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Abstract: This article presents a novel aging-coupled predictive thermo-electrical dynamic modeling
tool tailored for primary lithium manganese dioxide (Li-MnO2) batteries in active implantable medi-
cal devices (AIMDs). The aging mechanisms of rechargeable lithium batteries are well documented
using computationally intensive physics-based models, unsuitable for real-time onboard monitoring
in AIMDs due to their high demands. There is a critical need for efficient, less demanding modeling
tools for accurate battery health monitoring and end-of-life prediction as well as battery safety as-
sessment in these devices. The presented model in this article simulates the battery terminal voltage,
remaining capacity, temperature, and aging during active discharge, making it suitable for real-time
health monitoring and end-of-life prediction. We incorporate a first-order dynamic for internal
resistance growth, influenced by time, temperature, discharge depth, and load current. By adopting
Arrhenius-type kinetics and polynomial relationships, this model effectively simulates the combined
impact of these variables on battery aging under diverse operational conditions. The simulation
handles both the continuous micro-ampere-level demands necessary for device housekeeping and
periodic high-rate pulses needed for therapeutic functions, at a constant ambient temperature of 37 °C,
mimicking human body conditions. Our findings reveal a gradual, nonlinear increase in internal
resistance as the battery ages, rising by an order of magnitude over a period of 5 years. Sensitivity
analysis shows that as the battery ages and load current increases, the terminal voltage becomes
increasingly sensitive to internal resistance. Specifically, at defibrillation events, the ∂V

∂R trajectory
dramatically increases from 10−12 to 10−8, indicating a fourth-order-of-magnitude enhancement in
sensitivity. A model verification against experimental data shows an R² value of 0.9506, indicating a
high level of accuracy in predicting the Li-MnO2 cell terminal voltage. This modeling tool offers a
comprehensive framework for effectively monitoring and optimizing battery life in AIMDs, therefore
enhancing patient safety.

Keywords: primary Li-MnO2 battery; aging-coupled thermo-electrical battery model; internal
resistance growth; active implantable medical devices

1. Introduction

This article explores a simulation analysis focused on the discharge dynamics and
aging behavior of lithium manganese dioxide (Li-MnO2) primary batteries within active
implantable medical devices (AIMDs). Studying the characteristics of primary lithium
batteries in AIMDs is crucial, as the longevity of these implantable medical devices is tied
solely to the longevity of their primary lithium battery power source. Given that battery
replacement involves surgery to explant and replace the AIMD, ensuring the longevity of
these cells is crucial for patient safety. This helps patients avoid surgical risks, emphasizing
the need for the design of durable battery systems.

Table 1 presents a comprehensive summary of the various primary battery types
used in cardiovascular implantable medical devices. Variability in capacity, operating
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voltage, and energy density across the different battery types indicates that the choice
of battery for an AIMD is tailored to the specific energy and voltage requirements of the
device. Among these chemistries, Li-MnO2 batteries have become prevalent due to their
high-power output over brief periods. The construction of these batteries, whether coiled or
stacked, enhances the electrode surface area, optimizing power capacity. A stable operating
voltage of approximately 3 V is maintained through the initial discharge phase, providing
a predictable measure for clinicians to gauge battery life. These features, along with their
high power and consistent discharge behavior, render Li-MnO2 cells a preferred choice for
various implantable devices across multiple manufacturers [1–3].

Table 1. Batteries used in cardiovascular implantable medical devices [2].

Battery Type Capacity
(Ah)

Operating
Voltage (V)

Longevity
(year)

Energy Density
(Wh/Kg)

Li-I2 2.0–3.5 2.8 >10 210–270

Li-MnO2 1.0–2.0 2.9 >10 230–270

Li-CFx 2 3.0 5–10 440

Li-SVO 0.9–2.0 2.4–2.8 5–10 270

Li-MnO2 1.7–2.0 3.0 5–10 400

Primary Li-MnO2 batteries used in implantable medical devices are subject to a dis-
tinctive set of challenges. They function continuously at approximately human body
temperature, which is a steady 37 °C. This thermal environment precipitates the expedited
aging of the battery. Moreover, these devices may not be actively used for extended periods,
necessitating that the cells withstand long-term storage at both high and low states of
charge, as well as under potential high-demand discharge conditions [4]. The application
and environment of these cells introduce factors that accelerate aging. In AIMDs, con-
stant exposure to body temperature accelerates chemical reactions; also, the high-power
demands during the delivery of therapy affect the battery electrochemical reactions and
initiate side reactions, leading to battery aging. Aging in lithium batteries in general occurs
due to a combination of electrochemical reactions and physical changes within the cell
over time, such as the gradual decomposition of electrolytes and the depletion of active
materials [5]. Modeling aging mechanisms under various load conditions allows for pre-
cise end-of-life predictions, which is vital for scheduling battery replacements in a timely
manner, thus preventing premature battery failure in critical medical devices. Battery aging
is intrinsically linked to the growth of internal resistance; as the cell ages, chemical and
physical transformations lead to increased resistance within the battery. This rise in resis-
tance can manifest as a loss of available power, reduced efficiency, and eventual failure to
meet the energy and power requirements of AIMDs [6]. Monitoring the internal resistance
growth is therefore crucial for providing insights into the state of health of the battery
and the remaining useful life of the cell. Accurately modeling this growth is essential
for predicting when the battery will no longer perform optimally. The complexities of
aging in Li-MnO2 primary cells highlight the importance of modeling internal resistance
increase, which acts as a reliable metric for battery degradation and is critical for assessing
the operational lifespan of AIMDs [7]. While the aging mechanisms of rechargeable lithium
batteries are extensively studied in the context of electric vehicles and energy storage
systems [5,8,9], there is a lack of research focused on the modeling dynamics and aging of
primary cells, including Li-MnO2 chemistries for AIMD applications. To the best of the
authors’ knowledge, this represents a significant gap in the literature, underscoring the
importance of developing comprehensive models to predict and mitigate the effects of
aging in these vital devices. Despite considerable progress in modeling and incorporating
Li-MnO2 batteries in implantable cardioverter defibrillators (ICDs), certain challenges
persist, as evidenced by prior research, including the study conducted by Manolis et al. [10].
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While manufacturers typically assure 7- to 11-year projected longevity for ICDs [11], real-
world data reveal that not all devices achieve this promised lifespan [12]. Remarkably,
approximately 8% of ICDs experienced premature battery depletion within a mere 3-year
period in a population-based study of 685 patients [13]. To address this critical issue, we
propose a comprehensive simulation model that utilizes an aging-coupled thermo-electrical
dynamic model for primary lithium batteries in ICDs. In Section 2, we explore the voltage
characteristics and depth of discharge (DOD) behavior of the Li-MnO2 battery. We also
conduct an experiment to illustrate primary battery aging through its internal resistance
growth. Section 3 describes the Li-MnO2 aging-coupled thermo-electrical model. Further,
Section 4 presents the simulation results for an average ICD load including defibrillation,
and device supply currents, allowing us to gain valuable insights into battery dynamics
and lifespan. Furthermore, in this section, we present the model verification results by
comparing the battery terminal voltage predictions with the experimental data obtained
from our laboratory. We also perform a sensitivity analysis on the battery initial internal
resistance estimation to investigate the feasibility of using this model for aging prediction.
Finally, we summarize our findings in Section 5.

2. Li-MnO2 Battery Discharge Characteristics

In Li-MnO2 batteries, the cathode is composed of manganese dioxide (MnO2), and the
anode is made from lithium (Li). During the battery’s discharge cycle, lithium at the
anode oxidizes to release Li ions, which then travel through the electrolyte to the cathode.
Here, they engage in a reaction, likely involving the insertion of lithium ions into the
hexagonal close-packed oxygen lattice of the MnO2 material as shown in Equation (1). This
intercalation process modifies the MnO2 structure, underpinning the multi-step discharge
process of these cells [14]:

xLi + MnO2 −→ Lix MnO2 (0 ≤ x ≤ 0.1) (1)

The discharge characteristics of Li-MnO2 cells are significantly influenced by the
structural and compositional features of the MnO2 which yield three distinct stages in the
discharge profile, each indicative of structural evolution within the MnO2. We discharged
a fresh Panasonic CR2450 Li-MnO2 primary cell with a capacity of 620 mAh at a constant
current of 1 mA using an Arbin LBT20084 (College Station, TX, USA) battery testing system.
This low discharge current is crucial, as it ensures that the battery’s terminal voltage closely
approximates its open circuit voltage, minimizing the impact of internal resistance on
the voltage reading. Over the course of 537.31 h, the voltage of the cell decreased from
3.3 V to 0.3 V. To generate the DOD-OCV curve, the discharged current was integrated
over time to calculate the depth of discharge based on the coulomb counting method as
shown in Equation (2), which is a measure of how much of the battery’s capacity has been
used. In this equation, Q is the battery nominal capacity, t is time, and I is the discharge
current in amperes. The resulting DOD-OCV characteristic curve (Figure 1) shows how
the voltage decreases as the battery is progressively discharged. This curve is essential for
understanding the operational performance of the battery, particularly for applications
where predicting the remaining useful life and usable capacity of the cells is critical:

DOD(%) = 1 − 1/Q
∫

I(t)dt, (2)

According to Figure 1, initially, within the first 10% of discharge, there is a homo-
geneous reaction, where lithium ions integrate into the MnO2 lattice to form Lix MnO2,
with x values less than 0.1 in Equation (1). This phase of the reaction is revealed by the
sloping segments of the discharge and recovery curves. The subsequent stage, occurring
between about 10% and 40% depth of discharge, corresponds with a heterogeneous or
two-phase reaction. This is characterized by a plateau in the voltage curve, which signifies
a phase transition in the cathode material. The concluding discharge phase reverts to a
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homogeneous reaction, suggesting the further insertion of lithium ions into a new structural
form of Lix MnO2, where x is greater than 0.4. This last stage underscores the complexity
and dynamic nature of the electrochemical reactions in Li-MnO2 batteries, integral to their
functionality in demanding applications such as AIMDs. The experiment to obtain the
Figure 1 curve for the Li-MnO2 cell was conducted to integrate this curve into the battery
model, as the terminal voltage of the battery is a function of both the battery characteristic
DOD-OCV relationship and the voltage drops across equivalent circuit components of the
model detailed in the next section.
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Figure 1. OCV-DOC curve for a fresh 620 mAh CR2450 Li-MnO2 battery which is discharged with 1
mA constant current.

Another experiment was (Figure 2) conducted to empirically demonstrate aging in
primary Li-MnO2 batteries, specifically through increased internal resistance. A 90 mA
discharge current at a constant ambient temperature of 37 ◦C was applied to two CR2450
primary Li-MnO2 cells with 620 mAh initial capacity. One of them was a fresh cell, the other
one was an aged cell. Both cells had similar initial open circuit voltages at 3.3 V and they
underwent a discharge process until the battery terminal voltages decreased to the 1.5 V
cut-off voltage. The aged cell was aged by being heated constantly in a thermal chamber
at 55 ◦C for two weeks. By considering an Arrhenius-type growth rate for the internal
resistance dynamics, the experiment showed thermally accelerated aging in the aged cell
compared to the fresh cell.

The accelerated aging of the second Li-MnO2 cell, achieved by subjecting it to a high
temperature, for example at 55 ◦C for two weeks, is a practical application of the Arrhe-
nius equation’s principle that higher temperatures expedite chemical reactions, thereby
simulating an expedited aging process. This method offers a predictive model for the cell’s
long-term behavior at lower operational temperatures, like 37 °C. The fresh cell sustained
a higher voltage over an extended duration relative to its aged counterpart, implying
an increase in the internal resistance in the aged cell due to the accelerated aging. This
increase typically manifests as a more pronounced voltage drop under load. Furthermore,
the aged cell’s discharge curve indicates a noticeable reduction in capacity, a characteristic
consequence of aging in batteries where the efficiency of electrochemical energy conver-
sion diminishes over time, especially under thermal stress. In summary, the aged cell
demonstrates significant internal resistance increase and capacity decrease, with the initial
voltage drops being markedly steeper (approximately 0.4 volts) compared to the fresh cell,
underscoring the critical impact of aging on battery performance.
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Figure 2. Fresh versus aged Li-MnO2 cells at 37 ◦C temperature under 90 mA discharge current
followed by 15 min rest.

These data show that temperature, current magnitude, and depth of discharge signifi-
cantly influence battery aging and degradation. In the subsequent section, we develop a
model where the rate of change in internal resistance is functionally dependent on these
parameters. Considering a first-order dynamics for internal resistance, we describe its
variation over time, influenced by the battery discharge current, temperature, and depth
of discharge.

3. Li-MnO2 Battery Arrhenius-Based Thermo-Electrical Dynamic Model

The model depicted in Figure 3 is structured as a lumped parameter equivalent circuit
model (ECM) coupled with the battery internal temperature and resistance dynamics. This
model was also studied for Li-SVOCFx battery chemistry in ICD applications by [15]. The
integrated aging dynamic is specifically added to the model to represent the cell’s internal
resistance growth. The model in Equation (3) encompasses key elements such as the dis-
charge current (I), capacity (Q), polarization capacitance (C1), polarization resistance (R1),
internal ohmic resistance (R2), and ICD defibrillation capacitor (Cd). The model includes
four state variables, x1(t), x2(t), x3(t) and x4(t), which represent the depth of discharge
(DOD), the transient voltage, the internal temperature, and internal resistance of the battery.
The thermal dynamics are addressed by connecting the nonlinear behavior of the lithium
battery cell temperature (x3) with the ECM model through Bernardi’s temperature dynam-
ics model [16]. This method has been employed in the literature for analyzing battery
parameter identifiability and estimating parameters [17].

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science
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Figure 3. The aging-coupled thermo-electrical model of a lithium battery in an AIMD.
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ẋ1 =
1
Q

I

ẋ2 =
1

R1C1
x2 +

I
C1

ẋ3 =
hA

mCp
(Tamb − x3) +

x4

mCp
I2 +

µ(x2)

mCp
x3 I

ẋ4 = KR2 x4

KR2 = a1 × xa2
1 + a3 × e

−a4
x3 + a5 × Ia6

y = OCV(x1) +
x2

C1
+ x4 I

(3)

The x3 dynamics capture three crucial phenomena. First, the term mCp
dT
dt accounts

for the battery cell’s capacity to store thermal energy, where T is the cell temperature, m
is the mass, and Cp is the specific heat capacity. Second, the term hA(Tamb − x3) describes
the convective heat exchange between the battery and its environment, with h as the
convective heat transfer coefficient, A as the convective area, and Tamb as the ambient
temperature. By including Tamb as an input in the model, we can capture the influence
of body temperature variations on the cell’s internal temperature, allowing the model to
account for thermal changes in different physiological conditions. Lastly, the term R2 I2

reflects the generation of heat due to resistance, with x4(t) representing the cell’s ohmic
resistance as a first-order variable. The internal resistance growth rate KR2 incorporates a
polynomial relationship with the battery depth of discharge, an exponential Arrhenius-type
dependency on the battery temperature, and a polynomial correlation with the battery
input current.

A similar approach was also studied in [18] for rechargeable LiFePO4/graphite battery
health-coupled modeling dynamics for states and parameter estimation in electric vehicle

application. Specifically, the exponential (a3 × e
−a4
x3 ) in the rate constant function is essential

for capturing the nonlinear impact of temperature on battery aging, consistent with Arrhe-
nius’ law where a3 is analogous to the Arrhenius pre-exponential factor and a4 represents
the activation energy in the Arrhenius equation. This term reflects the accelerated aging
at elevated temperatures and provides a theoretical basis for understanding temperature
dependence in battery aging. The term (a1 × xa2

1 ) in the internal resistance growth rate
addresses the nonlinear interplay between the battery’s available charge and resistance.
Moreover, the term (a5 × Ia6) is used to capture the dependency of the internal resistance
growth rate on the magnitude of the battery discharge current. The summation of these
three aging components suggests variable aging rates contingent upon the battery’s charge
level, temperature, and discharge current, thereby providing a comprehensive and theo-
retically grounded framework for understanding and predicting battery aging dynamics.
The final term in Equation (3) represents the battery terminal voltage (y), which serves as
the output of the model. This voltage (y) consists of the cell’s open circuit voltage as a
function of the depth of discharge, the voltage drop across the R1C1 pair, and the voltage
drop due to the internal resistance (R2). The nominal parameters for the model, relating
to commercially available Li-MnO2 battery cells with a similar ICD cell’s capacity, are
listed in Table 2, sourced from [19,20]. Moreover, the aging parameters were selected and
adjusted to reflect an internal resistance growth of one order of magnitude for Li-MnO2
battery used in implantable devices over their 100% depth of discharge based on the work
conducted by Root [21]. The parameters in Table 2 are selected based on their relevance
and validation in similar battery modeling contexts. However, no parameter optimization
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has been conducted in this study to specifically enhance the model’s accuracy against our
experimental data.

In this study, we utilize the dynamic model to simulate the discharge behavior of an
ICD battery over five years. This simulation aims to predict the aging and performance of
the battery under conditions that include an average device housekeeping current of 25 µA
and a typical current needed for charging the high-voltage capacitor for defibrillation pulse
generation, which is assumed to be one defibrillation event per year. Each one of these
defibrillation events is a series of three pulses with 10 s pulse-width and magnitude of 1 A.
The open-circuit voltage (OCV) is a function of the depth of discharge (DOD), OCV(x1),
which is a characteristic curve unique to each battery chemistry. For the Li-MnO2 battery,
the OCV-DOD curve used in this model is experimentally obtained as detailed in Section 2.

The model presented in Equation (3) is Lipschitz continuous, ensuring the existence of
a unique solution given the initial conditions. We solve this model using the Euler method,
assuming the initial depth of discharge for the Li-MnO2 battery is 5% (indicating the
battery is nearly fully charged with a 95% state of charge). Additionally, the battery’s initial
temperature is set to match the patient’s core body temperature (x3(0) = 37◦), and the
initial transient voltage is assumed to be zero. The results and corresponding discussion
are provided in the following section.

Table 2. Li-MnO2 battery model parameters.

Parameter Values, Unit Parameter Values, Unit

Q 620 [mAh] h 11 [J/s·m2K]

A 3 × 10−4 [m2] m 0.03 [kg]

I 25 [µA] R1 0.11 [Ω]

R2(0) 0.27 [Ω] C1 2.35 × 103 [F]

a1 1 × 10−9 a2 1

a3 1.47 × 10−8 a4 5 × 10−5

a5 1 × 10−5 a6 5

4. Results

For the simulation study on this model, we choose to apply input current values
analogous to the load of an ICD since these values are more readily available in the literature.
The replacement time in ICDs is determined by a significant drop in the battery terminal
voltage, occurring at approximately 2.5 V, or after the knee in the voltage curve [22,23].
A steady current of 25 µA for housekeeping and a defibrillation current of 1.0 A, with a
pulse duration of 10 s and occurring once a year, are applied to the Li-MnO2 battery model.
These parameters are sourced from the work performed by Root and Baliga [21,24]. The
battery starts with an initial voltage of 3.3 V.

Figure 4 shows the simulation results for the terminal voltage and the battery depth of
discharge. The voltage drop progressively becomes more pronounced for every defibril-
lation pulse sequence. The depth of discharge (DOD) plot in Figure 4 indicates a steady
decline in battery capacity throughout the device’s lifespan.

Figure 5 illustrates the internal temperature of the battery over the device’s operational
life. During normal operation for device housekeeping, the temperature remains close
to 37 ◦C but begins to exceed 37.5 ◦C following each defibrillation after the third year.
The thermal time constant, defined as mCp

hA in this model, is quite small (approximately
10−3), leading to a rapid return of the temperature to its equilibrium state. This model
effectively captures the dynamics of battery voltage and depth of discharge during typical
usage in an ICD. It accurately predicts battery failure in the device by estimating when the
battery voltage will drop below 2 V, at which point the battery will be unable to deliver the
necessary energy.
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Figure 4. Terminal voltage and depth of discharge (DOD) of a primary Li-MnO2 battery with nominal
620 mAh capacity subjected to ICD housekeeping and defibrillation loads.
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Figure 5. Internal temperature profile of the battery under ICD housekeeping and defibrillation load.

Figure 6 shows the battery internal resistance growth estimation due to battery aging
in 5 years, as the battery provides an average load for an ICD. The internal resistance in
the model has a first-order dynamic; however, its trajectory is not linear because of the
inconstant and nonlinear nature of the internal resistance growth rate (KR2), which is a
function of the battery temperature, load, and charge. The magnified portion of Figure 6
focuses on the fourth defibrillation event in year three. According to this simulation result,
the battery internal resistance increase has a surge right at the time. This surge is almost
200 µohm. It suggests that defibrillation pulses degrade the battery faster. Therefore,
estimating the battery internal resistance during the battery life in an AIMD is a gauge
for predicting battery health and longevity. This model simulation does not account for
external factors leading to battery failure, such as current leakage caused by ICD lead
insulation issues or device malfunctions. Additionally, it does not consider internal battery
failure mechanisms, including internal short circuits. However, the model can potentially
be used in AIMD battery management systems to predict the battery voltage, depth of
discharge, and internal resistance growth as aging mechanisms affecting battery health to
more accurately predict battery and device end of life.
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Figure 6. Li-MnO2 Internal resistance increases from 0.27 [Ω] to 3 [Ω] during 5 years of operation in
an ICD.

We conducted an experiment to evaluate whether this model can accurately predict
the discharge behavior of a Li-MnO2 coin cell under a load pattern mimicking that of
an ICD. This pattern includes a continuous low-rate current for housekeeping functions
and two-pulse high-rate currents simulating defibrillation. The results presented here
are derived from a preliminary model with parameters that have not yet been optimized
for the best fit to the experimental data. Figure 7 illustrates the comparison between the
experimental discharge data of a CR2450 Li-MnO2 nonrechargeable cell and the predictions
from the aging and thermally coupled equivalent circuit model presented in this article.
The experiment, conducted at 37 ◦C with a combined load of 25 µA continuous and 15 mA
discharge current pulses, demonstrates the model’s ability to accurately replicate real-world
battery behavior. Notably, the model captures the voltage drops and subsequent recoveries
during the pulse discharges with high fidelity. The model’s predictions align closely with
the experimental data, indicating its robustness in simulating battery performance under
dynamic load conditions. To quantify the model’s accuracy, a goodness-of-fit analysis
was performed, yielding a coefficient of determination (R2) of 95.06%. This high value
underscores the model’s precision and reliability, affirming its utility for predicting battery
behavior in practical applications.
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Figure 7. Prediction of the model for a fresh CR2450 Li-MnO2 nonrechargeable cell at 37 ◦C under
a combined load of 25 µA continuous and 15 mA pulse discharge currents (experimental data are
generated using the Arbin BLT20084 battery test machine).
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Predicting battery aging by solving the battery internal resistance as a state in Equation (3)
is feasible if we assume that the initial battery internal resistance is known or if we can
estimate it from the battery measured output, which is the battery terminal voltage. Here,
we conducted a sensitivity analysis on the battery’s initial internal resistance to investigate
the sensitivity of the battery terminal voltage to this parameter. Sensitivity analysis tech-
niques are commonly employed to examine the practical identifiability of dynamic systems.
The process typically starts by evaluating how sensitive the system’s output is to changes
in the underlying parameters. To perform sensitivity analysis, an output variable Y(t, θ)
is defined, corresponding to the true open circuit voltage V at time t, for an unknown
initial state θ. Although measurements of this output variable are subject to noise, Y(t, θ)
represents the true output, unaffected by noise.

Assume that the output Y(t, θ) is recorded at intervals separated by a sampling time
δt = 5 s. Further, assume that the measured output at each sampling instance equals the
true value plus an independent and identically distributed noise signal with zero mean and
a certain variance σ2. Let Y(kδt, θ) denote the actual value of the output at time t = kδt,
given a particular unknown parameter θ. The sensitivity function s(kδt) is then defined
as follows:

s(kδt) = lim
δθ→0

Y(kδt, θ+ eiδθ)− Y(kδt, θ)
δθ

(4)

where δθ denotes a very small variation in the unknown parameter (θ is the initial battery
internal resistance).

Figure 8 shows that as the Li-MnO2 battery ages, its terminal voltage becomes increas-
ingly sensitive to variations in the battery internal resistance. Early in its lifespan, changes
in resistance have a relatively minor impact on the voltage, but as time progresses, even
small changes in the internal resistance can lead to more significant changes in the terminal
voltage. Specifically, at defibrillation events, the ∂V

∂R2
trajectory dramatically increases from

10−12 to 10−8, indicating a fourth-order-of-magnitude enhancement in sensitivity. This
result implies that the battery’s initial internal resistance becomes increasingly identifiable
over time, particularly as the battery ages and the load intensifies. This trend indicates
that our model could be utilized effectively to estimate the internal resistance as an aging
mechanism for AIMDs.
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Figure 8. Sensitivity of the Li-MnO2 battery terminal voltage to the perturbation of the battery initial
internal resistance under an average ICD load in 5 years.

5. Conclusions

This paper presents a simulation-based analysis of primary Li-MnO2 batteries in
implantable medical devices, focusing on the depth of discharge, internal temperature,
and internal resistance of the cell. The aging model incorporates dynamics influenced by
time, temperature, discharge depth, and load current, with a constant 37 °C to simulate
body conditions. It considers both low-power continuous operation and high-power pulses,
using input currents akin to those of an ICD based on the literature data. Our simulations
show a linear decrease in battery capacity and an increasing voltage drop magnitude and
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temperature at each defibrillation event. Furthermore, the study highlights the internal
resistance’s growth due to aging in AIMDs, characterized by a nonlinear trajectory as a
function of the temperature, load, and battery depth of discharge. Sensitivity analysis
demonstrates that as the battery ages, its terminal voltage becomes increasingly sensitive
to changes in the internal resistance, particularly during defibrillation events. The results
suggest that the model can be used by AIMD battery management systems to estimate
internal resistance as a key aging mechanism. Moreover, the precision in estimating age-
related parameters can be enhanced by optimizing the load current to amplify the output’s
sensitivity to variations in the aging parameters, thereby ensuring more accurate aging
predictions. This approach, however, does not account for external battery failure causes or
internal battery failures like short circuits or thermal runaway. Despite these limitations,
the simulation model can potentially be used for optimizing battery design in implantable
medical devices to prolong battery life, thereby improving patient care.
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