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Abstract: In the transition from traditional electrical energy generation with mainly linear sources to
increasing inverter-based distributed generation, electrical power systems’ power quality requires
new monitoring methods. Integrating a high penetration of distributed generation, which is typically
located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to
distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of
complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation
methods provide knowledge about unmeasured locations by learning a physical system’s non-linear
relationships. This article examines a new flexible, close-to-real-time concept of harmonic state
estimation using synchronized measurements processed in a neural network. A physics-aware
approach enhances a data-driven model, taking into account the structure of the electrical network.
An OpenDSS simulation generates data for model training and validation. Different load profiles
for both training and testing were utilized to increase the variance in the data. The results of the
presented concept demonstrate high accuracy compared to other methods for harmonic orders 1
to 20.

Keywords: harmonic state estimation; physics-aware neural networks; pruned artificial neural
network; power quality state estimation

1. Introduction

Conventional monitoring strategies in electrical power systems rely on the measured
root mean square (RMS) voltages, currents, and power (active, reactive, and apparent).
Phasor measurement units (PMUs) provide additional information about the relative
voltage phasor’s magnitude and angle. For power flow (PF) analysis, a measurement
resolution of 15-min steps is typical and sufficient in most use cases. When it comes to
measurements of power quality (PQ), various time intervals need to be considered. By
definition, PQ is assessed through any deviation in the voltage’s waveform from an ideal
sinusoidal shape at an expected RMS voltage with a stable fundamental frequency [1].
Typical PQ disturbances are voltage sags or swells, flickers, harmonics, or short-period
transient deformations. Characteristics for PQ are already considered in a wide range
of standards (e.g., European EN50160 or EN61000-2-2). These standards necessitate the
analysis of various parameters over time intervals ranging from milliseconds to hours [2,3].

PQ meters provide all relevant RMS values, voltage- and current phasors, various
harmonic levels, flicker-evaluation, and high-resolution oscilloscope records to capture
transient disturbances. Time-synchronizing these measurements via the precision time
protocol (PTP) or Global Positioning System (GPS) enables applications like wide area
monitoring systems (WAMS) [4]. WAMSs can be used to acquire the necessary data for
PQ state estimation (PQSE), which describes various state estimation (SE) techniques for
different PQ issues [5].

Assuming that a high penetration of distributed generation and electric vehicle charg-
ing in low- (LV) or medium-voltage (MV) grids influences PQ significantly, research and
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simulations have been conducted to quantify this impact. The authors in [6] prove a strong
contribution of large photovoltaic (PV) systems to harmonic distortion in Columbian dis-
tribution grids. Other sources discuss how smaller systems affect PQ. Using a simulation
model, ref. [7] shows that PV systems connected to LV grids may cause considerable
transient effects, voltage sags, and harmonics. Reference [8] analyzes the influence of
electric vehicle charging in LV grids on technical equipment such as transformers. The
authors propose to limit the current total harmonic distortion (THD) to 25–30% to preserve
a reasonable life expectancy, as harmonic currents cause premature aging of components.
Yet, another work observes current THD of up to 99% for the powerful, commercially
available electric vehicle supply equipment (EVSE) of older generations [9]. Considering
these influences on grid operation, distribution grid operators have an incentive to assess
the level of harmonics and to identify the origins of PQ disturbances in LV and MV grids.
Especially for live monitoring systems or WAMSs, this paper presents a high-performance
estimation method suitable for application in near-real-time environments. Typically, this
term is defined based on the specific application and refers to the system’s processing
time from the initiation of an event to the completion of transmission and evaluation [10].
In harmonic analysis, the shortest evaluation interval commonly used determines the
performance requirements for SE. For example, the IEEE519 standard requires evaluation
of voltage harmonics with an average interval of 3 s [11].

Summing up the described challenges, the following ideas form the central motivation
of this research:

• Fast algorithmic execution time to deliver results in near-real time.
• Harmonic state estimation (HSE) on the base of a very small number of installed

PQ meters.
• Application at both LV and MV levels.
• Assessment of the influence of integrating grid topology in HSE.

The primary research contribution of this paper is the evaluation of an SE method for
analyzing harmonic flows in complex LV/MV mixed grids with sparse metering coverage.

2. State of the Art

HSE generates knowledge about harmonic quantities at unmeasured locations based
on a specific set of measurements. Several algorithms for HSE in LV and MV grids can be
found in the current literature. The following section will provide an overview of known
methods for SE and HSE in distribution grids, as well as the benchmarking advantages of
data-driven algorithms in this field.

2.1. State Estimation for Distribution Grids

Most SE algorithms rely on iterative processes that can also be applied to HSE. How-
ever, they are computationally expensive and require a large number of meters to achieve
adequate observability of the grid’s states. We will examine these aspects in detail in the
results section of this article.

Some of these conventional methods for HSE include the weighted least squares (WLS)
approach [12], singular value decomposition (SVD), which is a derivate of WLS for sparse
measurement infrastructure [13,14], or Kalman filters (KF), which iterate over a time series
of states [15]. Combining different approaches, such as the mutated two-loop particle
swarm optimization as described in [16], can improve the precision of the basic algorithm.
However, when these algorithms are applied to HSE, a higher ratio of PQ meters is needed
for good convergence.

To provide an insight into an iterative SE process, the original WLS formulation by
Schweppe [17] is briefly illustrated. The general formulation is defined by Equation (1).

z = h(x) + e (1)
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Here, z is a vector of real measurements, x is a vector of states to be determined,
and h(x) is a vector of functions that approximate the relationship to z by exploiting the
physical dependencies given by the system’s bus and branch admittances. e describes the
error of the measurement devices. For M measurement locations, the objective function is
as follows:

J(x) =
M

∑
i=1

(zi − hi(x))2

Rii
(2)

R is the covariance matrix that contains the variances of each measurement location. These
variances are considered to follow a Gaussian normal distribution with zero mean and are
used to weigh different measurement types (e.g., PMU voltages, currents, power injection).

R = Cov(e) = diag{σ2
11, σ2

22, . . . , σ2
MM} (3)

2.2. Neural Networks for State Estimation

To highlight the aforementioned difficulty of conventional iterative methods in main-
taining observability with a small number of measurement devices, an example from [18]
of a PF-SE based on WLS is presented. In this example, a distribution system is stated as
unobservable with 31 nodes and 21 m locations.

Completely different scenarios are possible when applying data-driven methods, as
demonstrated in [19]. This work performs a PF-SE by using an artificial neural network
(ANN) in a 32-node distribution grid, which is observed by only three PMU measurements.
This underscores the potential benefits of adopting more advanced statistical techniques,
such as ANNs, for PQSE.

Another machine learning-based approach for SE is discussed in [20]. Here, an ANN
is presented to apply PF-SE on a UK 95-bus network. The maximum time for estimating a
system state among 88 samples was 0.7 s, while a range of non-data-driven works reported
execution times of nearly a minute or more for convergence [12,21–23]. This highlights
ANN applications for near-real-time computation tasks, too.

Accurate results for an ANN and simulation-based HSE considering the first 13 har-
monic orders are presented in [24]. The author’s concept takes probabilistic distributions of
load and PV systems into account while processing smart meter data and sparse PMU mea-
surements. A different approach based on ANNs is presented in [25]. Here, a generative
adversarial network (GAN) is implemented. This combination of two ANNs is utilized for
HSE and yields accurate results compared to a KF implementation.

Ref. [26] used a method of pruning connections in a dense ANN (DNN) to integrate
physical knowledge of the grid’s topology into the data model. This ANN architecture is
known as physics-aware ANN (PANN) and will be applied in this work to incorporate
information about infrastructure like connection dependencies of cables and transformers.
According to [26], this method is especially suited for applications with a low coverage of
measurements. The authors of this study demonstrate robust and precise estimation of
fundamental frequency voltage phasors for distribution grids. The authors in [27] published
the basis for the work in [26] and showed very short execution times for predictions with
their PANN. Merely, 1.259 ms were needed to estimate the PF for 37 nodes. Compared to
DNNs, the PANN is resilient against overfitting and vanishing or exploding gradients. The
SE accuracy in comparison to traditional iterative methods is better for almost every tested
scenario. Especially when sparse meter coverage impedes convergence for conventional
algorithms, the PANNs still provide very good SE results. Since the static structure of the
distribution grid is integral to the ANN architecture, a trained model requires updating the
structure and retraining if the evaluation object changes.

Considering these benefits observed for PF-SE, we go one step further and evaluate
a physics-aware approach in the context of PQ. Here, we apply PANNs for PQSE with a
limited number of PQ meters and in complex MV and LV grids while maintaining low
computational complexity.
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2.3. Related Subject Areas in Power Quality State Estimation

Since SE is an approach to reduce costly measurements for extensive infrastructure,
especially in the field of PQSE, it is desirable to use a minimum number of applied PQ
meters, as these devices are very expensive.

Ref. [28] implemented and tested several methods for assessing PQ disturbances. The
authors introduce a classification of error types to reduce the PQ phenomena to a limited
set of algorithms. The presented article also employs this classification. Depending on the
error type, the applied method varies. According to [28], the classifications depicted in
Figure 1 consider the relevant criteria to assess PQ states.

Figure 1. Classification of power quality state estimation techniques according to [28]. The four
presented classifications cover the majority of PQ markers, or derivates of estimated quantities may
be evaluated, e.g., a flicker can be calculated from fundamental frequency state estimation data.

Again, the applied methods are mainly WLS-based and may not be suitable for
close-to-real-time applications. Fundamental frequency state estimation (FSE), voltage sag
state estimation (VSSE), and HSE can be evaluated in the frequency domain. However,
estimating transients in the time domain is a computationally costly process [28]. The
numerical integrator substitution for transient state estimation (TSE) requires a lot of time,
as every time step of interest needs to be calculated [29].

The presented work is embedded in a concept, which aims to combine TSE with FSE,
and VSSE on the basis of the fast Fourier transform (FFT) and the presented HSE [30].
Works like [31,32] analyze and simulate transient data within the frequency domain. This
method will be used in sparse mode (sFFT) to also apply the presented HSE model to
different time domain signals as shown in [33].

3. Materials and Methods

Even though this work focuses on the evaluation of a fixed amount of harmonics in an
HSE algorithm, it also provides a first insight into the utilization of the applied method for
all previously mentioned fields of PQSE.

Therefore, this section contains the HSE formulation, information about the simulation,
and specific details on the designed model. Finally, a general PQSE framework is put
forward, within which the HSE is embedded.
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3.1. Harmonic State Estimation Formulation

For HSE, the system state Equation (1) can also be applied by expanding the variables
into matrices to account for all harmonics K. Specifically, z becomes an M ×K measurement
matrix, and x becomes an N × K state matrix, where M is the number of installed meters
and N represents the number of estimated single-phase nodal voltage phasors (or states).
Each complex nodal voltage Vk = Vk + jVk (readings and states) considers K harmonic
orders indexed by k ∈ {1, 2, 3, . . . , K}. This yields the shapes of z and x as depicted in
Equations (4) and (5).

z =
M

∑
m=1

K

∑
k=1

Vmk (4)

x =
N

∑
n=1

K

∑
k=1

V̂nk (5)

e describes the measurement error in the same dimensions as z. Rewriting (1) as
follows illustrates the mismatch of the mathematical dimensions between z − e and x.

h−1(z − e) = x (6)

Here, the inverse function h−1 is substituted by an ANN, which resolves this discrepancy.
This work aims to process snapshots of system states, as PMU-like PQ meters provide

synchronized harmonic voltage phasors. These phasors are given in 3-s average intervals,
or they can be obtained in custom dimensions from PQ meter fault recorders with typical
sampling rates in the range of 10–40 kHz. Considering other applications in the context of
PQSE, the model must not have any temporal dependencies, as it could be necessary to
evaluate non-periodic waveforms. Therefore, time series may be evaluated step by step,
but input data in consecutive steps are not needed for the algorithm.

3.2. Proposed Physics-Aware Neural Network

In general, ANNs are mathematical, data-driven models designed to mimic human
learning processes. These models typically consist of at least three layers when calculating
non-linear relationships. The basic architecture of ANNs usually includes an input layer,
one or more hidden layers, and an output layer.

Each layer consists of an individual number of neurons that process numeric inputs
from other neurons. Weight factors (w), adjusted during the training process, multiply the
resulting interconnections. An activation function (σ), often a rectified linear unit (ReLU)
or a hard tanh, processes the summed inputs of a neuron as its output (o) to the next
layer [34–36].

Our proposed method (PM) tackles a supervised learning task, associating each feature
set x with a corresponding output value y. The ANN aims at learning the mapping function
from x to y. We want to evaluate the benefit of using the aforementioned PANN technology
from [26,27] for HF. However, in comparison to [26], we aim to evaluate this concept for
harmonic voltage phasors with a different sensitivity than the fundamental frequency.
Also, this paper focuses on a fixed set of PQ meters and only on optimal placement for the
shallowest possible depth of the PANN. We are not partitioning our grid, as we do not
expect a lack of computational resources. Our here presented approach only uses a few
PMU voltage measurements, where works such as [26,27] use PMU voltage, PMU current,
and large numbers of pseudo measurements from historical data.

Figure 2a introduces a PANN implementation for the simple network depicted in
Figure 2b. The PM uses this concept to integrate the network’s structure, especially in
HF for higher-order harmonics. Two case studies prove the strength of this method over
conventional and other data-driven methods.
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(a) (b)
Figure 2. In a PANN connections within the ANN correspond to physical connections from the
electrical network. (a) Pruned ANN architecture. (b) Example of an electrical network with six nodes
and five connecting lines.

3.3. Power Quality State Estimation Concept

Summing up the literature review and the physical framework of this work, a state
estimation concept is proposed, considering four main components:

• Simulation environment for model training and validation
• Optional preprocessing for transients (time span isolation) with FFT analysis and

synthesis (not part of this work)
• ANN estimator (few meters, close-to-real-time)
• Integration of the grid model (network connections)

According to the described components, the correlating block diagram is depicted in
Figure 3. Training, validation, and testing of the model are solely conducted on simula-
tion data.

Figure 3. The suggested idea uses data from either simulation or PQ meters (dashed line). The
simulation environment provides data in the frequency and time domain. Depending on the chosen
input, FFT algorithms are employed. Outputs of the SE are either detailed voltage waveforms or
complex nodal voltages of harmonics h.



Energies 2024, 17, 5452 7 of 19

This concept enables the evaluation of the fundamental frequency and harmonic
components of the voltage signals as complex vectors. However, the Fourier transform
yields complex coefficients for every frequency, which may not only include harmonics
but also sub-harmonics, inter-harmonics, and supra-harmonics. The initial version of this
estimator is only trained for a fixed range of 20 harmonics, omitting the FFT capabilities
shown in Figure 3. Therefore, the training dataset does not currently include any other data.

3.4. Case Study Setup and Simulation

For concept evaluation, a simulation environment was set up to generate PF, HF, and
electro-magnetic transient (EMT) data. Ref. [37] gives an extensive overview of EMT itself,
waveforms, and simulation methods.

Figure 4 shows the simulated power grid, which was chosen to test the developed
algorithms in depth due to its heterogeneous consumer structure (commercial, residential,
industrial) and a typical rural distribution character of an LV/MV mixture [38]. The IEEE33-
bus test system from [39] was also evaluated, but mainly for comparison with related work.
Compared to the CIGRE LV grid, the second case study features only five non-linear loads,
no generators, no transformers, and all nodes are at a medium voltage of 12.66 kV.

Figure 4. The heterogeneous distribution network for simulation and verification of harmonic state
estimation concept [38]. We modified the original network to feature better harmonic characteristics.
Three PQ meters are placed for estimation.

The OpenDSS simulation core was utilized to generate the training data for the refer-
ence grids. OpenDSS features various frequency-domain simulation modes like PF and
HF [40]. A Python application drives the OpenDSS kernel via the OpenDSSdirect.py library.
This application controls the time series profile input, simulation commands, and data
output for every simulated node. The HF results were used to train a fully connected DNN,
a convolutional ANN (CNN), and a PANN model. These models calculate theoretic values
for the nodal voltages in the frequency domain.
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Specific Extensions: The reference grid from [38] is extended by three PV generators
(node 9: P = 10 kW, node 32: P = 35 kW, node 35: P = 15 kW), and five existing loads
(nodes 16, 17, 37, 41, 42) are considered EVSE. Typical harmonic profiles realize harmonic
current injection of these components. The other loads from [38] are considered linear
and behave as constant power drains. All loads and generators are listed with their rated
powers in Table A2 in the Appendix A.

Figure 5 depicts the lumped circuit equivalents that OpenDSS uses internally for lines
and transformers. As the simulations may include frequencies relevant to resonances,
the lines’ capacitances need to be considered too. Therefore, Table 1 shows the full line
parameters of the used types [41]. To also create reasonable propagation of harmonics
along MV cables, the MV node was split up, and the slack at node 0 is connected to the
three transformers through 100 m-long cables of type NA2XS2Y 1 × 95 mm² each.

Table 1. Line parameters used for the grid from [38] to model frequency dependencies accurately.

Line Types R′
l [Ω/km] X′

l [Ω/km] C′
l [nF/km]

UG1 0.162 0.0832 210.0
UG2 0.2647 0.0823 210.0
UG3 0.822 0.0847 210.0
OH1 0.4917 0.2847 10.0
OH2 1.3207 0.321 10.0
OH3 2.0167 0.3343 10.0

NA2XS2Y 1 × 95 12/20 kV 0.313 0.132 216.0

Figure 5. Circuit equivalents showing the considered components in the OpenDSS simulation.
On the left, the typical π-equivalent for lines is depicted. On the right, a transformer with leakage
inductances Ll,p/L′

l,s, winding resistors Rw,p/R′
w,s, main reactance Lm, and iron resistor RFE is shown.

The transformers described in [38] lack shunt components. In OpenDSS, the shunt
components are considered relative dimensions. RFE is represented by the no-load losses
pFE and Lm corresponds to Equation (7).

iL,m =
√

imag
2 − pFE2 (7)

Typical values for pFE and imag can be found in [42]. In this work for smaller substations
(ST < 1MVA), pFE = 0.3% and imag = 3.0% are used.

PV-, EVSE-, and Load Profiles and Spectra: In total, a time span of a complete year in
steps of one minute was simulated to generate training data. Every single load, EVSE, and
PV system received an individual load profile. The specific matching of load profiles, PV
profiles, spectra and references can be found in [43]. In total, 525,600 simulated states are
available for training, validation, and testing, but only 35,040 (15 min steps) were used for
this article. Table A1 shows the spectra that were used to generate the test datasets.

3.5. Artificial Neural Network Architecture and Used Data

The used hyperparameters are depicted in Table 2. The Adam optimizer is used due to
its suitability for large datasets and multidimensional regression learning [44]. Activation
function leaky ReLU is used to reduce the risk of non-responsive neurons [34].
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Training, Validation and Testing: The training set consisted of 70% of the used data,
20% and 10% for validation and testing, respectively. As mentioned beforehand, the test
set was generated with unknown load profiles and partially different harmonic spectra to
observe the networks’ ability to generalize. These configurations can be found in [43].

Input and Preprocessing: In addition to the significance of training ANNs on normal-
ized input, the complex voltages of PQ-meters may be split into Cartesian imaginary and
real components. However, a special representation was tested and introduced to reduce
the strong correlation between the imaginary and real components. Hence, the magnitude
of the polar representation is used along with the imaginary part of eiϕ as input. Scaling is
conducted by min/max normalization [34].

Table 2. Overview of the most important hyperparameters for implemented DNN, CNN and PANN.

Parameter DNN PANN CNN

Batch-size 16,384 16,384 16,384
No. of hidden layers 2 6 7

Loss function MSE MSE MSE
Activation Leaky ReLU Leaky ReLU ReLU
Optimizer Adam Adam Adam

Skip Connections Yes Yes No

Multi-Layer Perceptron Architectures: In the hidden layers, three architectures were
tested. The input layer was set to a dimension of 3 × 2 × 20 (three complex voltage phasor
measurements at 20 harmonics) for all configurations. The connections to the hidden layers
were set up in different ways.

Initially, tests were conducted with two dense layers with a flattened shape of 1 × 1760
neurons (expecting 44 nodes with complex nodal voltages on the output layer at 20 harmon-
ics). Architectures with more than two dense layers resulted in more trainable parameters.
However, they yielded comparable or worse results. The second approach integrates the
physical structure of the electrical grid into the connection scheme of the ANN, as explained
above. Connections between the electrical network’s nodes are considered by the adjacency
matrix. The network’s admittances are not considered.

For further comparison, a convolutional neural network (CNN) was implemented
with similar hyperparameters. The convolutional layers start with a pointwise convolu-
tion (kernel: 1 × 1, stride: 1), then six depthwise convolutions (kernel: 3 × 3, stride: 1)
are performed.

Figure 6 provides an overview of the PANN architecture compared to the simpler
DNN and a CNN. The recursive Equations (8)–(10) describe the mathematical framework
for the PANN without reshaping layers.

Oi=0 = X + eG (8)

Oi+1 = ai(W
p
i · Oi + Bi) with i = 0 . . . n (9)

Ŷ = an+1(W
p
n+1 · On+1 + Bn+1) (10)

Index p marks the n pruned adjacency layers, while G notes a Gaussian layer, which
is only active during training. It adds noise (eG) to the input X. The weight matrices
in the adjacency layers Wp

i prune connections by setting weights to zero. This iterative
description represents the path from a complex input matrix X to the estimated matrix Ŷ.

Output-Data: All networks have output dimensions of 44 × 2 × 20 (44 estimated
complex nodal voltages at 20 harmonics). The activation function in the output layer is a
linear function.
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Figure 6. General overview of the compared architectures and layers used. The developed framework
allows an individual number of layers. The DNN and the PANN models optionally use an additional
noise layer on the input data. In this article, two dense layers, seven convolutional, and six physics-
aware layers were used.

4. Results

The overall results show the best accuracy for the PANN solution. However, the com-
plexity of setting up the model is significantly higher than using DNN or CNN topologies.

4.1. Error Metrics

The mean squared error (MSE) is used as the loss function during the training process
and as an important benchmark. It is defined as follows:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (11)

The definition describes the average over n samples of the squared deviation of the
estimate Ŷi from a target value Yi [45]. Another method that is used to provide insight
into the presented model’s precision is the mean absolute error (MAE). According to [46],
the MAE is the most natural measure, and within this work, it gives a better physical
interpretation. The MAE can be described as depicted below in (12).

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (12)

In [12] the normalized root MSE (NRMSE) was used for benchmarking and is defined
as the root of the MSE over the datasets’ mean Y [47].

NRMSE =

√
1
n ∑n

i=1
(
Yi − Ŷi

)2

Y
(13)

The NRMSE will be used for comparison with related work from [12].
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Additionally, the mean relative error (MRE) can be used to evaluate an estimator.
Ref. [48] used the MRE as the metric for the presented HSE. Actually, the article mentions
the MSE, but in correspondence with the authors [48], the following equation was provided:

MRE =
1
n

n

∑
i=1

|Yi − Ŷi|
|Yi|

(14)

4.2. Overall Results for CIGRE LV Case Study

Table 3 compares the final trained MSE loss of the tested networks. When the PANN
is trained for more epochs, it significantly improves its accuracy, while the compared DNN
only marginally improves. Generally, the compared CNN exhibits a higher validation loss
within the conducted training. The MSE for 1400 and 3000 epochs is still higher than for
the loss of the compared architectures.

Table 3. Overall network minimum MSE validation loss of all trained models over different amounts
of epochs.

Epochs DNN CNN PANN

1400 1.5 × 10−5 3.6 × 10−5 1.37 × 10−5

3000 1.09 × 10−5 1.16 × 10−5 7.0 × 10−6

Figure 7 emphasizes the accuracy of the PANN architecture over the entire valida-
tion dataset. A high curve’s steepness correlates with little error over the majority of the
test dataset. The PANN shows a better overall performance and only a few larger errors.
Regarding the key challenge of presenting a precise HSE with sparse measurement equip-
ment, the comparison of these ANN models is the most important demonstration of the
effectiveness of the PANN-based HSE.

Figure 7. Comparison of cumulative distribution functions of the mean absolute errors within the
test dataset for CNN, DNN and PANN architectures.

In order to observe the THD, Figure 8 gives an impression of the voltage THD (THDV)
for some nodes during a day in the test dataset. Typically, the THD is defined up to the 50th
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order as shown in Equation (15) [11]. However, the highest order used may vary depending
on the application and in this example, harmonic orders from 2 to 20 were considered.

THDV =

√
∑50

n=2 V2
n

V1
× 100% (15)

One can see that while predictions for nodes 16 and 25 show a good approximation,
node 37 features an underestimation for higher THD levels. However, the trend of the
curve is still followed by the estimator.

Figure 8. Example THDV prediction of the PANN model over 24 h for example nodes across the
reference grid.

Figure 9 compares the simulated values and the compared models’ estimates of one
system state with regard to the seventh harmonic order voltages. The precision of the
PANN’s guesses is remarkable compared to the DNN’s and CNN’s. Even when there is a
slightly disturbed measurement on node 28, the network has a high ability to generalize.
Additionally, for nearly every node, the DNN’s performance is worse compared to the
PANN’s estimations.

Examining the individual harmonic magnitudes of the HSE, the heatmaps in Figure 10
illustrate the specific maximum MAE and maximum absolute errors individually for
each node and harmonic frequency. For better comparability, all voltage magnitudes
predicted for LV nodes are transformed to the MV level by the transformers’ winding ratios
( nMV

nLV
= 20 kV

0.4 kV = 50). Two different scales are used for the fundamental and harmonic
frequencies to emphasize the differences, as harmonic voltages typically have significantly
smaller magnitudes compared to the fundamental frequency.

In detail, one can see that nodes 33 to 37 and 41 to 42 have higher deviations among
all odd harmonics. Notably, the 11th and 13th order harmonics appear difficult to predict
in these regions of the grid. Focusing on the MAE evaluation, nodes 31 and 32 also show
a considerable error of up to 0.6 V. However, the even harmonic orders (100 Hz, 200 Hz,
300 Hz, . . . ) on the mentioned nodes and the majority of both error metrics across all
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nodes and frequencies exhibit very low error rates. Since the spectra used for EVSE do not
show even harmonics, these HFs are not as complex compared to those of harmonic orders
injected by PV generators and drawn by nonlinear loads, too.

Figure 9. Example for an estimated state on seventh harmonic order. Voltages over all nodes are
referenced to 20 kV level. Red circles represent the simulation data, blue crosses mark the placed
meter position.

(a) (b)

Figure 10. Errors in magnitudes for the physics-aware model across the whole test set. (a) Mean
absolute error of fundamental (F) and harmonics (H). (b) Maximum absolute error of fundamental
(F) and harmonics (H).

Nodes 35 and 36 have a high maximum absolute error, as well as the highest MAE
when it comes to estimating fundamental frequency values. This might be explained by
the multiple branches within this section. Particularly around node 37, both an EVSE and a
PV system are connected, leading to significant fundamental and harmonic currents along
these lines. This substantially influences the harmonic levels as this subsystem exchanges
high PF.
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Overall, it is noteworthy that, across the entire test set, the maximum absolute error in
fundamental voltages does not exceed 170 V (1.47% of the nominal 11,547 V line-to-earth
voltage), with a maximum MAE of 0.22%.

4.3. Comparison with Related Work

Focusing on HSE, different algorithms can be found in the current literature. This sec-
tion evaluates and compares the most significant works according to the following criteria:

• Estimated-Nodes-to-Meter-Ratio (ENMR)
• Individual Precision/Quality of Estimations
• Computational Performance/Execution Time

Estimated-Nodes-to-Meter-Ratio: To compare the amount of needed meter devices,
the ENMR is introduced and defined as follows:

ENMR =
ne

nm
(16)

ne is the number of nodes in a network that are not measured and whose states will be
estimated. The nodes, denoted by nm, serve to collect measurement data.

Table 4 compares several works in the field of HSE for distribution grids. The ENMR
shows that the PM is suitable for making good use of sparse measurement equipment.
Only the study in [22] achieves a similar but still smaller ratio. It is also noteworthy that
the presented concept monitors harmonics up to the 20th order, whereas works such as [12]
consider the 15th order as the highest.

Table 4. Comparison of related work regarding grid complexity, ENMR, and estimated harmonic
orders. Technique abbreviations: Modified Particle Swarm Optimization (MPSO), Sparse Bayesian
Learning (SBL), Mixed-Integer Quadratic Programming (MIQP).

Ref. Year Method Case Study Grid ENMR Harm. ord.

[13] 2016 SVD IEEE13-bus 1.6 11
[22] 2011 MPSO Radial 70-bus 10.67 13
[15] 2017 KF IEEE13-bus n.a. n.a.
[24] 2020 SBL IEEE13-bus 1.2 13
[14] 2017 SVD Real 21-bus 2.0 13
[12] 2017 WLS Indiv. 33-bus 3.13 15
[48] 2023 MIQP IEEE33-bus 4.5 7
[49] 2023 Var. IEEE33-bus 2.67 7
[25] 2023 GAN IEEE33-bus 4.5 n.a.
PM 2024 PANN CIGRE LV 13.67 20
PM 2024 PANN IEEE33-bus 10.0 20

Individual Precision/Quality of Estimations: To achieve better comparability, the
PM is also applied to the more common IEEE33-bus distribution system. The compared
works [12,48] evaluate this feeder, too. The authors in [48] also compared their work to the
SVD method from [13], these results are also listed. In order to emphasize the accuracy of
certain harmonics, Table 5 compares these metrics individually.

Especially for the HSE proposed in [12], only four harmonic injections were considered,
whereas our implementation of the feeder assumes five sources, like in [48]. Three PQ
meters are placed on nodes 3, 13, and 29. Therefore, the ENMR is 10.

From the data given in [12], the NRMSE was evaluated for each node individually.
The maximum value of the individual node NRMSE results is compared in Table 5. While
the comparison of the NRMSE reveals better performance for estimation by the PANN
at the fundamental frequency, the harmonic components are predicted similarly by the
extended WLS method in [12].



Energies 2024, 17, 5452 15 of 19

Table 5. Comparison of related work and proposed method on the IEEE33-bus grid across all
estimated nodal voltage phasors.

Metric Maximum NRMSE MRE
Harm. ord. PANN WLS [12] PANN MIQP [48] SVD [48]

1st 0.0023 0.0079 0.0009 25.226 2007.9
3rd 0.0847 0.0991 0.04628 0.0718 101
fifth 0.1948 0.0905 0.1163 0.0917 141

seventh 0.0592 0.0905 0.0388 0.1590 202

A different pattern occurs when comparing the MRE over the entire test dataset
with the techniques in [48]. For harmonic orders 1, 3, and 7, the PANN provides better
estimations than the compared methods. The MIQP and the WLS methods are able to
predict the fifth harmonic more accurately. Notably, the PANN’s fundamental frequency
estimations exhibit very little MRE, while higher harmonics are in a similar range to the
MIQP results. The significant difference in the first harmonic may be explained by the MRE
definition, our large test dataset, and just a few larger absolute errors, as explained above
in Figure 7.

Computational Performance/Execution Time: Especially when comparing the PM to
conventional SE techniques like WLS, execution time is an important aspect for benchmark-
ing. The presented study in [12] compared execution times for WLS (54.39 s) with other
methods from [21–23] (all > 1 min) for estimations up to the 15th order. In comparison, the
PANN estimates the entire test dataset (3504 harmonic states) within an inference time of
1.44 s on an Intel® Core™ i7-12700K with a 25 MB cache and a CUDA NVIDIA RTX A2000
graphics processor.

4.4. Influence of Noisy Measurement

To transfer this concept to real-world applications, the influence of noisy measurements
was also considered. The authors in [50] suggest error modeling by using Gaussian noise
for PMU measurements. Authors of related work [51] propose noise modeling with zero
mean and σ = 0.01 for voltage magnitude measurements in PF applications to increase
the robustness of the model. To compensate for similar effects, the models presented in
this work can be trained with an optional Gaussian noise layer. The influence is presented
in Table 6. The validation loss MSE of different combinations is used as a marker over
two test states. In the case of an ideal input value, the Gaussian layer will reduce the
prediction’s accuracy slightly by 19.6% and 12.7%. However, when a noisy input is applied
to the network, the precision of the predicted states is improved by 6.3% and 9.7%. This
positive effect occurs because the ANNs have already learned to generalize during training
on slightly altered data. This test is an indication to use the Gaussian layer as a possible
improvement for application in real grids, where noisy measurement data are expected.

Table 6. Minimum MSE loss on the validation set with and without input noise (σ = 0.01) and
Gaussian layer with σ = 0.02 in two trial runs of PANN models trained over 3000 epochs.

Ideal Input Noisy Input

Trial - Gauss. Lay. - Gauss. Lay.
1 5.45 × 10−6 6.52 × 10−6 8.58 × 10−6 8.04 × 10−6

2 5.75 × 10−6 6.48 × 10−6 8.93 × 10−6 8.06 × 10−6

5. Discussion and Conclusions

We implemented a highly accurate HSE that focuses on harmonic and fundamental
flows within a typical distribution grid topology. In direct comparison with a DNN and
a CNN architecture, integrating the grid’s physical structure significantly reduces the
validation loss by up to 35.78%. The network’s short inference time of 1.44 s for estimating
3504 system states demonstrates the potential for near-real-time applications.
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Measurement devices at three nodes, measuring only nodal voltages, are sufficient
to estimate 41 complex state variables per 20 harmonic frequencies in a highly branched
distribution grid. The presented case study exhibits three substations, two voltage levels,
eight non-linear loads and generators, and five linear loads.

The latest literature does not present comparable precision at the given ratio of mon-
itored locations to the number of states. Other articles, which have similar error rates
on certain harmonics, use either more measuring devices or require at least about 1 min
computational time for predictions. Although the second case study on the IEEE33-bus
grid qualitatively demonstrates improved precision compared to other HSE methods, the
focus should be on comparing ANN-based models, as in the CIGRE LV grid study. Given
the challenge of performing HSE with sparse measurements, data-driven ANNs can predict
nodal voltages, whereas conventional algorithms fail to converge. This work is among the
first to apply HSE in LV grids, with the CIGRE LV case study as the primary focus. The
results also confirm the effectiveness of the PANN method for FSE. Another important
outcome of this work is the demonstration of the suitability of the discussed model for both
LV and MV grids.

The primary aim of our future work is to combine TSE and HSE based on the presented
HSE model. Next, the TSE will be implemented by adapting the ANN’s input to a dynamic
structure that handles various spectral datasets. As a Gaussian layer already improved
the prediction of states based on noisy measurements, the PM will be tested in laboratory
grids, too. Finally, another future task is the implementation of a controlling module, which
ensures the accordance of estimated states to physical laws.
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Appendix A

Table A1. Harmonic spectra used in validation and test data sets [52,53].

Grid Node Type Ord. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Magnitude [%]

CIGRE LV 9, 32, 35 PV 99.96 0.326 0.451 0.218 1.797 0.039 2.23 0.24 0.13 0.164 0.236 0.011 0.083 0.042 0.016 0.034 0.018 0.002 0.022 0.011
CIGRE LV 16, 17, 37, 41, 42 EVSE 100 - 8.4 - 2.1 - 3.6 - 1.3 - 1.2 - 0.4 - 0.3 - 0.3 - 0.01 -
IEEE33-bus 13, 17, 20, 23, 28 EVSE 100 - 8.4 - 2.1 - 3.6 - 1.3 - 1.2 - 0.4 - 0.3 - 0.3 - 0.01 -

Phase [°]
CIGRE LV 9, 32, 35 PV 76.96 −94.8 33.034 146.2 −178.5 118.52 101.36 −101.2 −17.26 86.05 72.84 −124.3 53.56 −113.0 5.499 78.59 −98.51 −157.2 165.56 −80.66
CIGRE LV 16, 17, 37, 41, 42 EVSE 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -
IEEE33-bus 13, 17, 20, 23, 28 EVSE 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

Table A2. Power systems’ loads and generators.

IEEE33-bus CIGRE LV
Names Node P [kW] Q [kvar] Names Node P [kW] Q [kvar]

1 1 0–100 0–60 R1 2 0–190 0–62.45
2, 17, 18, 19, 20, 21 2, 17, 18, 19, 20, 21 0–90 0–40 R11 12 0–14.25 0–4.684

3, 13 3, 13 0–120 0–80 R15 16 0–49.4 0–16.237
4 4 0–60 0–30 R16 17 0–52.25 0–17.174

5, 8, 9, 15, 16, 27 5, 8, 9, 15, 16, 27 0–60 0–20 R17 18 0–33.25 0–10.929
6, 7 6, 7 0–200 0–100 R18 19 0–44.65 0–14.676
10 10 0–45 0–30 I2 22 0–85 0–52.307

11, 12 11, 12 0–60 0–35 C1 24 0–108 0–52.307
14 14 0–60 0–10 C12, C13 35, 36 0–18 0–8.718
22 22 0–90 0–50 C14, C17 37, 40 0–22.5 0–10.897

23, 24 23, 24 0–420 0–200 C18, C20 41, 43 0–7.2 0–3.487
25, 26 25, 26 0–60 0–25 C19 42 0–7.2 0–3.487

28 28 0–120 0–70 PV1 9 0–10 0
29 29 0–200 0–600 PV2 32 0–35 0
30 30 0–150 0–70 PV3 35 0–15 0
31 31 0–210 0–100
32 32 0–60 0–40
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