abstract: The loss of energy by heat is a common problem in almost all areas of industry, and heat
pipes are essential to increase efficiency and reduce energy waste. However, in many cases, they have
complex theoretical equations with high percentages of error, limiting their development and causing
dependence on empirical methods that generate a waste of time and material, resulting in significant
expenses and reducing the viability of their use. Thus, Artificial Neural Networks (ANNs) can be an
excellent option to facilitate the construction and development of heat pipes without knowledge of
the complex theory behind the problem. This investigation uses experimental data from previous
studies to evaluate the ability of three different ANNs to predict the thermal performance of heat
pipes with different capillary structures, each of them in various configurations of the slope, filling
ratio, and heat load. The goal is to investigate results in as many different scenarios as possible to
clearly understand the networks’ capacity for modeling heat pipes and their operating parameters.
We chose two classic ANNs (the most used, Multilayer Perceptron (MLP) network, and the Radial
Basis Function (RBF) network) and the Extreme Learning Machine (ELM), which has not yet been
applied to heat pipes studies. The ELM is an Unorganized Machine with a fast training process and a
simple codification. The ANN results were very close to the experimental ones, showing that ANNs
can successfully simulate the thermal performance of heat pipes. Based on the RMSE (error metric
being reduced during the training step), the ELM presented the best results (RMSE = 0.384), followed
by MLP (RMSE = 0.409), proving their capacity to generalize the problem. These results show the
importance of applying different ANNs to evaluate the system deeply. Using ANNs in developing
heat pipes is an excellent option for accelerating and improving the project phase, reducing material
loss, time, and other resources.

Keywords: artificial neural networks; machine learning; heat pipes; thermal performance

1. Introduction

In response to the rising global energy demand driven by modernization and industri-
alization, improving the efficiency of energy systems is critical [1]. A significant amount
of energy is lost as heat during various transformation processes, creating an opportu-
nity for technologies that can recapture and utilize this wasted heat [2]. Heat exchangers
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play a crucial role in this process, and enhancing their performance improves energy effi-
ciency in industrial applications [3]. Heat pipes have shown considerable promise among
these technologies due to their high thermal conductivity and capacity to transport heat
efficiently [4].

Numerous experimental and numerical studies have been conducted to analyze how
operating parameters affect the thermal resistance of heat pipes. These studies have
examined factors such as geometric dimensions (diameter and length) [5–8], the filling
ratio (the ratio between the working fluid volume and the evaporator) [9–12], the work-
ing slope [13–15], the type of working fluid [16,17], and the different wick structures
used [18,19].

Even with the significant development in heat pipes, their theoretical modeling has a
considerable complexity, mainly arising from the processes’ convective and phase change
characteristics, often leading to limitations in the feasibility of using these devices [20–22].
Mathematical/numerical models to predict the temperature distribution of heat pipes can
present a 4% [23] to 30 K [24,25] result, which is different from the experimental results. For
CFD simulations, the wall temperature can vary from 11.1 to 37.7 K [26], and the heat flux
can have an average relative difference of up to 59.9% [27].

Recent advancements have incorporated Artificial Neural Networks (ANNs) into the
modeling and optimization of heat pipe systems, allowing for more precise predictions and
control over performance [28]. Table 1 summarizes the application of ANNs in predicting
and optimizing the thermal performance of heat pipes. More studies on the application
of ANNs in heat pipe modeling and optimization can be found in [29]. The name of the
applied ANN in Table 1 is the same as mentioned in each research. However, different
names (MFFNN, backpropagation, three layered backpropagation) comprise the same
ANN, the MLP.

Table 1. Application of ANNs for heat pipes.

Reference Device ANN Input Output Error

Sivaraman and
Mohan

[30]

Heat pipe solar
collector MFFNN 1 *

Total length/inner diameter
of heat pipe, condenser

length/evaporator length, tilt
angle, solar intensity, water

inlet temperature

Water outlet
temperature 0.64%

Chen et al.
[31]

Concentric-tube
open

thermosyphon
ANN + GA 2

Density ratio, the ratio of the
heated tube length to the

inner diameter of the outer
tube, the ratio of frictional

area, and the ratio of
equivalent heated diameter to

characteristic bubble size

Kutateladze
number 18.4%

Salehi et al.
[32]

Closed
thermosyphon

MLP 3 +
Backpropagation

Algorithm

Magnetic field intensity, the
volume fraction of nanofluid
in water, and the dissipated

power

Thermal
efficiency and

resistance
R2 = 0.99

Shanbedi et al.
[33]

Two-phase closed
thermosyphon

MLP + Levenberg–
Marquardt
Algorithm

Working fluid vapor quality
parameters, the power

dissipated in the heat pipe,
and the length of the heat pipe

Expected
temperature
distribution

R2 = 0.99
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Table 1. Cont.

Reference Device ANN Input Output Error

Wang et al. [34] Closed pulsating
heat pipe

Back propagation *
learning algorithm

Kutateladze, Bond, Prandtl,
Jacob numbers, number of

turns (N), and the ratio of the
evaporation section length to

the diameter

Thermal
resistance MSE = 0.0138

Kahani and
Vatankhah [35] Wickless heat pipe MLP

Input power, volume
concentration of nanofluid,

filling ratio and mass rate in
condenser section

Thermal
efficiency MEA = 0.84%

Maddah et al.
[36]

Heat pipe
heat exchanger

Three-layered
forward neural
network * and
-Lewenberg
Marquard
Training

Algorithm

Filling ratio, nanofluid
concentration, and input

power were

Heat exchanger
efficiency R2 > 0.99

Liang et al. [37]
Miniature

revolving heat
pipes

Back-propagation *
+ GA

Bond, Jacob, Prandtl and
Froude numbers, and filling

ratio

Kutateladze
number

R2 = 0.87977;
R2 = 0.8812

Rajab and
Ahmad [38] Thermosyphon MLP +

Back-propagation
Working fluid, mixing ratio,

and dissipated power
Thermal

resistance RMSE = 0.098

Nair et al. [39] Heat pipe 30 different
algorithms

Angle, temperature, mass
flow rate Effectiveness MAE = 1.176

Kim and Moon
[40] Flat heat pipe Deep neural

network

Thermal conductivity, heat
sink area, heater area,

thickness, and heat transfer
coefficient

Thermal
resistance MAPE = 10.8%

Machado et al.
[28] Thermosyphons ELM, ESN, RBF,

and MLP Slope, filling ratio, heat load Thermal
resistance 25%

Kani and
Ghahremani

[41]
Heat pipes

9 machine learning
regression
methods

Inner and outer diameters,
lengths of evaporator and

condenser sections, number of
turns, working fluids,

inclination angle, filling ratio,
and heat input

Thermal
resistance R2 = 0.6–0.95

Bakhirathan
and Lachireddi

[42]
Micro heat pipe MLP

Heat input, heat rejected,
geometry and

thermos-physical properties

Thermal
resistance 3%

Jin et al. [43] Heat pipes

ANN + Deep
Neural Network +

Convolutional
Neural Networks

Wick type, nanoparticle type,
and operating conditions

Thermal
resistance 20%

Li et al. [44] Heat pipes

Genetic algorithm
based back

propagation neural
network

13 different inputs
Effective
thermal

conductivity
R2 = 0.9580

1 Multilayer Feed-Forward Neural Network (MFFNN). 2 Genetic algorithm (GA). 3 Multilayer perceptron (MLP).
* All this ANN refers to MLP.

The literature review presented on the use of ANNs in developing and evaluating heat
pipes and other heat exchangers demonstrates a growth interest in this type of study, many
of which demonstrated good results. Still, many works are in initial phases without delving
into the possibilities of different networks and variations in heat pipes and their operating
parameters. Furthermore, many studies demonstrate some issues, such as the low visibility
of the algorithm used, little explanation of the error metrics and their meaning, and few
variations in algorithms and heat pipe types.
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In this context, this work seeks to obtain a deeper assessment of the variation in
results using different ANNs to evaluate heat pipes with different configurations and
capillary structures, as well as to verify the ability of the networks for predicting the
thermal behavior of heat pipes before being built. With the results, we hope to have a
clearer view of the usability of neural networks in this type of problem. Considering the
complexity of modeling the behavior of heat pipes before their construction, ANNs could
be used to improve the design of such equipment and avoid rework and loss of material
during the manufacturing of these devices.

In this study, three Artificial Neural Networks (ANNs) were selected: the most
commonly used, the Multilayer Perceptron (MLP) network (as shown in Table 1), the
Radial Basis Function (RBF) network, and the Extreme Learning Machine (ELM). The
first two are classical ANNs, while the third is an Unorganized Machine (UM) that fea-
tures a fast training process and simple implementation. In terms of novelty, this study
highlights the use of ELM networks to predict the thermal performance of heat pipes
for the first time. Additionally, this work uses the working slope, filling ratio, and
heat load as inputs for the ANN, a combination that has only been applied to wick-
less heat pipes (thermosyphons). As shown in Table 1, only one study has investigated
different capillary structures using neural networks; this has also been investigated in
this study.

2. Methodology

This section provides information on the theoretical background on heat pipes and the
experimental data regarding the performance of heat pipes, which serve as the database
for the application of neural networks, as well as a description of the ANNs used in
this research.

2.1. Heat Pipes

Heat pipes are heat exchangers capable of transferring large amounts of heat, even
with small differences in temperatures and without any external pumping. These de-
vices are usually made from metal tubes with internal capillary structures. The tubes
are subsequently evacuated, filled with working fluid, and sealed. The resulting tube
has a controlled pressure, allowing the working fluid to change phase easily. The op-
eration of heat pipes begins with the heat transfer between the working fluid and the
heat source, which causes the working fluid to change from liquid to vapor and carry
the heat toward the cold source. Then, the working fluid loses heat and changes to
a liquid phase, restarting the thermodynamic cycle [45]. The pumping of the work-
ing fluid occurs through the phenomenon of capillarity and can vary depending on
the type of capillary structure added to the heat pipe. This structure is of great im-
portance, as it is mainly responsible for fluid movement within the equipment and al-
lows the heat pipe to operate with the equipment in different positions and microgravity
conditions [46].

Even though it is a versatile component and can be built in different sizes and shapes,
the operating principle of a heat pipe is the same [47]. As shown in Figure 1, a heat pipe
can be divided into three different parts: evaporator, adiabatic section, and condenser.
The evaporator region remains in contact with the heat source. In contrast, the condenser
region transfers heat to the cold source. The adiabatic section does not exchange heat
and is kept isolated from the environment. In some cases, the adiabatic section may not
be present. More detailed information about the operation of heat pipes can be found
in [48–50].
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Figure 1. Main components and operation of a heat pipe. Red arrows: “heat in”; blue arrows:
“heat out”.

2.2. Database

The database is composed of data previously obtained in the works of [51–53]. All
authors employed similar procedures, differing only in the wick structures of the heat
pipes. This section describes the heat pipes’ characteristics, the parameters’ range, the
experimental apparatus, and the experimental procedure.

2.2.1. Characteristics of the Heat Pipes

Krambeck [51], Nishida et al. [52], and Krambeck et al. [53] used heat pipes with the
same characteristics, as seen in Table 2. The manufacturing methodology, which includes
the cleaning and assembly of the parts, the tightness test, the evacuation procedure, and
filling with the working fluid, the experimental design, and data analysis, was based on
the information provided in [54].

Table 2. Summary of the main physical characteristics of the heat pipes.

Characteristic Values

Inner diameter [mm] 7.75

Outer diameter [mm] 9.45

Evaporator length [mm] 80

Adiabatic Section length [mm] 20

Condenser length [mm] 100

Krambeck [51] experimentally evaluated metal mesh screens composed of phosphor
bronze using three different types of mesh. This research used the results obtained from
the evaluation of heat pipes and a single layer of mesh screen #100 was used (Figure 2a).

Nishida et al. [52] present data regarding heat pipes with capillary structures of axial
microgrooves fabricated by wire electrical discharge machining (wire-EDM) directly into
the copper tube. In their work, data were obtained for three different variations of the
capillary structure, varying the depth and distance between the microgrooves. For the
database of this work, the results were obtained using microgrooves with a thickness of
0.035 mm and a depth of 0.030 mm (Figure 2b).
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Krambeck et al. [53] used sintered copper powder capillary structures in heat pipes.
The sintered capillary structure used in the study was manufactured from copper powder
obtained through gas atomization. The material was then sintered, producing structures
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with three different internal diameters. For this work, data were obtained for the structure
with an internal diameter of 2.125 mm (Figure 2c).

2.2.2. Experimental Analysis

Figure 3 presents the apparatus applied in the experimental investigations, which
was composed of a KeysightTM 34970A data acquisition system with KeysightTM 34901A
multiplexer with 20 channels, a KeysightTM U8002A power supply unit, an uninterrupted
power supply, an UltrarTM fan, a universal support, and a DellTM microcomputer. For the
evaluation of the thermal performance of the different heat pipes, K-type thermocouples
Omega EngineeringTM were used.
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Figure 4 presents a schematic diagram of the experimental apparatus, which consists
of a heat pipe equipped with thermocouples in its various operating regions, thermal insu-
lation, a ribbon resistor connected to a power supply unit to heat the evaporator region, a
fan for air cooling in the condenser region, a data acquisition system, and a microcomputer.
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The heat pipe slope and filling ratio were varied for each capillary structure used to
evaluate different configurations. The dissipated power was also varied, starting from 5 W,
increasing in steps of 5 W to a maximum of 50 W or until reaching the critical temperature
of 150 ◦C, a safety limit for heat pipes sealed with tin, which has a low melting temperature.
Each heat load was maintained for about 15 min to attain steady-state temperatures. The
experimental uncertainties are associated to the thermocouples, the data logger, and the
power supply. The experimental temperature uncertainty is estimated to be approximately
±1.27 ◦C and the thermal load was ±1 %. Table 3 shows a summary of the configurations
used in the experimental procedure.

Table 3. Summary of the main parameters used in the experimental investigation.

Parameter Screen Mesh Axial Microgrooves Sintered
Working Slope [◦] 0, 45, and 90 0, 45, and 90 0, 45, and 90
Filling Ratio [%] 60 60 60, 80, 100, and 120

Heat Load [W] 5, 10, 15, 20, 25, 30, 35,
40, 45, and 50

5, 10, 15, 20, 25, 30, 35,
40, 45, and 50

5, 10, 15, 20, 25, 30, 35,
40, and 45

2.2.3. Data Reduction

The parameter used to evaluate the thermal performance of heat pipes is their ther-
mal resistance, which can be defined as the ratio between the temperature drop through
the device and the power dissipated in the evaporator [55]. It can be calculated using
Equation (1).

Rth =

(
Tevap − Tcond

)
qin

(1)

where Tevap and Tcond are the average temperatures of the evaporator and condenser,
respectively. Rth is the thermal resistance and qin is the dissipated power.

The complete database compilation can be viewed in Appendix A—Table A1.

2.3. Artificial Neural Networks

This section describes the Artificial Neural Networks (ANNs) used in this investigation
and their operating principles. The three networks used are the Multilayer Perceptron
(MLP) network, the Radial Basis Function (RBF) network, and the Extreme Learning
Machine (ELM) network.

Different networks can often have very varied results for the same problem. Therefore,
it is preferable to evaluate several networks to have a clear view of the ANN application.
The MLP and RBF networks were selected because they are widely known universal
approximators and have two different approaches to solving the problem [56]. On the other
hand, the ELM presents an analytical resolution for training that differs from others. Despite
being a relatively new network, it demonstrates many good results in several problems.
Each of the networks proposed was programmed using the well-developed open-source
machine learning libraries TensorFlow and Keras and written in Python, following the
literature and theory presented in this section.

ANNs are computational models inspired by the nervous system of higher organisms.
These algorithms are formed by connecting small modules, usually called neurons, which
are mathematical expressions capable of processing information nonlinearly and connecting
and communicating with other neurons to form structures like the one represented in
Figure 5 [57].

Even though there are many variations of ANNs, they are usually divided into in-
terconnected layers that receive data from an input layer and perform predetermined
mathematical operations to obtain new values that will be transmitted to the following
layers until, finally, the results from the output layer are obtained [58]. Usually, at least
one input layer and one output layer are used in addition to one or more hidden layers,
which are located between the input and output layers and do not connect with the outside
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directly [59]. The direction of communication is usually from the input layer towards the
output layer (black arrows in Figure 5), but in some cases, there may be data feedback, and
the information flows in the opposite direction or between neurons on the same layer (blue
arrows in Figure 5).
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As an advantage, these networks can map problems in a nonlinear way, obtaining
good results even when using data with interference and without needing a physical
analysis of the problem. Some of the negative points are related to the iterative nature of
the training process, the dependence on the quality of the database, and the difficulty in
adjusting the network parameters, which can be costly depending on the problem and
the database used [60]. Additionally, these algorithms have a certain complexity when
compared to methods such as linear models [61].

Several ANN models have been designed to solve a wide range of problems related
to learning and pattern recognition in the most diverse situations. Currently, these neural
networks are used, for example, to estimate health risks related to air pollution [62–67],
predicting the useful life of materials that undergo fatigue [68], long-term energy demand
prediction [69], power curve prediction for wind turbines [70], time series forecasts [71–75],
and oil price forecasting [76], among many others.

2.3.1. Multilayer Perceptron

The Multilayer Perceptron (MLP) ANN is one of the most used ANN architectures.
It can be defined as a Feedforward Multilayer Network with one or more hidden or
intermediate layers in addition to one output and one input layer. In most cases, the
number of neurons in the input and output layers are defined by the problem’s format and
usually are equal, respectively, to the number of inputs and outputs of the network. The
number of neurons in the intermediate layers directly impacts the mapping quality of the
MLP network, and a reduced number of neurons can lead to an insufficient approximation
of the desired function, generating high errors. In contrast, an excessive number of neurons
can lead to another problem: overfitting. In this case, the network reduces its error relative
to the training group. However, it has a lower generalization capacity, that is, to predict the
behavior of new data, as it adapts excessively to the specific training group [56].

Even though there are approximations for defining the number of neurons in the
hidden layer, these usually do not take into account the type of problem and, in some cases,
may not lead to the best results, so it is often preferable to search by checking a large range
for the number of neurons using a grid search. This method is limited in each network
by the processing power required for the many tests performed. Thus, depending on the
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needs of each network, a different number of neurons can be tested. For the MLP, the grid
search on the hidden layer was made beginning at 3 neurons and going up to 200 neurons.

Each neuron in the input layer receives one of the data points applied to the network
as an input. Each hidden layer neuron will typically receive all data from the previous layer,
multiplied by its respective connection weight. These values are then added together with
the bias value, which can be considered an input with value 1. The sum of the values is then
applied to an activation function. Different functions, such as the hyperbolic tangent or
the sigmoid function, can be used. The activation function’s resulting value is the neuron’s
output, which is then passed to the next layer. For some functions, the network inputs
must be normalized within the function’s valid range [59].

Several algorithms have been developed for MLP training. Among them, the most
used and well-known is the Backpropagation Algorithm, which is based on the error
correction learning rule and consists of two phases: (a) propagation: input data are applied
to the network input, propagating through the following layers and producing a set of
outputs. In this step, there is no change in weights; (b) backpropagation: the response
obtained in the propagation step is used together with the known output data to produce
an error signal, which is then backpropagated through the network and used to modify the
weights. According to Haykin [56], the propagation step of the output of each neuron can
be represented by Equation (2):

yj(n) =
m

∑
i=0

wji(n) yi(n) (2)

where wji is the weight that connects the output of index i to the input of index j. yi(n) is
the output of the neuron i and m is the number of neurons in the previous layer. For the
first hidden layer, the value of yi(n) is the same as that of the input xi(n).

During backpropagation, the values of the weights wji(n) are modified in a supervised
way (with a group of data already known as a reference). The new weight can be found for
each connection by applying a correction ∆w to the current weight to minimize the error.

2.3.2. Radial Basis Function Network

A Radial Basis Function network, or RBF, is a neural network with two layers. While
its output layer is analogous to the MLP-type ANN, its only hidden layer receives the
input data directly. It applies a nonlinear transformation in the input space to a higher
dimensional space. The name given to this Artificial Neural Network comes from the type
of nonlinear activation functions used in this type of ANN, usually a Gaussian function,
which results in decision boundaries in an elliptical format when in a two-dimensional
plane [56].

Training an RBF requires different treatments for the hidden and output layers. During
the first part, it is necessary to find the properties of each neuron in the hidden layer, which
uses a Gaussian function as an activation function. The Gaussian function can be written
as follows:

φ(x) = ae
∥x−cj∥2

2σ2 (3)

where ∥∥x − cj
∥∥

2 =

√√√√ 3

∑
i=0

(xi − ci)
2 (4)

and where ci is the center closest to the input i defined in the training phase.
The parameter a can be viewed as the height of the function’s peak, parameter c

represents the value of the x-axis at the peak or center of the Gaussian function, while σ is
the standard deviation. The positions of the centers are usually found using algorithms
such as PSO and k-means, while the dispersions can also be different for each centroid but
are usually given by a fixed and equal value that is found by the following function:
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σ =
dmax√

2m
(5)

where m is the number of centers used, which comes from the number of neurons in the
hidden layer, and dmax is the maximum distance between two centers.

The training of the hidden layer of an RBF is performed in an unsupervised manner.
That is, it uses only the input data with no relation to the respective output data. This
part of the training aims to find groupings of these data in space. The positioning of the
Gaussian functions carried out in the first part of the training is done to acceptably separate
the clusters found [59,77].

Once the radii of the Gaussian functions are found, algorithms such as PSO and k-
means can then be applied iteratively so that the centroids are found and started randomly
for each neuron in the hidden layer. Once the first stage of training is complete, the input
weights for the output layer must then be found in a manner analogous to MLP or using the
Moore–Penrose Pseudo Inverse Method, which can be defined by the following equation:

A† = (A∗A)−1A∗ (6)

where A† is the pseudo-inverse and A* is the transposed matrix or adjoint matrix of A.
Similar to the MLP, the number of neurons in the hidden layer of the RBF was de-

termined using a grid search. Due to the greater computational demand, fewer neuron
numbers were tested for this network, starting at 3 neurons and going up to 150.

2.3.3. Extreme Learning Machines

The Extreme Learning Machine (ELM), known as an Unorganized Machine (UM), is
a learning algorithm proposed by [78] for Feedforward Networks with only one hidden
layer that uses constant random weights in the intermediate layer and an analytical method
to determine the weights of the output layer, not needing iterative methods based on the
gradient descent. The advantage of using this method in contrast with other ANNs is its
training speed, which, according to [79], can be thousands of times faster than training
via backpropagation, in addition to avoiding several other problems, such as convergence
to local minima and overfitting. The most significant difference in ELM training is that
the hidden layer is not adjusted; only the output layer is adjusted, which speeds up the
training process.

Training begins with creating the Matrix W of random weights of the hidden layer.
This matrix, which is not modified during training, is multiplied by the data set Matrix X to
generate a Matrix J containing the calculated values that are then applied to the activation
function generating Matrix H.

W =


w11 · · · w1d

...
. . .

...
wm1 · · · wmd
b1 · · · bd

 (7)

X =

x1
1 · · · x1

m 1
...

. . .
...

...
xi

1 · · · xi
m 1

 (8)

J = X × W (9)

H =


f
(

J1
1
)

· · · f
(

Jd+1
1

)
...

. . .
...

f
(

J1
i+1

)
· · · f

(
Jd+1
i+1

)
 (10)
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where the index i represents the number of groups of training data, m represents the number
of network entries, d is the number of neurons in the hidden layer, and b is the bias of
each neuron.

Having the value of Matrix H, the formulation for calculating the output of an ELM
network is given by Equation (11):

Y = Hβ (11)

Y is the vector of desired outputs and can be expressed by the following:

Y = [y1, . . . , yn] (12)

and β is the weight matrix that stores the training information, and can be obtained by
solving the system in Equation (13):

β = H†Y (13)

where H† is the generalized Moore–Penrose of the Matrix H seen in Equation (6).
Thus, Equation (11) is as follows:

Y = HH†Y (14)

Like the other networks, it was also necessary to determine the number of neurons in
the hidden layer. The search for the ELM was made from 3 to 300 neurons, as it has a faster
training process.

3. Results

This section presents the results obtained during this study, their meaning, and the
evaluation metrics used.

The literature does not frequently address comparing values found by theoretical equa-
tions and experimental values for heat pipes. Thus, a value acquired based on experiments
is used as a basis for evaluating the results obtained. The value used to define an acceptable
result is a Mean Absolute Percentage Error (MAPE) of 30% (Equation (15)). Higher values
represent a variation in the expected thermal resistance that generates significant losses
from an experimental point of view.

MAPE =
1
N

N

∑
t=1

∣∣∣∣dt − yt

dt

∣∣∣∣ 100 (15)

In addition to the MAPE, we also used the Mean Absolute Error (MAE), which
represents the average of the absolute value of the errors found (Equation (16)), and the
Square Root of the Mean Square Error (RMSE), which is similar to the MAE, but is more
punitive for larger values of absolute error (Equation (17)).

MAE =
1
N

N

∑
t=1

|dt − yt| (16)

RMSE =

√√√√ 1
N

N

∑
t=1

(dt − yt)
2 (17)

where dt represents the experimental output of the database, yt is the output of the neural
networks, and N represents the amount of data used.

Different error assessment methods are important since, in many cases, one metric
cannot clearly express the results. Using different methods to understand the values
obtained is essential in these cases.
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Table 4 presents the results for each ANN model used for the heat pipe database. The
NN value represents the number of neurons in the hidden layer. The values were obtained
from the average of errors between 30 independent tests.

Table 4. Errors found for the best configuration of each network.

Model NN Hidden Layer Function Number of Hidden Layers MAE RMSE MAPE [%]

ELM 84 Logistic 1 0.285 0.384 25.74

MLP 15 Logistic 1 0.241 0.409 13.96

RBF 102 Gaussian 1 0.669 0.882 67.03

The results show that the MLP and ELM networks can better generalize the problem,
generating consistent errors between tests and within the expected levels. The MLP network
presents better results concerning MAPE and MAE errors for this problem. The MAPE
found for the MLP network is around 45% lower than that presented by the ELM network.
At the same time, the MAE is around 15% smaller. The lowest RMSE was found for the
ELM network, with a result that was approximately 6% lower than the result for the MLP
network. The RBF network demonstrated more significant errors during the tests, with
results of much lower quality than those shown by other neural networks. It is important to
highlight that the RMSE is the error metric that has been reduced during the neural models
training [64–67]. Figures 6–8 are the boxplots of MAPE, RMSE, and MAE, respectively,
which include calculations for the 30 simulations performed for each neural network used.

Compared to the MLP network, the ELM network presents more dispersion concerning
the MAPE (Figure 6). The RMSE values found for these neural networks were very
close, both in average and dispersion (Figure 7), while the values found for the MAE are
slightly better for the ELM network (Figure 8). Both neural networks present results within
expectations and with acceptable values for evaluating heat pipes, which usually work with
significant design errors. The RBF network demonstrates a large dispersion, as expected,
given the most significant average error shown, indicating that the ANN could not correctly
map the problem.
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Figure 9 compares the thermal resistances of the heat pipes obtained experimentally
and those obtained using ANNs. The thermal resistance represents the system resistance
to heat flow and can be used to evaluate the heat pipe. The results obtained in the works
of [51–53] were compared to those obtained by applying the heat pipe’s characteristics as
inputs to the ANN.

In addition to generating good average error values, the neural networks generate
consistent results for the individual values obtained, as shown in the box diagram. Most
of the results obtained are within the 30% error range, in addition to being concentrated
close to the central line, which represents the optimal values. In this case, both neural
networks (ELM and MLP) have similar behaviors, although the ELM network presents
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some discrepant points (outliers). The RBF network, once again, presents the worst results,
with many points outside the 30% error area.

Energies 2024, 17, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 8. Boxplot for the MAE of 30 simulations for the neural networks used. 

Figure 9 compares the thermal resistances of the heat pipes obtained experimentally 
and those obtained using ANNs. The thermal resistance represents the system resistance 
to heat flow and can be used to evaluate the heat pipe. The results obtained in the works 
of [51–53] were compared to those obtained by applying the heat pipe’s characteristics as 
inputs to the ANN. 

 
Figure 9. Comparison between the values obtained for each ANN with the experimental value. Figure 9. Comparison between the values obtained for each ANN with the experimental value.

The results demonstrate that using ANNs is viable since two of the three networks
used show an evident ability to adapt to the problem, obtaining results concentrated in the
areas with the lowest error in the graph presented. Furthermore, the RBF network has more
difficulty adapting to the problem than other networks. However, some hypotheses can
be made to explain this behavior. It is necessary to realize that different neural networks
sometimes have different behaviors for the same problems because each ANN has its
method to achieve the result, which can often cause divergences. Still, the evident difference
in the results of the RBF network to other neural networks is enough to expect the existence
of other causes. One of these is the dependence of the RBF network on the initial condition,
usually caused by the unsupervised training algorithm responsible for the first part of the
training. This condition was alleviated in this work using the PSO Algorithm in conjunction
with k-means. However, this method is limited when the number of neurons increases
significantly since the number of PSO iterations and agents must increase simultaneously,
which generates an exponential increase in processing time, becoming a simulation limiter.
Thus, due to these problems, the algorithms used become less efficient with the increased
number of neurons, which may explain some of the results.

Given the problems of the RBF network, the neural network can be considered not
adequate for this problem, but since the objective in this work was to find at least one neural
network capable of successfully generalizing the problem, the results are still of great value,
since both the MLP network and the ELM network were able to generate results below
30% MAPE.

Most of the highest percentage errors of all neural networks is concentrated in the
region of lowest thermal resistance (between 0 and 1.2 K/W). This can often be explained
by the low values since, in this case, variations in the environment and all types of errors,
such as measurement errors, have a more significant influence on the system and the results
obtained. The percentage values in this region also represent smaller absolute errors since
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a 30% error for a thermal resistance of 7 K/W represents a much greater absolute value
than a 30% error for a thermal resistance of 0.5 K/W, for example.

4. Conclusions

Finding the ideal configurations for operating a heat pipe in a specific function is diffi-
cult. It requires much experimental effort, loss of materials, and reworking. The variation of
several parameters, such as geometry, filling ratio, slope, working fluid, and thermal load,
generates difficulties that limit traditional methods. As an alternative to reduce the exper-
imental workload, applying computational methods such as Artificial Neural Networks
(ANNs) is an important topic to be evaluated. These algorithms are universal nonlinear
mappers capable of approximating any function under certain conditions. Within these
algorithms, there are many possibilities to be studied that are strong candidates not widely
found in the literature. Some of these networks were used in this work to predict the thermal
behavior of heat pipes with different capillary structures. The ELM and MLP networks pre-
sented good results, as expected, proving capable of generalizing the problem. Based on the
RMSE, the ELM showed the best results (RMSE = 0.384), followed by MLP (RMSE = 0.409).
However, based on the MAPE, the MLP showed a better result (MAPE = 13.96). This shows
the importance of using different networks and metric errors to evaluate the system deeply.
Therefore, ELM and MLP networks can be used to evaluate the thermal behavior of the
heat pipe even before it is manufactured. The errors obtained in both databases are within
acceptable values for the evaluated devices since they work with phase changes and con-
vection, which generally imply complex systems. The results indicate that using ANNs to
aid in thermal projects of heat pipes can be beneficial, increasing assertiveness in producing
prototypes and reducing the reworking and time needed to carry out studies.
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Appendix A

Table A1. Database results.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

1 Microgrooves 0 60 5 5.66

2 Microgrooves 0 60 5 5.09

3 Microgrooves 0 60 5 1.22

4 Microgrooves 45 60 5 4.54

5 Microgrooves 45 60 5 1.66

6 Microgrooves 45 60 5 5.01
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Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

7 Microgrooves 90 60 5 5.10

8 Microgrooves 90 60 5 2.11

9 Microgrooves 90 60 5 4.79

10 Microgrooves 0 60 10 5.04

11 Microgrooves 0 60 10 5.44

12 Microgrooves 0 60 10 0.73

13 Microgrooves 45 60 10 5.23

14 Microgrooves 45 60 10 0.79

15 Microgrooves 45 60 10 4.70

16 Microgrooves 90 60 10 4.84

17 Microgrooves 90 60 10 0.92

18 Microgrooves 90 60 10 5.09

19 Microgrooves 0 60 15 4.07

20 Microgrooves 0 60 15 0.60

21 Microgrooves 0 60 15 4.16

22 Microgrooves 45 60 15 3.67

23 Microgrooves 45 60 15 3.63

24 Microgrooves 45 60 15 0.55

25 Microgrooves 90 60 15 3.68

26 Microgrooves 90 60 15 3.73

27 Microgrooves 90 60 15 0.62

28 Microgrooves 0 60 20 2.98

29 Microgrooves 0 60 20 0.55

30 Microgrooves 0 60 20 2.96

31 Microgrooves 45 60 20 2.55

32 Microgrooves 45 60 20 0.48

33 Microgrooves 45 60 20 2.55

34 Microgrooves 90 60 20 0.54

35 Microgrooves 90 60 20 2.60

36 Microgrooves 90 60 20 2.43

37 Microgrooves 0 60 25 2.14

38 Microgrooves 0 60 25 0.50

39 Microgrooves 0 60 25 2.12

40 Microgrooves 45 60 25 1.79

41 Microgrooves 45 60 25 0.43

42 Microgrooves 45 60 25 1.78

43 Microgrooves 90 60 25 0.46

44 Microgrooves 90 60 25 1.68

45 Microgrooves 90 60 25 1.84
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Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

46 Microgrooves 0 60 30 1.72

47 Microgrooves 0 60 30 0.49

48 Microgrooves 0 60 30 1.62

49 Microgrooves 45 60 30 0.40

50 Microgrooves 45 60 30 1.29

51 Microgrooves 45 60 30 1.36

52 Microgrooves 90 60 30 1.45

53 Microgrooves 90 60 30 1.27

54 Microgrooves 90 60 30 0.44

55 Microgrooves 0 60 35 0.49

56 Microgrooves 0 60 35 1.32

57 Microgrooves 45 60 35 0.37

58 Microgrooves 45 60 35 1.03

59 Microgrooves 45 60 35 1.05

60 Microgrooves 90 60 35 0.41

61 Microgrooves 90 60 35 1.08

62 Microgrooves 90 60 35 0.94

63 Microgrooves 0 60 40 0.44

64 Microgrooves 45 60 40 0.35

65 Microgrooves 45 60 40 0.75

66 Microgrooves 90 60 40 0.38

67 Microgrooves 90 60 40 0.77

68 Microgrooves 90 60 40 0.89

69 Microgrooves 45 60 45 0.34

70 Microgrooves 90 60 45 0.37

71 Microgrooves 45 60 50 0.33

72 Screen mesh 0 60 5 6.93

73 Screen mesh 45 60 5 7.13

74 Screen mesh 90 60 5 6.94

75 Screen mesh 0 60 5 2.63

76 Screen mesh 45 60 5 2.43

77 Screen mesh 90 60 5 2.65

78 Screen mesh 0 60 10 6.61

79 Screen mesh 45 60 10 6.39

80 Screen mesh 90 60 10 6.44

81 Screen mesh 0 60 10 1.50

82 Screen mesh 45 60 10 1.28

83 Screen mesh 90 60 10 1.36

84 Screen mesh 0 60 15 1.16
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Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

85 Screen mesh 45 60 15 0.89

86 Screen mesh 90 60 15 0.95

87 Screen mesh 0 60 15 4.49

88 Screen mesh 45 60 15 4.42

89 Screen mesh 90 60 15 4.36

90 Screen mesh 0 60 20 0.99

91 Screen mesh 45 60 20 0.76

92 Screen mesh 90 60 20 0.80

93 Screen mesh 0 60 20 3.14

94 Screen mesh 45 60 20 3.13

95 Screen mesh 90 60 20 3.06

96 Screen mesh 0 60 25 2.42

97 Screen mesh 45 60 25 2.48

98 Screen mesh 90 60 25 2.38

99 Screen mesh 0 60 25 0.85

100 Screen mesh 45 60 25 0.66

101 Screen mesh 90 60 25 0.71

102 Screen mesh 0 60 30 0.80

103 Screen mesh 45 60 30 0.59

104 Screen mesh 90 60 30 0.64

105 Screen mesh 0 60 30 1.89

106 Screen mesh 45 60 30 1.99

107 Screen mesh 90 60 30 1.91

108 Screen mesh 0 60 35 0.70

109 Screen mesh 45 60 35 0.50

110 Screen mesh 90 60 35 0.55

111 Screen mesh 0 60 40 0.67

112 Screen mesh 45 60 40 0.46

113 Screen mesh 90 60 40 0.52

114 Screen mesh 45 60 45 0.42

115 Screen mesh 90 60 45 0.47

116 Screen mesh 45 60 50 0.42

117 Sintered 0 60 5 3.48

118 Sintered 0 100 5 5.28

119 Sintered 45 100 5 4.89

120 Sintered 45 60 5 3.28

121 Sintered 90 60 5 3.35

122 Sintered 90 100 5 4.73

123 Sintered 0 120 5 5.21



Energies 2024, 17, 5387 20 of 25

Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

124 Sintered 0 80 5 2.94

125 Sintered 45 120 5 4.63

126 Sintered 45 80 5 3.06

127 Sintered 90 120 5 5.43

128 Sintered 90 80 5 2.93

129 Sintered 0 60 10 1.58

130 Sintered 0 100 10 2.60

131 Sintered 45 60 10 1.54

132 Sintered 45 100 10 2.41

133 Sintered 90 60 10 1.52

134 Sintered 90 100 10 2.21

135 Sintered 0 80 10 1.44

136 Sintered 0 120 10 2.65

137 Sintered 45 120 10 2.32

138 Sintered 45 80 10 1.49

139 Sintered 90 120 10 2.29

140 Sintered 90 80 10 1.43

141 Sintered 0 100 15 1.43

142 Sintered 0 60 15 1.03

143 Sintered 45 100 15 1.40

144 Sintered 45 60 15 1.00

145 Sintered 90 60 15 0.98

146 Sintered 90 100 15 1.38

147 Sintered 0 120 15 1.77

148 Sintered 0 80 15 1.12

149 Sintered 45 120 15 1.51

150 Sintered 45 80 15 1.02

151 Sintered 90 120 15 1.52

152 Sintered 90 80 15 1.01

153 Sintered 0 80 20 0.93

154 Sintered 0 60 20 0.81

155 Sintered 0 120 20 1.37

156 Sintered 0 100 20 1.24

157 Sintered 45 120 20 1.16

158 Sintered 45 100 20 1.04

159 Sintered 45 60 20 0.77

160 Sintered 45 80 20 0.78

161 Sintered 90 80 20 0.80

162 Sintered 90 120 20 1.18
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Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

163 Sintered 90 60 20 0.74

164 Sintered 90 100 20 1.05

165 Sintered 0 60 25 0.73

166 Sintered 0 120 25 1.17

167 Sintered 0 100 25 1.03

168 Sintered 0 80 25 0.81

169 Sintered 45 60 25 0.67

170 Sintered 45 80 25 0.69

171 Sintered 45 100 25 0.84

172 Sintered 45 120 25 0.97

173 Sintered 90 80 25 0.69

174 Sintered 90 100 25 0.84

175 Sintered 90 120 25 1.00

176 Sintered 90 60 25 0.64

177 Sintered 0 60 30 0.68

178 Sintered 0 100 30 0.96

179 Sintered 0 120 30 1.05

180 Sintered 0 80 30 0.74

181 Sintered 45 80 30 0.63

182 Sintered 45 60 30 0.62

183 Sintered 45 120 30 0.87

184 Sintered 45 100 30 0.71

185 Sintered 90 120 30 0.88

186 Sintered 90 80 30 0.63

187 Sintered 90 60 30 0.59

188 Sintered 90 100 30 0.73

189 Sintered 0 120 35 0.93

190 Sintered 45 120 35 0.79

191 Sintered 90 120 35 0.79

192 Sintered 0 80 35 0.70

193 Sintered 0 100 35 0.85

194 Sintered 45 80 35 0.59

195 Sintered 45 100 35 0.62

196 Sintered 90 100 35 0.65

197 Sintered 90 80 35 0.59

198 Sintered 0 60 35 0.65

199 Sintered 45 60 35 0.58

200 Sintered 90 60 35 0.53

201 Sintered 0 80 40 0.65
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Table A1. Cont.

Test Type Slope [o] Filling Ratio [%] qin
[W]

Rth
[K/W]

202 Sintered 45 80 40 0.55

203 Sintered 90 80 40 0.56

204 Sintered 0 100 40 0.78

205 Sintered 0 60 40 0.62

206 Sintered 0 120 40 0.91

207 Sintered 45 60 40 0.54

208 Sintered 45 100 40 0.56

209 Sintered 45 120 40 0.74

210 Sintered 90 60 40 0.50

211 Sintered 90 120 40 0.72

212 Sintered 90 100 40 0.62

213 Sintered 0 100 45 0.69

214 Sintered 45 80 45 0.52

215 Sintered 45 100 45 0.54

216 Sintered 90 60 45 0.47

217 Sintered 90 80 45 0.51

218 Sintered 90 100 45 0.60
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