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Abstract: This study systematically addresses the challenge of accurately modeling memristors, focus-
ing on four distinct types doped with tungsten, tin, chromium, and carbon, fabricated by Knowm Inc.
A comprehensive characterization is performed by subjecting the devices to sinusoidal excitations
with varying frequencies and amplitudes, followed by data averaging and high-frequency filtering.
The resulting measurements are fitted using three prominent memristor models: VTEAM, MMS, and
Yakopcic. Additional bespoke modifications are assessed. These models, typically formulated as
coupled algebraic differential equations integrating electrical quantities (voltage and current) with
internal state variables governing device dynamics, are optimized using two robust approaches:
(1) interior-point optimization with gradient-based search, and (2) Nelder–Mead gradient-free opti-
mization, both with box constraints applied. A thorough comparison and discussion of the optimized
model parameters ensue, accompanied by an examination of the sensitivity to diverse frequency and
amplitude ranges. The findings inform conclusions and provide a foundation for future refinements,
underscoring the importance of multi-model evaluation and advanced optimization strategies in
precise memristor modeling. The presented methodology offers a valuable framework for elucidating
optimal modeling paradigms tailored to specific memristor architectures and operating regimes,
ultimately enhancing their integration in emerging neuromorphic and computational applications.

Keywords: SDC memristor; memristor modeling; MMS model; VTEAM model; Yakopcic model

1. Introduction

Over the past decade, there has been an intense debate surrounding the issue of
Moore’s Law reaching its limits. This law postulates that the number of transistors in an
integrated circuit doubles at nearly regular intervals. With the development of nanometer-
scale technology, standard CMOS technology has reached its scalability limits. Conse-
quently, there is a need to find solutions that increase both the performance of modern
computers and the amount of available memory. One such idea is to shift from the classic
von Neumann architecture, where the processor and memory are separated by a data bus,
to an integrated architecture known as in-memory computing. Another idea is to replace
the bi-stable transistor with a multistable element. With the emergence of actual memristive
devices, both of these ideas seem feasible.

Following Professor Leon Chua’s postulation of the memristor in 1971 [1], it took
another 37 years for the physical implementation of this element to be achieved. In 2008,
the HP Labs team led by R. Stanley Williams published their work on creating a memristor
based on titanium dioxide (TiO2) [2]. Since then, numerous other designs for memristors
have emerged, differing in their structure, materials, and operating principles, for example,
polymer memristors [3,4], ferroelectric memristors [5], and spintronic memristors [6–8].
One of the most intriguing types of memristors is the Self-Directed Channel (SDC) memris-
tors produced by Knowm Inc., Santa Fe, NM, USA. They have been described in numerous
publications [9–11].
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Realizing the multitude of memristor designs available today in the design of each
prototype circuit, a crucial aspect is simulating the behavior of the circuit under various
stimuli. Therefore, it is essential to faithfully replicate the dynamics of memristive elements
using their model. This paper will analyze which model best reproduces the behavior
of SDC memristors and develop an algorithm to optimize model parameters based on
real measurement data. Optimized parameters can be successfully applied in simulation
environments such as SPICE or Simulink.

The paper discusses the optimization of parameters for various models based on
real measurement data of SDC memristors with different dopings, namely, tungsten, tin,
chromium, and carbon, using two algorithms: SQP and Nelder–Mead. Box constraints are
imposed on individual parameters during optimization. Since in the paper [12], Strukov,
Asymmetric Strukov, and VTEAM models were compared, it is decided to compare other
models with the most accurate model from this work, namely the VTEAM model.

The structure of the paper is as follows:

• The “Materials and Methods” section includes a description of the measurement
system, signal acquisition methods, and the tools used in the study.

• The “Memristor Models Under Consideration” section provides descriptions of the
memristor models that were examined in the text.

• The “Optimization Procedure” section contains a description of the methods and
optimization procedures for each of the mathematical memristor models considered.

• The “Optimization Results” section presents the optimization outcomes separately for
each of the mathematical memristor models.

• The “Comparative Analysis of Optimization Results” section provides a comparative
analysis of memristor models based on the optimization of their parameters.

• The “Conclusion” section presents the key findings derived from the optimization results.

2. Materials and Methods

The SDC (self-directed channel) memristors with tungsten W, carbon C, tin Sn, and
chromium Cr doping were subjected to research and measurements.

To measure the current of the memristor and limit it below the nominal value, i.e.,
1 mA for memristors doped with W, Sn, Cr and 50 µA for doping with C [10], the memristor
was connected in series with a linear resistor Rs. In the case of doping with W, Sn, Cr,
the resistance Rs = 5.11 [kΩ], while for doping with C, Rs = 47.5 [kΩ]. The voltage
vr measured across the resistor Rs, which is a high quality resistor utilized to accurately
determine the current of the memristor, according to Ohm’s law, is directly proportional to
the current and its known resistance, allowing the current of the memristor to be obtained by
multiplying the voltage across the resistor by the reciprocal of its resistance. The schematic
diagram of the measuring circuit is presented in Figure 1a. Using the myDAQ University
Kit device from National Instruments, Austin, TX USA, containing a measurement card and
function generator, the supply voltage is generated, and signals vm and vz are collected [13].
The current and voltage of the memristor are calculated using Ohm’s law and Kirchhoff’s
second law. The data acquisition and preliminary data processing process is written
and implemented in the graphical programming environment LabVIEW 2022 [14]. The
utilized code is provided in the attached appendices. The circuit connection diagram to the
measurement device is shown in Figure 1b.

The voltage across the memristor is calculated using the formula vm = vs − vr, and
the memristor current is calculated as im = vr

Rs
.

Before starting measurements, it is necessary for the memristor to be formed. The
formation is performed by gradually increasing the voltage to create the necessary conductive
paths inside the memristor. However, this voltage should not exceed the nominal operating
voltage [10,12]. After forming the memristor, the circuit shown in Figure 1 is powered by a
sinusoidal alternating voltage vz(t) = Vs sin(2π f t) with amplitudes Vs ∈ {0.5, 1, 1.5} [V]
and different frequencies, where f ∈ {1, 5, 10, 20, 50, 100} [Hz]. Therefore, 18 tests are
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performed for one memristor, where each test consists of 100 periods and 1000 points for
each period.

(a)

vs = Vs sin(2π fs · t)
M

+ −
vm

im
Rs

+ −
vr

(b)

Figure 1. The schematics of the measurement setup: (a) schematic diagram of the measurement
circuit, (b) a simplified connection diagram of the measurement device to the circuit.

3. Memristor Models Under Consideration

In the work [12], a comparison is made between the accuracy of various models and
actual SDC memristors measurements, focusing on well-known memristor models in the
literature, such as the Strukov, Asymmetric Strukov, and VTEAM models. The VTEAM
model proves to be the most optimal, while the others demonstrate poor representation of
real memristors, likely due to their simplicity. However, this study does not include more
advanced models like the MMS model or the Yakopcic model. Therefore, it is decided to
compare a slightly modified VTEAM model with these more complex models. Each of the
considered models is described in detail in this section.

3.1. MMS Model

To model SDC memristors, a generalized model of metastable memristor proposed
by M. Nugent and T. Molter [15] is used. This model is semi-empirical. Each Ag+ ion
cluster is represented as a metastable switch, which probabilistically switches between two
states under the influence of voltage and temperature. The switching probability between
the HRS (High-Resistance State) and LRS (Low-Resistance State) states is denoted as PON,
while the transition from the LRS to the HRS state is denoted as POFF. The mathematical
dependencies are presented below [15,16]:

PON = α
1

1 + e−β
(

v(t)−VON

) (1)

POFF = α

(
1 − 1

1 + e−β
(

v(t)+VOFF

) ) (2)

β =
q

kT
(3)

where β is the temperature parameter, VON represents the threshold voltage for the HRS
state, VOFF denotes the threshold voltage for the LRS state, q stands for the elementary
charge (1.602176634 × 10−19 [C]), k is the Boltzmann constant (1.380649 × 10−23 [J/K]),
T represents the absolute temperature in K, α = dt

τ is the dimensionless time parameter,
and τ represents the time constant in s. The dynamics of the elements is described as the
change in the state variable x and is expressed as

dx
dt

= PON(1 − x)− POFF(x) (4)

By combining Equations (1)–(4), we obtain a comprehensive differential equation
describing the state variable x as
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dx
dt

=
1
τ

(
1

1 + e−β
(

v(t)−VON

) (1 − x)−
(

1 − 1

1 + e−β
(

v(t)+VOFF

) )x

)
(5)

The variable conductance of the memristor is then the function of the memristor’s
state and is expressed as [15,16]

Gm(x) =
x

RON
+

1 − x
ROFF

(6)

where RON is the resistance in the LRS state, and ROFF is the resistance in the HRS state.

3.2. Yakopcic Model

Due to the significant diversity in the types of memristive devices, Yakopcic proposed
a new model that introduces multiple parameters, enabling its utilization for accurate
circuit simulations and power analyses across a wide range of memristive devices. The
relationship between current and voltage depends on the state variable x(t), which governs
resistance changes based on physical dynamics. In the described model, the internal

variable x ∈ ⟨0, 1⟩ [17]. The relationship i(t) = f
(

x(t), v(t)
)

is presented in Equation (7):

i(t) =

a1x(t) sinh
(

bv(t)
)

, v(t) ⩾ 0

a2x(t) sinh
(

bv(t)
)

, v(t) < 0
(7)

where a1, a2, b are parameters used for adjustment for various memristive devices:

g
(

v(t)
)
=


Ap

(
ev(t) − eVON

)
, v(t) > VON

−An

(
e−v(t) − e−VOFF

)
, v(t) < VOFF

0 VOFF ⩽ v(t) ⩽ VON

(8)

where VON is the positive threshold voltage, VOFF is the negative threshold voltage, and
Ap, An are the regulatory quantities of exponential expressions.

The second function f
(

x(t)
)

is proposed to model the behavior of the internal variable.
It operates based on the assumption that the change of state in the memristive device
becomes more difficult at the boundaries of the variable x limitation interval. The algorithm

for calculating f
(

x(t)
)

is presented below:

If v(t) > 0,

f
(

x(t)
)
=

{
ωp(x, xON) e−αp(x−xON), x ⩾ xON

1, x < xON

Otherwise,

f
(

x(t)
)
=

{
ωn(x, xOFF) eαn(x+xOFF−1), x ⩽ 1 − xOFF

1, x > 1 − xOFF

where xON, xOFF represent the boundaries of the state variable interval x. Similarly, αn, αp
characterize the rate of exponent growth, and ωn, ωp denote the window functions. Each
window function has the following forms:

ωp(x, xON) =
xON − x
1 − xON

+ 1 (9)

ωn(x, xOFF) =
x

1 − xOFF
(10)

Due to the fact that the modeled state variable should correspond to memristors of
various constructions, the equation describing its derivative with respect to time signifi-
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cantly differs from the dependence in the Strukov–Williams model (which was introduced
to model TiO2 memristors) and looks as follows [2,17]:

dx
dt

= g
(

v(t)
)

f
(

x(t)
)

(11)

3.3. VTEAM Model

The VTEAM (Voltage Threshold Adaptive Memristor) model is based on the derivative
equation of the internal state variable x of the memristor. The VTEAM model combines
advantages such as accuracy and generality, but it faces difficulties in optimizing the model
due to the parameters that belong to integers. It takes into account the threshold voltages
of the memristor at which no change in the state variable occurs. The derivative of the
internal variable is expressed by the following relation [12,18]:

dx
dt

=


kON

(
v(t)
VON

− 1
)αON

fON(x), 0 < VON ⩽ v

0, VON < 0 < VOFF

kOFF

(
v(t)
VOFF

− 1
)αOFF

fOFF(x), v ⩽ VOFF < 0

(12)

where VOFF and VON, similarly to the previous models described, represent the negative
and positive threshold voltages; kOFF, kON are real parameters where kOFF < 0 ∧ kON > 0;
αOFF, αON represent integer parameters; and fON(x), fOFF(x) are window functions. The
current–voltage relationship and conductance are not naturally defined by the VTEAM
model. A linear current–voltage relationship can be represented by the following formula:

i(t) =
(

RON +
ROFF − RON

xON − xOFF
· (x − xOFF)

)−1

· v(t) (13)

where xOFF, xON represent the range in which the internal state variable x can occur, and
RON, ROFF are the minimum and maximum resistances of the memristor.

4. Optimization Procedure

In this section, the optimization procedure will be described, aimed at finding the
optimal parameters for the models described in Section 3.

The discussed optimization involves minimizing a certain objective function F, which
is tasked with comparing the waveform of the model function with the actual waveform of
the memristor. The requirement is for the function to decrease as the similarity between
the resulting model and the estimated actual element waveform increases. The objective
function used in this work is a modified coefficient of determination and is defined as [19]

F(a, b) =
RSS(im, f (a, b))

TSS(im)
+

RSS(vm, f (a, b))
TSS(vm)

(14)

where f (a, b) represents the model function, vm and im denote the memristor voltage and
current accordingly, a is the n-th dimension vector of the real valued model parameters
(a ∈ Rn), b is the m-th dimension vector of the integer valued model parameters (b ∈ Nm),
RSS denotes the residual sum of squares, and TSS is the total sum of squares. The functions
RSS and TSS take the following form:

RSS =
n

∑
i=1

(
yi − fi(x)

)2
(15)

TSS =
n

∑
i=1

(
yi − ȳ

)2
(16)

The parameters are as follows: yi, which represents the actual value of the ith sample;
fi(x) denotes the value predicted by the model; n represents the number of samples in the
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period; and ȳ is the average value of the samples in the period. The reference values of the
memristor current and voltage come from the measured averaged periods of the signal.

During optimization, appropriate values of parameters collected in vectors a and b
must be found so that the objective function reaches its minimum. These parameters can be
defined as real or natural numbers, depending on the specific model. For parameters that
should be natural numbers, the optimization process is performed using the brute-force
method, i.e., for each combination within a specified range, and then the ones for which
the objective function is the lowest are selected. This algorithm significantly prolongs
the optimization time. Parameters that should be natural numbers are the parameters
αon and αoff in the VTEAM model. Floating-point parameters are also subject to certain
constraints, mainly due to the nature of the model. Because the input signal to the system
is a continuous sinusoidal function, it is necessary to ensure that the response signal is
also a continuous and periodic function. This is ensured when the internal variable of
the memristor x is also a continuous and periodic function, so x(t = 0) = x(t = T),
where T is the period, indicating that the system is in a steady state. This condition
requires optimizing an additional parameter xinit, which is a constant of integration when
integrating the function of the internal variable and represents the value of the internal
variable at the time t = 0 of measurement. To ensure the continuity condition, an algorithm
is proposed consisting of the preliminary optimization of the objective function described
by Equation (14), followed by the optimization of a new objective function, which rewards
the continuity and periodicity of the internal variable function as proposed (17):

Fcont(a, b) = F(a, b) + w
(x1 − xn+1)

2

x2
1

(17)

Parameters w, x1, and xn+1 are elements of the optimization algorithm. The parameter
w is a weight chosen according to the continuity of the function. The parameters x1
and xn+1 are, respectively, the first and last elements of the internal variable function. If
condition |x1 − xn+1| ⩽ 10−3 is met, the algorithm terminates its operation; otherwise,
the optimization process of function (17) is repeated for w = w + 1 until the condition is
satisfied. To increase the number of reference points and reduce the integration step, the
interpolation method called Akima Spline [20] is utilized, which performs local fitting
of the function, and the number of points is increased tenfold. The optimization process
for the mentioned models differs slightly. It should be noted that the obtained minima
of the objective function may be only the local minima, and there may be parameters for
which the objective function can be even lower. The optimization methods are listed in the
subsequent subsections.

4.1. MMS Model

Optimization is performed based on six degrees of freedom represented by only the
parameters of real value: VON, VOFF, τ, RON, ROFF, and xinit. Two algorithms are utilized
in the optimization process. The first is the SQP algorithm implemented in the fmincon
function of Matlab R2024a [21–23]. The SQP method solves a sequence of sub-problems
optimizing the quadratic objective model subject to linearized constraints. It ensures box
constraints in all iterations and is resilient to objective function results such as Nan and Inf.
It has many advantages, including low memory consumption and the ability to quickly
solve problems. However, the solution may be inaccurate due to the barrier function
maintaining parameters away from box constraints [22,23] and when the algorithm stacks
in the local minima. The second algorithm is the Nelder–Mead algorithm, also known as
the simplex downhill method. This algorithm does not use the gradient of the objective
function [24,25]. It is implemented in the fminsearch function of MATLAB; however, the
optimization process utilizes the minimize function, which is available in the external
repository of MATLAB [26]. Unlike the fminsearch function, it allows for the introduction
of box constraints within which parameters can change.
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The optimization process involves initially minimizing the objective function (14)
using both algorithms, selecting parameters with the lowest value of this function, then
minimizing the function (17) using both algorithms, with parameters obtained in the first
stage of minimization, and finally selecting parameters for which the objective function
value is the smallest, while simultaneously checking whether the internal variable of the
function remains continuous and periodic. A simplified block diagram of the optimization
algorithm is shown in Figure 2. Box constraints for individual parameters are presented in
Table 1.

Start

a0 := initial parameters

[ f1, a1] := SQP(F, a0)

[ f2, a2] := NelderMead(F, a0)

f1 < f2

abest := a1 abest := a2

w := 2

[ f1, a1] := SQP(Fcont, abest, w)

[ f2, a2] :=
NelderMead(Fcont, abest, w)

f1 < f2

abest := a1 abest := a2

X :=
Model(uin, abest)

|X1 − XN| < ∆r

w := w + 1

Stop

yes no

yes no

no

yes

Figure 2. Simplified block diagram of the optimization algorithm.

Table 1. Box constraints on individual parameters during optimization for the MMS model.

Parameter Range Parameter Range

RON 0 ÷ 10 [kΩ] ROFF 0 ÷ 10 [MΩ]
VON 0 ÷ 1.5 [V] VOFF −1.5 ÷ 0 [V]

τ 0 ÷ 0.1 [s] xinit 0 ÷ 1

For the simulation and integration of the MMS model, the Runge–Kutta method
called “RK4” is implemented independently in MATLAB [16,27]. To ensure that the model
represents the parameters of a memristor, and not a memristor–linear resistor circuit, the
first step is to calculate the value of the internal variable. Subsequently, using the fact that
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the relationship vm = f (im) is linear, the memristor conductance can be calculated, as in
Equation (6). The voltage is then calculated using a voltage divider vm = vz

1+RsGm
, where

Rs represents the resistance of the series resistor. Subsequently, the memristor current is
the product of the voltage vm and the conductance Gm.

4.2. VTEAM Model

The optimization is conducted based on nine degrees of freedom, which are vON, vOFF,
kON, kOFF, RON, ROFF, αOFF, αON, and xinit. All these parameters are floating-point num-
bers, except for αOFF and αON, which should be natural numbers. The optimization process
occurs just as for the MMS model described in Section 4.1, except that the optimization
process takes place for each combination of the integer pair αOFF and αON, and then pa-
rameters are chosen for the smallest objective function. To limit the dimension of the
integer space of the possible solutions, the parameters αOFF and αON are chosen to be less
than 10. Therefore, for a single test, for each amplitude of the driving signal and for each
frequency, it is necessary to perform as many as 81 iterations. Additionally, the model
employs the Biolek’s window function [28] with parameter p: for fOFF, i.e., for the range
vm ⩽ VOFF < 0, p = 4, and for fON, i.e., 0 < VON < vm, p = 1 [18]. In the model, xON = 1
and xOFF = 0 are set so that the internal variable x can change within a relative range from
0 to 1. The constraints for the optimization parameters are presented in Table 2.

Table 2. Box constraints on individual parameters during optimization for the VTEAM model.

Parameter Range Parameter Range

RON 0÷10 [kΩ] ROFF 0 ÷ 1 [MΩ]
VON 0 ÷ 1.5 [V] VOFF −1.5 ÷ 0 [V]
kON 0 ÷ 5 × 103 kOFF −5 × 103 ÷ 0
αON {1, . . . , 9} αOFF {1, . . . , 9}
xinit 0 ÷ 1

4.3. Yakopcic Model

The optimization is performed based on twelve degrees of freedom. All the parameters
are real. The optimization process is similar to that for the MMS and VTEAM models
described in Section 4.1. However, the system is modeled as a “memristor-linear resistor”
due to the nonlinear relationship between the memristor current im and its voltage vm as
shown in Equation (7). In this equation, it is challenging to directly obtain conductance or
resistance since the voltage is an argument of the sinh function. The box constraints for
each variable used in the optimization are provided in Table 3.

Table 3. Box constraints on individual parameters during optimization for the Yakopcic model.

Parameter Range Parameter Range

Ap 0 ÷ 105 An 0 ÷ 105

VON 0 ÷ 1 [V] VOFF −1 ÷ 0 [V]
xON 0 ÷ 1 xOFF 0 ÷ 1
αp 0 ÷ 103 αn 0 ÷ 103

a1 0 ÷ 103 a2 0 ÷ 103

b 0 ÷ 103 xinit 0 ÷ 1

5. Optimization Results

In this section, the results of the optimization process for each model are presented,
discussed, and compared with each other. Due to the high nonlinearity of the objective
functions (14) and (17), the calculated minima are likely local, with global minima posing
a significant challenge. The optimization process mainly depends on the specified initial
points, which must be manually set based on examples from the literature and one’s own
estimates. In the tests discussed, these are determined experimentally by conducting
several optimization trials until a low objective function value is achieved [12].
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5.1. MMS Model

Table 4 presents the optimization results. It can be observed that the values of the
objective function are quite low, with the majority being lower than 10−2. Figure 3 illustrates
a comparison of the current im and voltage vm trajectories of the memristor obtained during
measurements with those of the MMS model obtained after optimization, for the lowest
value of the objective function. The parameters corresponding to the most favorable case
are provided in Table 5. Figure 4a shows the trajectories of the memristor’s internal state
variable x as a function of the memristor voltage vm. Meanwhile, Figure 4b presents the
trajectory of the internal variable and a comparison of the model’s resistance with the
measured memristor resistance over time, featuring a logarithmic Y-axis.

Table 4. The objective function values for optimizing the MMS model when supplying the system
with sinusoidal voltage of various parameters. The minimum value of the objective function is
marked in green, while the maximum is marked in red.

f [Hz] Tin Doping Chromium Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 6.13× 10−4 1.32× 10−3 1.99× 10−3 1.60× 10−3 1.09× 10−2 1.90× 10−2

5 1.41× 10−3 2.05× 10−3 3.81× 10−3 4.03× 10−3 1.82× 10−2 2.74× 10−2

10 6.84× 10−4 1.53× 10−3 3.77× 10−3 5.88× 10−3 1.93× 10−2 2.12× 10−2

20 1.54× 10−3 2.04× 10−3 1.39× 10−2 2.99× 10−3 4.64× 10−2 1.65× 10−2

50 2.16× 10−3 2.22× 10−3 2.18× 10−2 2.62× 10−3 9.91× 10−3 3.42× 10−3

100 9.31× 10−4 3.06× 10−3 5.74× 10−3 8.67× 10−3 4.01× 10−3 1.28× 10−2

f [Hz] Tungsten Doping Carbon Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 2.48× 10−3 4.99× 10−3 9.93× 10−3 1.32× 10−3 4.92× 10−4 9.12× 10−4

5 3.10× 10−3 6.23× 10−3 1.08× 10−2 2.75× 10−3 7.36× 10−4 7.16× 10−4

10 3.64× 10−3 5.64× 10−3 1.10× 10−2 1.38× 10−3 7.65× 10−4 6.15× 10−4

20 3.50× 10−3 4.91× 10−3 1.04× 10−2 1.09× 10−2 9.61× 10−4 9.95× 10−4

50 2.63× 10−3 2.27× 10−3 1.00× 10−2 9.27× 10−4 5.43× 10−3 1.75× 10−3

100 3.01× 10−3 8.45× 10−3 1.26× 10−2 5.08× 10−2 1.66× 10−3 6.38× 10−4

(a)
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Figure 3. The optimization results obtained for the MMS model with carbon doping, with a supply
amplitude of Vs = 1 [V] and frequency f = 1 [Hz], yield an objective function value for this case of
4.92 × 10−4. (a) Comparison of the hysteresis curves of the memristor vm − im, both the reference and
the ones obtained during optimization. (b) Comparison of the currents and voltages of the memristor
with those obtained as a result of model optimization.
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Figure 4. The profiles of the internal variable and resistance obtained for the MMS model with carbon
doping, with a supply amplitude of Vs = 1 [V] and frequency f = 1 [Hz], yield an objective function
value for this case of 4.92 × 10−4. (a) The variation in the internal state variable x as a function of the
memristor voltage vm. (b) The variation in the internal variable x and the memristor resistance Rm

over time.

Table 5. The example of the achieved parameters values for the MMS model for which the lowest
objective function value was obtained (F = 4.92 × 10−4). The memristor and excitation signal
parameters can be found in the Table 4.

Parameter Value Parameter Value

RON 14.3 [kΩ] ROFF 3.02 [MΩ]
VON 250 [mV] VOFF −62.8 [mV]
xinit 1.48 × 10−5 τ 16.8 [ms]

In Table 6, the averaged objective function values over all combinations of the exci-
tation signals for each doping materials are presented. As can be observed, the highest
average objective function value is obtained for tungsten doping; however, all these values
are close to each other.

Table 6. The averaged objective function values F̄(a, b) for each type of memristor doping after
optimizing the MMS model.

Doping Chromium Tin Tungsten Carbon

F̄(a, b) 1.30 × 10−2 3.92 × 10−3 6.42 × 10−3 4.65 × 10−3

5.2. VTEAM Model

In Table 7, the values of the objective functions are collected. In Figure 5, a comparison
of the current im and voltage vm waveforms of the memristor obtained during measure-
ments with the waveforms of the optimized VTEAM model for the minimum value of the
objective function is shown. Table 8 provides the parameters corresponding to the most
favorable case. In Figure 6a, the variations in the internal state memristor variable x as a
function of the memristor voltage vm are presented. Meanwhile, in Figure 6b, the varia-
tion in the internal variable and a comparison of the model resistance with the measured
memristor resistance as a function of time are shown. A logarithmic scale is applied to
the vertical axis. In Table 9, the averaged objective function values for each doping are
presented. As can be observed, the highest average objective function value is obtained
for carbon doping, while the lowest is for chromium doping. There is some variation in
the values between the memristors doped with chromium and carbon, where the average
values differ almost tenfold.
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Table 7. The objective function values for optimizing the VTEAM model when supplying the system
with sinusoidal voltage of various parameters. The minimum value of the objective function is
marked in green, while the maximum is marked in red.

f [Hz] Tin Doping Chromium Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 6.00× 10−2 1.16× 10−3 8.44× 10−3 4.56× 10−3 6.92× 10−4 4.53× 10−4

5 2.19× 10−3 2.11× 10−3 8.65× 10−3 1.14× 10−2 1.22× 10−3 3.70× 10−4

10 3.91× 10−2 1.60× 10−2 5.60× 10−3 3.58× 10−3 1.21× 10−3 6.72× 10−4

20 1.43× 10−3 2.64× 10−2 1.49× 10−3 7.52× 10−3 1.32× 10−3 9.74× 10−4

50 1.25× 10−3 3.53× 10−3 2.83× 10−3 1.19× 10−2 4.04× 10−2 3.24× 10−3

100 1.09× 10−3 6.60× 10−3 1.93× 10−2 6.61× 10−3 7.72× 10−3 4.92× 10−4

f [Hz] Tungsten Doping Carbon Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 2.39× 10−3 4.89× 10−3 7.77× 10−2 5.27× 10−3 1.21× 10−2 8.48× 10−3

5 2.17× 10−3 9.81× 10−2 8.15× 10−2 1.04× 10−2 6.69× 10−3 2.36× 10−2

10 2.43× 10−3 4.99× 10−3 9.01× 10−3 3.76× 10−2 0.60 4.24× 10−3

20 2.51× 10−3 5.20× 10−3 6.24× 10−2 3.08× 10−2 5.72× 10−3 1.16× 10−2

50 2.24× 10−3 0.14 5.51× 10−2 5.20× 10−2 3.80× 10−3 1.21× 10−2

100 3.68× 10−3 6.57× 10−3 8.87× 10−3 5.19× 10−2 3.35× 10−3 2.23× 10−3

Table 8. The achieved parameters values of the VTEAM model for which the lowest objective function
value is obtained (F = 3.70 × 10−4).

Parameter Value Parameter Value

RON 620 [Ω] ROFF 12.6 [MΩ]
VON 93.4 [mV] VOFF −31.7 [mV]
kON 8.93 × 102 kOFF −2.71 × 10−3

αON 6 αOFF 2
xinit 0.81

Table 9. The averaged objective function values F̄(a, b) for each type of memristor doping after
optimizing the VTEAM model.

Doping Chromium Tin Tungsten Carbon

F̄(a, b) 5.79 × 10−3 1.15 × 10−2 3.14 × 10−2 4.88 × 10−2
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Figure 5. The optimization results obtained for the VTEAM model with chromium doping, with
a supply amplitude of Vs = 1.5 V and frequency f = 5 Hz, yield an objective function value for
this case of 3.70 × 10−4. (a) Comparison of the hysteresis curves of the memristor vm − im, both the
reference and the ones obtained during optimization. (b) Comparison of the currents and voltages of
the memristor with those obtained as a result of model optimization.
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Figure 6. The optimization results obtained for the VTEAM model with chromium doping, with a
supply amplitude of Vs = 1.5 V and frequency f = 5 Hz, yield an objective function value for this
case of 3.70 × 10−4. (a) The variation in the internal state variable x as a function of the memristor
voltage vm. (b) The variation in the internal variable x and the memristor resistance Rm over time.

5.3. Yakopcic Model

As can be observed in Table 10, the objective function values are quite low, with
the majority of them being lower than 10−2. In Figure 7, a comparison of the current
im and voltage vm waveforms of the memristor obtained during measurements with the
waveforms of the Yakopcic model obtained after optimization for the minimum value of
the objective function is shown. Table 11 provides the parameters corresponding to the
most favorable case. Figure 8a presents the variations in the internal memristor variable
x as a function of the memristor voltage vm, while Figure 8b shows the variation in the
internal variable and the memristor resistance as a function of time.

Table 10. The objective function values for optimizing the Yakopcic model when supplying the
system with sinusoidal voltage of various parameters. The minimum value of the objective function
is marked in green, while the maximum is marked in red.

f [Hz] Tin Doping Chromium Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 4.36× 10−4 5.33× 10−3 2.21× 10−3 7.66× 10−3 3.25× 10−3 4.35× 10−3

5 9.62× 10−3 1.04× 10−2 1.29× 10−3 8.11× 10−3 1.19× 10−2 5.53× 10−3

10 4.33× 10−3 1.72× 10−3 9.67× 10−4 1.04× 10−2 7.60× 10−3 4.38× 10−3

20 5.58× 10−3 4.00× 10−3 9.49× 10−3 6.71× 10−3 3.50× 10−3 6.44× 10−3

50 6.61× 10−3 2.86× 10−3 1.20× 10−3 8.75× 10−3 1.23× 10−2 8.46× 10−3

100 8.87× 10−3 4.00× 10−3 2.22× 10−3 7.15× 10−3 5.09× 10−3 8.14× 10−3

f [Hz] Tungsten Doping Carbon Doping
Vs = 0.5 V Vs = 1 V Vs = 1.5 V Vs = 0.5 V Vs = 1 V Vs = 1.5 V

1 1.75× 10−3 5.05× 10−3 9.34× 10−3 2.00× 10−3 3.60× 10−4 2.69× 10−3

5 1.71× 10−3 3.89× 10−3 7.91× 10−3 2.52× 10−3 3.42× 10−3 5.57× 10−3

10 1.86× 10−3 4.15× 10−3 8.11× 10−3 7.55× 10−4 1.52× 10−3 1.66× 10−3

20 6.56× 10−3 3.88× 10−3 8.06× 10−3 2.40× 10−2 1.93× 10−3 1.99× 10−3

50 2.27× 10−2 2.35× 10−2 9.41× 10−3 3.59× 10−3 1.70× 10−3 3.40× 10−3

100 4.35× 10−3 5.77× 10−3 9.12× 10−3 7.84× 10−3 3.54× 10−3 1.03× 10−2
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Figure 7. The optimization results obtained for the Yakopcic model with carbon doping, at a supply
amplitude of Vs = 1 [V] and frequency f = 1 [Hz], yield an objective function value of 3.60 × 10−4

for this particular case. (a) Comparison of the hysteresis curves of the memristor vm − im, both the
reference and the ones obtained during optimization. (b) Comparison of the currents and voltages of
the memristor with those obtained as a result of model optimization.

Table 11. The parameters obtained for the Yakopcic model for the lowest objective function value
(F = 3.60 × 10−4).

Parameter Value Parameter Value

Ap 4 × 103 An 4 × 103

VON 243 [mV] VOFF −1 [V]
xON 2.20 × 10−2 xOFF 0.67
αp 5.48 αn 8.01
a1 2.27 × 10−2 a2 7.03 × 10−4

b 0.67 xinit 0.263
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Figure 8. The trajectories of the internal state variable and resistance obtained for the Yakopcic model
with carbon doping, at a supply amplitude of Vs = 1 [V] and frequency f = 1 [Hz], yield an objective
function value of 3.60 × 10−4 for this particular case. (a) The variation in the internal state variable
x as a function of the memristor voltage vm. (b) The variation in the internal variable x and the
memristor resistance Rm over time.

In Table 12, the averaged objective function values for each doping are presented. The
average objective function values do not significantly differ from each other and are lower
than 10−2.
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Table 12. The averaged objective function values F̄(a, b) for each type of memristor doping after
optimizing the Yakopcic model.

Doping Chromium Tin Tungsten Carbon

F̄(a, b) 7.21 × 10−3 4.51 × 10−3 7.62 × 10−3 4.38 × 10−3

6. Comparative Analysis of Optimization Results
6.1. Statistical Analysis of the Optimization Results Obtained

To facilitate a comparative analysis of the optimized models, several comparative
graphs have been generated. Figure 9 illustrates the average objective function values for
each model as a function of the supply voltage amplitude applied to the memristor–resistor
system. It is readily apparent that the VTEAM model exhibits the highest objective function
values, accompanied by a significant dispersion as indicated by the error bars associated
with each data point. The error bars represent confidence intervals, which are intrinsically
linked to the probability distribution of the measured values [29]. Notably, the MMS and
Yakopcic models demonstrate a reduced dispersion of the results. The objective function
value for the MMS model increases with increasing the supply signal, in contrast to the
Yakopcic model.

Figure 10 depicts the average objective function values for each model as a function
of the frequency of the supply voltage applied to the memristor–resistor system. It is
immediately evident that the VTEAM model exhibits the highest objective function values,
accompanied by a significant dispersion, as indicated by the error bars. In contrast, the MMS
and Yakopcic models demonstrate a reduced dispersion of the results and considerably
lower average objective function values. In particular, the Yakopcic and MMS models
exhibit lower objective function values within the lower frequency range.

0.5 1.0 1.5
Vs [V]

10−2

10−1

F(
a,

b)

MMS
VTEAM
Yakopcic

Figure 9. The average objective function values for each model as a function of the supply voltage
amplitude applied to the memristor–resistor system. The y-axis is presented on a logarithmic scale.

Figure 11 presents the average values of the objective function for each model as a
function of the doping material used. It is evident that for the MMS model, the lowest
average objective function values are observed for tin and carbon doping, while the highest
value corresponds to chromium doping. Similarly, the Yakopcic model exhibits the lowest
objective function values for carbon and tin doping, with the highest value associated with
tungsten doping. In the VTEAM model, the highest values are obtained for carbon doping
and the lowest values are obtained for chromium doping.
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Figure 10. The average objective function values for each model as a function of the frequency of
the supply voltage applied to the memristor–resistor system. The y-axis is presented on a logarith-
mic scale.
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Figure 11. The average objective function values for each model as a function of the memristor
doping material. The y-axis is presented on a logarithmic scale.

Figure 12 presents a box plot [30] that illustrates the distribution of the obtained
objective function values. It is evident that the median objective function value is lowest
for the MMS model and highest for the VTEAM model. Furthermore, the VTEAM model
exhibits the greatest dispersion of values. The value axis of the objective function is
presented on a logarithmic scale to enhance data clarity.

Table 13 displays the average objective function values for each model. The Yakopcic
model exhibits the lowest average objective function value, which is marginally lower than
that of the MMS model, at 5.93 × 10−3. The VTEAM model presents the highest objective
function value. Table 14 presents the standard deviation (σ) of the objective function values
for each model. Notably, the Yakopcic model demonstrates the lowest standard deviation
at 4.79 × 10−3, while the VTEAM model exhibits the highest at 7.30 × 10−2.
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Figure 12. Box plot of the objective function values for each model.

Table 13. Mean values of the objective function for each of the models. The highest objective function
is marked in red, while the lowest is marked in green.

Model MMS VTEAM Yakopcic

F̄(a, b) 7.01 × 10−3 2.44 × 10−2 5.93 × 10−3

Table 14. Mean values of the objective function for each of the models. The highest objective function
is indicated in red, and the lowest in green.

Model MMS VTEAM Yakopcic

σ 9.33 × 10−3 7.30 × 10−2 4.79 × 10−3

6.2. Analysis of Results in the Context of Parameter Generalization

A critical factor essential for the simulation of electric circuits is that the parameters
of the models remain invariant with respect to changes in the operational conditions
under which these models function, such as the form of the excitation, its amplitude, and
frequency. In this subsection, the examination how the optimal parameters of models,
determined through optimization, vary with the frequency and amplitude of the input
signal is presented. Additionally, the exploration of how the optimal parameters for
different types of excitation influence the objective function’s value for other excitation
parameters is carried out.

In Figure 13, an exemplary heatmap is presented, displaying the objective function
values for the evaluation of model parameters obtained through optimization for different
excitation parameters. As can be observed, the lowest values of the objective function are
located along the diagonal of the matrix. This is because these are the objective function
values for the parameters for which the optimization is performed. The values in the
upper right corners of the matrix are the highest. These are the regions where the objective
function values are evaluated for the most divergent excitation parameters from those
used during the optimization process. From the presented graph, it can be concluded
that the parameters of the MMS models do not generalize the dynamics of memristors
for all operational conditions. An interesting aspect is the significantly higher accuracy
of the model when it is optimized at higher excitation frequencies and evaluated at lower
frequencies, rather than the other way around.
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Figure 13. An exemplary matrix in the form of a heatmap, where both color and annotation depict the
value of the averaged objective function, is presented. On the left side of the graph are the excitation
parameters for which the model is optimized, while along the bottom are the excitation parameters
for which the model is evaluated. The graph contains data from the MMS model. For enhanced
visibility, the color scale is logarithmically adjusted.

In Figure 14, a matrix of plots is presented, showing the variation in MMS model pa-
rameter values (Y-axis) with linear trend lines, depending on the doping of the memristors
and excitation parameters (X-axis). As can be observed, the optimized parameters of the
MMS model change quite drastically depending on the excitation signal parameters (in this
case, the parameters of the alternating supply voltage). This requires adjusting the model
parameters during simulation according to the intended signal.
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Figure 14. A matrix of plots illustrating the variation in MMS model parameter values (y-axis)
with linear trend lines, depending on the doping of memristors and excitation parameters (x-axis),
is presented.

7. Conclusions

From the conducted optimizations, it can be concluded that they were successful, and
the obtained objective functions achieved relatively low values. It can also be inferred
that the best models for modeling SDC memristors are the MMS and Yakopcic models.
They have similar low average values of the objective function, and the dispersion of these
values is not large depending on the amplitude of the supply voltage, frequency, or type of
doping. Compared to the models mentioned earlier, the worst model for optimization is
definitely the VTEAM model. It has the highest average values of the objective function
and the largest dispersion. Taking into account the specifics of the model, especially the fact
that natural parameters are required, the optimization of this model is quite tedious due to
iterating over all possible combinations of integer parameters in the interval and selecting
the best solution. This means that the time needed to minimize the objective function
is several dozen times longer than the time needed for the MMS model. An additional
problem is the undefined values by the objective function, which the minimizing algorithm
must be resistant to. Taking into account also the specifics of individual models, it can
be reflected that the MMS model is best suited for modeling SDC memristors due to its
simplicity (only six degrees of freedom), the linear dependence of the current on the voltage,
and the fact that it does not have threshold ranges, so the function of the internal variable
is monotonically continuous. The MMS model also has a physical interpretation in real
memristors. The Yakopcic model was created to fit every type of memristor, and in the
discussed case, quite good fits and low objective functions are obtained. However, it is
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quite complicated and does not have a linear dependence of the current on the voltage.
Additionally, it is a mathematical concept and does not have a physical interpretation.

From the optimization results, it can also be concluded that the lowest objective
functions are obtained for fairly rounded waveforms where there is no sudden switching
between states, which is called soft switching [16]. It occurs when the function of the
internal variable x does not reach the upper value of the range in which it is contained.
This is especially visible when powered by signals with high frequency and low amplitude,
as the energy and charge in each half-period are low and do not allow reaching the limit
ranges of the internal variable. During the measurements, the influence of the memristor
temperature change has been observed. In the future, the authors will consider participation
in the project of creating the optimal memristor model with temperature as the additional
parameter involved. The first idea seems to extend the MMS memristor model of this
additional feature.

In summary, the most significant conclusions drawn from this study are as follows:

• The automatic and precise selection of the parameters of the memristor model is
achieved successfully, eliminating the need for manual estimation, which typically
leads to reduced accuracy.

• This achievement enables faster prototyping of circuits incorporating memristors,
thanks to the high correspondence between the models and the experimental data.

• The MMS model, specifically designed for this purpose, is identified as the most
suitable for modeling SDC memristors. This is due to its simplicity, the absence of
discontinuities, and its ease of integration (even with suboptimal parameters, the
solutions remain convergent).

• However, further research is needed to generalize the memristor models, ensuring
that, once optimized, the parameters accurately represent memristors operating under
a variety of conditions.
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