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Abstract: Energy storage (ES) units are vital for the reliable and economical operation of the power
system with a high penetration of renewable distributed generators (DGs). Due to ES’s high invest-
ment costs and long payback period, energy management with shared ESs becomes a suitable choice
for the demand side. This work investigates the sharing mechanism of ES units for low-voltage (LV)
energy prosumer (EP) communities, in which energy interactions of multiple styles among the EPs
are enabled, and the aggregated ES dispatch center (AESDC) is established as a special energy service
provider to facilitate the scheduling and marketing mechanism. A shared ES operation framework
considering multiple EP communities is established, in which both the energy scheduling and cost
allocation methods are studied. Then a shared ES model and energy marketing scheme for multiple
communities based on the leader–follower game is proposed. The Karush–Kuhn–Tucker (KKT)
condition is used to transform the double-layer model into a single-layer model, and then the large
M method and PSO-HS algorithm are used to solve it, which improves convergence features in both
speed and performance. On this basis, a cost allocation strategy based on the Owen value method
is proposed to resolve the issues of benefit distribution fairness and user privacy under current
situations. A case study simulation is carried out, and the results show that, with the ES scheduling
strategy shared by multiple renewable communities in the leader–follower game, the energy cost
is reduced significantly, and all communities acquire benefits from shared ES operators and aggre-
gated ES dispatch centers, which verifies the advantageous and economical features of the proposed
framework and strategy. With the cost allocation strategy based on the Owen value method, the
distribution results are rational and equitable both for the groups and individuals among the multiple
EP communities. Comparing it with other algorithms, the presented PSO-HS algorithm demonstrates
better features in computing speed and convergence. Therefore, the proposed mechanism can be
implemented in multiple scenarios on the demand side.

Keywords: shared energy storage; leader–follower game; Karush–Kuhn–Tucker condition; Owen
value method; PSO-HS algorithm

1. Introduction

Multiple types of energy sources, including large amounts of renewable distributed
generators (DGs) and energy storage (ES) units are intensively interacting in the new power
system [1]. Among them, the integrated energy system (IES) on the demand side can pro-
vide flexible energy services by considering various features of the multiple energy sources
(such as electric and thermal sources) and taking full advantage of their complementary
properties [2]. A high penetration of renewable energies can pose a severe challenge to the
power system, and their outputs may have to be cut due to their fluctuating and intermit-
tent nature [3]. ES units can be used to smooth the fluctuations, but their implementations
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could be limited due to high investment and maintenance costs [4]. Therefore, flexible and
diversified energy-sharing mechanisms like a “clouded ES system” [5] or “ES leasing” [6,7]
have been proposed to improve the economic benefits of ESs through cost sharing and
economies of scale [8,9] and promote “self-consumption” for local DGs [10].

A microgrid with an optimized ES sharing configuration is proposed to participate
in demand response services [11]. The ES sharing framework must be built considering
the complementarity of power generation and consumption behavior among different
prosumers [12]. A real-time joint system of ES sharing and load management is developed
to meet household needs and reduce energy costs [13]. Blockchain can be used to enhance
trust in energy marketing within the community [14,15]. In [16,17], a two-stage credit-
sharing model is proposed between the coordinator who manages the shared ES system
(ESS) and the producers who purchase energy from the former. A shared hybrid ES
framework, which consists of private ES units from energy suppliers and independent ES
operators, is capable of providing ES services for the whole community [18].

Numerous energy prosumers (EPs) will be the major players in future energy markets,
and game theory is an effective method to coordinate their interests [19]. At present, most
of the game theory implementations for a shared ES system are based on the master-slave
scheme [20–22], but they require participants to determine the identity of buyers/sellers in
advance, which may limit the flexibility of participants. On the other hand, a multiple-agent
cooperative game for a shared ES model is often difficult to achieve due to the conflict of
interests among agents [23]. The multiple-timescale rolling optimization of the IES with
a hybrid ES system is investigated, in which the uncertainty of price, renewable energies,
and loads are considered [24]. An optimal scheduling model is proposed for an integrated
energy microgrid system considering electric and thermal ES units [25,26]. A combined
hybrid ESS containing electric, thermal, hydrogen, and natural gas storage devices can
be scheduled by a hybrid ES operator (IHESO) to provide energy marketing services [27].
Algorithms like adaptive wavelet decomposition and fuzzy control theory are proposed for
hybrid ES units [28]. In [29], the IES planning optimization model is proposed, considering
the mixed storage differentiation characteristics.

For one single energy community, the effects of load scheduling or any other inter-
action with the power grid may not be evident. However, clustered communities can
operate in coordination through sophisticated scheduling, thus greatly improving the
potential of the whole “source–load–storage” system [30]. A double-layered energy opti-
mization framework can coordinate the benefits for all participants and reduce operating
costs for multiple communities [31]. Non-cooperative aggregate game theory is used in
a double-layer energy management scheme in which day-ahead optimal scheduling and
dynamic electricity prices are introduced for multiple-community systems [32,33]. For the
demand side (or microgrids), an advanced stochastic optimization method based on deep
reinforcement learning can provide the optimal redistribution of active power between
subsystems by minimizing network losses [34]. Bilevel programming and reinforcement
learning, for constructing and solving the internal local market of community microgrids,
makes it possible to enable the interaction of the local control systems for microgrids with
the community microgrid operator [35].

For these secondary energy markets, the normalization of energy interacting proce-
dures and the fairness of energy marketing profits still need to be improved. Meanwhile,
privacy protection for energy market participants also needs to be considered [36,37]. There-
fore, it is essential to develop a new sharing mechanism to promote renewable utilization,
enhance ES operation flexibility, and improve social welfare. In the meantime, how to
evaluate the effects of the sharing business on the energy system is another key issue to be
focused on. A suitable energy trading mechanism is needed for the sharing market, while
protecting the privacy of individual users is also an important issue.

In this work, the shared ES-based energy scheduling and trading mechanism for
multiple energy communities on the demand side are developed. First, in Section 2, a
shared ES operation framework considering multi-new energy communities is proposed,
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and the operation strategies of each participant under this framework are analyzed. In
Section 2.1, the ES model is introduced, and its physical form and mathematical model are
analyzed. In Sections 2.2 and 2.3, a shared ES model of multi-new energy communities
based on a leader–follower game is proposed. Then, in Section 2.4, an ES-sharing cost
allocation strategy based on the Owen value method is proposed. Finally, in Section 3,
the advanced nature and fairness of the proposed framework and strategy are verified by
simulation cases.

2. Optimal Collaboration of Shared ES in Multiple Energy Communities

The ES sharing mechanism is developed for the multiple energy communities with
renewable DGs, in order to make full use of the distributed ES units, promote energy interac-
tions at the demand side, improve renewable utilization, reduce energy costs, and maintain
cost allocation fairly. The optimal collaboration shall be conducted at the community level
and user level as well.

2.1. Energy Storage (ES) Model

For the whole EP community, if the total power generation is less than the total
load demand, the operator will purchase energy from the main grid. If the total power
generation is greater than the total load demand, the ES units will be given instructions
to store charge. The peak of PV generation is mostly during the noon, while the peaks
of the load demand often appear in the morning, noon, and evening, so the operation
status of the ES battery may be different in each time period. For ES units, there are three
operation modes: charging, discharging, and standby, respectively. The ES energy storage
is indicated by the state of charge (SOC), which is a time variable related to the charging
and discharging operation, charging and discharging efficiency of the system, and the
charging and discharging status of the previous period, as shown in (1) and (2).

The charging status of the ES is as follows:

SOCe(t) = SOCe(t − 1) + ηc
Pc

c,t∆t
Ec

(1)

The discharging status of the ES is as follows:

SOCe(t) = SOCe(t − 1)−
Pd

c,t∆t
Ecηd

(2)

where SOCe(t) and SOCe(t − 1) are the ES charging state at time t and time (t − 1), respec-
tively; Pc

c,t and Pd
c,t are the charging and discharging power of ES at time t, respectively; ∆t

is the charging and discharging time; Ec is the rated capacity of ES; ηc and ηd, respectively,
represent the charging efficiency and discharge efficiency of ES. There are upper and lower
limit constraints on the ES charging status, as shown in the following formula. The status
variable (0–1 variable) is introduced to represent the charging and discharging status of
the ES. The status of charging or discharging is represented by 1, and the standby status is
represented when both are 0, as shown in (3)–(6).

SOCe,min ≤ SOCe(t) ≤ SOCe,max (3)

Pc
c,minτc

c ≤ Pc
c,t ≤ Pc

c,maxτc
c (4)

Pd
c,minτd

c ≤ Pd
c,t ≤ Pd

c,maxτd
c (5)

0 ≤ τc
c + τd

c ≤ 1 (6)

where SOCe,max and SOCe,min, respectively, represent the upper and lower limits of the
charging status, τc

c and τd
c are the charging and discharging status variables, Pc

c,max and
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Pc
c,min are the maximum and minimum amounts of the charging power, while Pd

c,max and
Pd

c,max are the maximum and minimum amounts of the discharging power.

2.2. ES Sharing Mechanism for Clustered Energy Communities with Renewable DGs

The ES-sharing mechanism for clustered energy communities is shown in Figure 1, in
which an aggregated ES dispatch center (AESDC) is responsible for collecting energy genera-
tion and consumption data, formulating energy-sharing plans, and facilitating energy inter-
actions among communities and the main grid. Each community has a shared ES operator
(SESO) in charge of aggregating loads, DG generators, and ES scheduling within the com-
munity to meet load demands, guarantee benefits, and promote renewable consumption.
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The AESDC guarantees energy equilibrium for the community alliance in such a way
that, if energy interactions within the lower layer do not meet their load demands, the
SESO of each community and the AESDC determine the optimal real-time electricity price
through the leader–follower game and then conduct energy trading. The AESDC purchases
energy from the power grid, and real-time electricity prices can be optimized according
to its own interests and issued to each SESO, which adjusts each community’s demand
according to the real-time electricity prices. Then the process iterates until both sides reach
agreements on the energy strategies, so as to formulate a day-before scheduling contract.

The specific procedure is shown in Figure 2, which includes the following: (1) the
power grid issues the time-of-use (TOU) price to the AESDC; (2) the AESDC issues the
energy purchase information to the power grid according to the TOU price and the load
demand of each community and establishes the real-time energy price to the SESOs; (3) the
SESO adjusts the energy consumption plan of the community according to the real-time
electricity price and uploads it to the AESDC; (4) the AESDC updates the real-time electricity
price according to the new energy demands and reissues it to the SESOs; (5) then the 2nd
to 4th steps are iterated until the SESO and the AESDC have reached agreement on the
energy marketing price and strategy. Then the updated energy purchase plan is uploaded
to the grid for energy purchase.

After achieving the energy scheduling plan at the community level, it is necessary to
share the energy consumption costs rationally within the energy community. This issue is
solved through the following two levels:

(1) Cost allocation among users within the community

At the lower layer, the user carries out energy transactions with each other within the
community through the internal power line. Users need to sign an energy marketing and
data sharing contract with the SESO and other users in the community, and they can pay
their costs in time on the execution of the energy interacting and ES sharing plans.

(2) Cost sharing among communities
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The SESO is responsible for integrating energy consumption and generation data
within the community to supervise the energy sharing situation and internal cost allocation
and for communicating with the AESDC and SESOs from other communities to represent
the overall interests of its own community for energy marketing and ES cost allocation at
the upper layer.
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2.3. Energy Scheduling Model Between Multiple Communities Based on Leader–Follower Game

(1) Profit model of the SESO

Electric loads are classified into two categories: transferable and non-transferable.
According to the electric and thermal characteristics of phase-change ES units, the heat load
in the community is equivalent to that of the transferable loads for scheduling within the
community. Then the initial loads of a single community are composed of the following:

p0
i,t = p f lex,0

i,t + p f ix,0
i,t (7)

where p0
i,t is the total initial load demand of community i at time slot t, p f lex,0

i,t is the initial

total demand of the translatable electric load of community i at time slot t, and p f ix,0
i,t is the

initial total demand of the non-translatable electric load of community i at time slot t.
On receiving the real-time electricity price from the AESDC, the SESO issues the

electricity price to each user in the community, and the latter can adjust the electricity
demand profile through load shifting under the guidance of the electricity price signal,
to reduce energy costs. The load demands and related constraints of the users in each
community after adjustment are as follows:

pL
i,t = p f lex,0

i,t + p f lex
i,t + p f ix,0

i,t (8)

∑
t∈T

p f lex
i,t = 0 (9)

p f lex
i,t ≥ −p f lex,0

i,t (10)

pL,min
i,t ≤ pL

i,t ≤ pL,max
i,t (11)

In (8), pL
i,t is the total load demand of community i after the internal load shift at time t

and p f lex
i,t is the load of community i shift at time t; (9) indicates the shiftable load constraint,

and the operation period of the shiftable load can be adjusted, but the total load remains
unchanged; (10) indicates that the total shifted load p f lex

i,t should not exceed the maximum

shift load threshold −p f lex,0
i,t of the period; (11) indicates the load adjusting range in the

community, which shall not exceed the upper and lower limits.
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The non-negative power purchase and sale constraint of community i at time slot t are
shown in (12) and (13), while (14) is the power balance constraint of the community alliance:

pt
i,sell ≥ 0 (12)

pt
i,buy ≥ 0 (13)

I

∑
i=1

pL
i,t + pt

sell =
I

∑
i=1

pPV
i,t + pt

buy (14)

where I is the total number of communities in the alliance, and pPV
i,t is the total photovoltaic

(PV) power of community i at time slot t.
The willingness of users to use shared ES energy is mainly affected by the real-time

electricity price. The more sensitive the users are to the electricity price change, the more
willing they are to load shift. The model of the user’s response to the load transfer can be
expressed by (15):

pj, f lex
i,t = αi

rdc,t − rb,t

rb,t
pj, f lex,0

i,t (15)

where pj, f lex
i,t is the shifting load power of user j in community i at time t, pj, f lex,0

i,t is the initial
amount of load shifting of user j in community i at time t, αi is the sensitivity coefficient of
community i to electricity price changes, rdc,t is the real-time electricity price issued by the
AESDC, and rb,t is the TOU price issued by the power grid.

Based on the above analysis, the SESO’s income model in one single community is
as follows:

Ii,ES = Ii,E2U + Ii,E2C − Ci,loss (16)

Ii,E2U =
T

∑
t=1

(pt
i,buyrdc,t − pt

i,sellrc,t) (17)

Ii,E2C =
T

∑
t=1

(pt
i,s f Crs f C,t − pt

i,b f Crb f C,t) (18)

Ci,loss = β(pL
i,t − p0

i,t)
2

(19)

where Ii,ES is the total revenue of the SESO in community i in one scheduling cycle, Ii,E2U
is the revenue of SESOs through shared ES charging and discharging, Ii,E2C is the revenue
of energy interacting with the AESDC, which is also the revenue of selling surplus energy
to other communities, Ci,loss is the cost due to load shifting in the community, and β is the
power utility loss coefficient. rdc,t and rc,t are the charging and discharging price of the
SESO at time t, pt

i,b f C and pt
i,s f C are the energy purchased by the SESO from the AESDC

and the power dispatching among other communities under AESDC’s permission, rb f C,t
and rs f C,t are the unit power prices of the transactions with the AESDC.

The above income model needs to meet multiple constraints, including power balance
constraints and state of charge (SOC) constraints. To encourage the SESOs to actively
participate in the ES sharing business, the following price difference between charging and
discharging is set to ensure their profits:

rdc,t − rc,t ≥ r0
r0 ≥ 0

(20)

From the above analysis, it can be seen that SESOs provide ES resources and services
for community users, so their optimization goals to obtain benefits are as follows:

maxIES = max
I

∑
i=1

Ii,ES (21)
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(2) Profit model of the AESD

The AESDC is mainly responsible for the following two tasks: (1) it aggregates the
load demands from lower-layer communities, formulates energy interaction plans among
communities, and announces the energy purchase plan to the power grid when the com-
munity alliance has a power shortage; (2) it issues the real-time electricity price to the
SESOs according to the load demand and TOU price. Then the total energy cost C of each
community can be obtained at the AESDC, as shown in (16), and the profit of the AESDC
of community i can be expressed as follows in (23):

C =
T

∑
t=1

I

∑
i=1

[(rb,t pt
i,b f g − rs f C,t pt

i,s f c) + Ci,loss] (22)

Ii,C =
T

∑
t=1

(rb f C,t pt
i,b f C − rb,t pt

i,b f g) (23)

where pt
i,b f g is the total power purchased from the grid.

To prevent the AESDC from maliciously raising electricity prices, the pricing is con-
strained by setting the upper limit of average price, as shown in (24):

T

∑
t=1

rb f C,t

T
≤ rb f C,av (24)

where rb f C,av is the upper limit of the average electricity price. Since SESOs have no right
to change pricing, the users purchase energy from their SESO at the real-time electricity
price, that is, rb f C,t = rdc,t and rs f C,t = rc,t.

As an intermediary between the power grid and multiple communities, the AESDC
obtains profits from price differences, so its optimization goal is to maximize the return, as
shown in (25):

maxIC = max
I

∑
i=1

Ii,C (25)

(3) Model of the leader–follower game between the AESDC and the SESOs

The AESDC and the SESOs have independent decision-making schemes, in which the
AESDC maximizes its own benefits, mainly from the differences between the TOU price of
the grid and the real-time price of the alliance. The SESOs optimize load profiles in each
community based on the real-time electricity price and carry out energy exchange with
other communities. Therefore, the income of the AESDC is also affected by each SESO’s
decision-making. Then a leader–follower game is played between two sides, which can be
defined as follows:

GS =
{

NS;
{

rdc,t, pt
i,b f C, pt

i,stC, pt
i,b f g; pt

i,buy, pt
i,sell , pL

i,t, p f lex
i,t

}
; {IES, IC}

}
(26)

The elements of the game are described as follows:

(1) Player set: including the AESDC and multiple SESOs, in which the AESDC is the
leader and the SESOs are followers.

(2) Action set: also known as strategy set. The upper-layer strategy of the AESDC includes
the unit power price (real-time price) that is traded with the AESDC and the energy
that interacts with the SESOs. The strategy of each SESO at the lower layer includes
the load demands of the community and the amount of load to be shifted.

(3) Utility function: including the target income function of the SESOs and the target
income function of the AESDC.

(4) Solution of the double-layered optimization model.

The presented leader–follower game model is a double-layered optimization problem,
which cannot be solved directly. Therefore, it is necessary to convert the lower-layer model
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into the upper layer’s constraints by using KKT optimal conditions, so the game model is
transformed into a single-layer optimization model. Then the large M method is used to
relax the nonlinear model and transform the double-layered model into a mixed integer
linear programming (MILP) model for solving.

The linearization of complementary relaxation conditions in KKT conditions is as
follows: let µ and λ be the dual variables of inequality and equality constraints of the lower-
layer optimization, and complementary constraints exist in the lower-layer optimization
problem, as shown in (27):

0 ≤ µ⊥h(x) ≥ 0 (27)

where h(x) ≥ 0 is an inequality constraint for the lower-layer optimization, x⊥y means
that at most one of the scalars that is strictly not less than zero can exist.

Then, the large M method is used to transform the above equation into linear con-
straints. The purpose of the specific process is to introduce Boolean variables κ to transform
the above equation into linear inequalities, as shown in (28) and (29):

0 ≤ µ ≤ Mκ (28)

0 ≤ h(x) ≤ M(1 − κ) (29)

where M is a sufficiently large positive number.
Following the above steps, the KKT condition of the lower layer is taken as the

constraint condition of the upper layer, then the double-layered model is transformed into
a single-layer model and can be solved by particle swarm optimization (PSO) or other
heuristic algorithms.

To enhance the global optimal convergence rate of structural reliability analysis,
an improved particle swarm optimization algorithm is presented. The particle swarm
optimization-based harmony search algorithm (PSO-HS) is developed to increase the
convergence speed and enhance global converging ability [38]. The algorithm uses dy-
namic adaptive terms to perform a local adjustment process and has good robustness and
efficiency in solving high-dimensional problems.

2.4. Cost Allocation Strategy and Model of Multiple Participants

Profit distribution fairness is the key issue for the multiple-community alliance with
shared ESs, in which the cost allocation within the community must be fair and reasonable.
Existing cost allocation methods include the nucleolar method, the Shapley value method,
the Nash solution, etc. These methods directly apportion the cost to single energy users,
but it is hard for participants from different communities to share fairly, which will lead to
unreasonable cost allocation and affect the willingness of each user to participate in the ES
sharing scheme.

This section will consider the natural alliance structure of the community and consider
the SESO as the community agent to carry out cost allocations with other communities
at the upper layer. Then it will focus on each community and carry out a second cost
allocation according to the results obtained at the upper layer, so as to achieve a reasonable
benefit distribution. The Owen value method is an extension of the Shapley value method
consisting of two aspects: first, the cost allocation among priority alliances; second, the
further allocation of costs payable by members within the alliance according to the upper-
layer allocation results [39]. Therefore, the Owen value method is essentially a successive
application of the Shapley value method on both layers, suitable for this scenario in which
users from different communities cannot directly cooperate with each other. It can achieve
fair and reasonable cost allocations, with a fast calculation speed and good protection for
user privacy.

(1) Cost sharing among communities

Since the total number of communities is small, the conventional Shapley value method
is used at the upper layer. The basic rule is to allocate the total cost after the coordinated
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operation of multiple communities according to the expected marginal cost brought by the
SESOs of each community. Then the SESO of community i should share the cost as follows:

φi = ∑
S∈Si

ω(|S|)[c(S)− c(S/i)] (30)

ω(|S|) = (n − |S|)!(|S| − 1)!
n!

(31)

where φi is the cost to be paid by the SESO in community i, Si is all alliance subsets contain-
ing community i, |S| is the number of subset S, ω(|S|) is the probability of S appearing in all
possible alliances, c(S)− c(S/i) is the marginal cost contribution of community i to alliance
S, c is the characteristic function, which is the total energy cost function in this paper, S/i
is the alliance without community i, and n is the total number of SESOs participating in
the cooperation.

At the upper layer, communities should maintain “group rationality”, which means the
cost after cooperation should not be greater than the cost before cooperation, as expressed
in (32):

∀φi ≤ φi0 (32)

where φi0 is the cost for community i before collaboration.

(2) Cost sharing between community users at the lower layers

When the total cost of energy consumption has been distributed to each community at
the upper layer, the cost needs to be distributed again within the community at the lower
layer. To eliminate the complexity of the calculation due to the increase in the number
of users, this paper uses the bilateral Shapley value method to replace the traditional
Shapley value method for cost allocation. The bilateral Shapley value method divides all
community users into two subjects: {j} and {M/j}. Then it determines the cost of user
j. The complexity of the calculation is greatly reduced, though there is a little sacrifice in
accuracy. The cost shared by user j is as follows:

φj =
1
2
(CM − CM−j + C{j}) (33)

where φj is the cost of user j, M is the scenario where all community users participate in
cooperation, CM − CM−j is the marginal cost contribution of user j to M, and C{j} is the
cost of j not participating in cooperation.

Through the above allocation, the total cost allocation rate of user j for multiple-
community cooperation is as follows:

Ij =
φj

CM
(34)

where Ij is the apportionment rate of the total cost.
Similar to the upper layer, each user also needs to meet the “individual rational-

ity”, which means the cost after cooperation should not be greater than the cost before
cooperation, as shown in (29):

∀φj ≤ φj0 (35)

where φj0 is the cost of user j before cooperation.
According to the above analysis, the specific cost of user j in community i is derived

as follows:
φij = Ij φi (36)

where φij is the specific cost shared for user j in community i.

(3) Cost sharing process
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From the above analysis, it can be seen that the cost allocation based on the Owen
value method includes cost allocation among communities at the upper layer and the cost
allocation among the community users at the lower layer. The specific process is shown in
Figure 3.
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3. Case Study

Three energy communities are selected for analysis, and the DG (such as PV) resources
in each community are sufficient. We assume that the users are typical commercial users of
domestic EPs, with the DG units rated at around 30 kw. Each community had nine users
equipped with PV devices, and the load data of each user in the three communities are
shown in Figure 4.
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Figure 4. Load profiles of Community 1, Community 2, and Community 3 (each has 9 users).
(a) Community 1. (b) Community 2. (c) Community 3.
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A time of 24 h is taken as a scheduling cycle, with each step length being 1 h. The PV
output is predicted at each sampling point based on historical data for the current period.

Pn(s + r|s ) = P0
n(s) +

r

∑
t=1

∆υn(s + t|s ) (37)

where Pn(s + r|s ) is the uncertain prediction of user n for the s + r period in period s; P0
n(s)

is the initial value of the uncertainty in period s; ∆υn(s + t|s ) is the prediction increment of
uncertainty in the period of s + t; r is the length of the prediction domain. In the intra-day
stage, the influence of the prediction error is reduced by ES scheduling, so as to improve
users’ trading income and relieve the operating pressure of the power grid.

Three typical days are selected, namely, a typical summer day (6 August), a typical
transitional season day (2 October), and a typical winter day (31 December). Next, the
transitional season typical day is taken as an example for discussion. The total predicted
PV output of each community and the total initial load demand are shown in Figure 5, and
the PV output of each user in a single community is the same. The ratio of shiftable load to
non-shiftable load in each community is 0.5 to 0.2, so each community has the potential to
achieve economic optimization through a load profile adjustment, and the capacity of the
ES unit in each community is about 500 kWh. The upper limit of allowable trading power
between the AESDC and the power grid at each step is 500 kW, the coefficient of power
consumption loss β is 0.2, and the lower and upper limits of real-time electricity price of
the AESDC are rb f C,min = 0.8rstG and rb f C,max = 1.2rb f G.
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Figure 5. Forecasted PV output and total load profiles of each community. (a) Forecasted PV output.
(b) Total load.

On this basis, three scenarios are studied to verify the proposed strategy:
Scenario 1: Community users do not use shared ES equipment, no SESOs involved,

and only configured PV equipment is used.
Scenario 2: There are no cooperation and energy interactions among communities, the

SESOs within each community directly deal with the power grid for day-ahead scheduling,
and cost sharing is only among community users at the lower layer.

Scenario 3: Communities cooperate as an alliance for ES sharing, using the leader–
follower game for day-ahead scheduling and the Owen value method for the double-layer
cost allocation strategy. Cost sharing is conducted on both the upper and the lower layers.

(1) Revenue analysis of the SESOS

Taking Community 1 as an example, the load shift in scenario 2 and scenario 3 is
shown in Figure 6. The total load from 00–14:00 is larger than the original load demand,
while the total load from 9:00–10:00 and 16:00–20:00 is smaller, which is due to load shifting
to reduce energy consumption costs. We can also find that, to reduce the cost of electricity, a
small amount of load shifting will be carried out at night, but the maximum amount of shift
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will be carried out at around 9:00–14:00 and 16:00–20:00, because they are the peak load time
periods and the electricity price is also high. In order to reduce the energy consumption
cost, this part of the load will be shifted as the first choice.
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Figure 6. Load shift in Community 1.

The net load profile of each community obtained in scenario 1 is shown in Figure 7a,
and the net load of each community in scenario 2 is shown in Figure 7b. With the presented
optimal scheduling strategy, the net load profile of each community in scenario 3 is shown
in Figure 7c. The positive value in the figure indicates that there is an overall power
shortage in the community, and the negative value indicates that there is a surplus of power
generation in the community.
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As seen from Figure 7a, when there are no Ess equipped, the PV output in each
community only supplies its own load, and there is no SESO to guide users to respond to
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the demand. When PV generation exceeds the load demand, a large amount of it has to
be discarded. As seen from Figure 7b, with the shared ES units, SESOs can guide users
to actively participate in demand response, and users in various communities carry out
load shifting to promote renewable consumption and obtain extra benefits. However,
there are no energy Interactions among communities, and purchasing energy from the
power grid is required, which increases total costs. In Figure 7c, it can be concluded that,
under the ES sharing mechanism established in this paper, there are energy interactions
among communities. Because the electricity price for inter-community interaction is lower
than the TOU price of the grid, the energy consumption costs of each community are
further reduced.

Since there is no SESO involved in scenario 1, its income is not analyzed. In other
scenarios, the SESO income of the three communities is shown in Table 1. In scenario 2, the
SESO earns profits mainly by adequate planning of its charging and discharging operation
according to the energy consumption habits of each user and the TOU price of the grid.
In scenario 3, with the scheduling of the AESDC at the upper layer, there exists a mutual
benefit among the communities. When there is an energy surplus in one community, it
can earn profits by selling it to SESOs in other communities. Through comparison, it
can be seen that, under the trading mechanism based on the leader–follower game, the
revenue of the SESO in Community 1 has increased by 26.69%, and that of Community
3’s SESO has increased by 13.69%. However, the income of the SESO in Community 2 has
decreased, because the daytime load of Community 2 is low during the PV peak period.
After participating in the community alliance, the surplus power needs to be preferentially
sold to communities with a power shortage at a lower price than the PV on-grid price,
which reduces the SESO’s income, but this result is in line with the group rationality of cost
allocation. This will be explained in detail later.

Table 1. Benefit analysis of the SESOs in each community.

Community 1 SESO
Benefits (USD)

Community 2 SESO
Benefits (USD)

Community 3 SESO
Benefits (USD)

Scenario 2 9.21 8.01 8.35

Scenario 3 11.95 7.37 9.50

Revenue increment 26.69% −8.02% 13.69%

(2) Profit analysis of the AESDC at the upper layers

In scenario 3, the AESDC schedules the charging and discharging of the shared ES
units in each community, issues the real-time electricity price of the alliance, and makes the
power transaction plan with the grid at the same time. Taking the charge and discharge
scheduling decision of the SESO in Community 1 as an example, the amount of power
purchased and sold for each SESO is shown in Figure 8. The SESO stores energy between
10:00 and 15:00 when the PV generation is greater than load demands, and the SESO trades
with each PV owner for energy storage. From 24:00 to 7:00, the SESO also instructs the ESs
for charging, and the trading object at this time is the AESDC, because of the low electricity
price during that period. Then the SESO instructs the ES to discharge when the PV output
is low and the electricity price is at its peak (8:00–10:00, 17:00–21:00).
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Figure 8. Share ES charging and discharging instructions of the SESO in Community 1.

The real-time price of purchasing and selling electricity formulated by the AESDC is
shown in Figure 9. The issued purchasing and selling price must be between the upper
and lower limits of the benchmark electricity price, and the SESOs can reduce their energy
consumption costs through energy transactions with the AESDC. The income of the AESDC
in the whole dispatch cycle is CNY 98.46.
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the ESs for charging, and the trading object at this time is the AESDC, because of the low 
electricity price during that period. Then the SESO instructs the ES to discharge when the 
PV output is low and the electricity price is at its peak (8:00–10:00, 17:00–21:00). 
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Figure 8. Share ES charging and discharging instructions of the SESO in Community 1. 

The real-time price of purchasing and selling electricity formulated by the AESDC is 
shown in Figure 9. The issued purchasing and selling price must be between the upper 
and lower limits of the benchmark electricity price, and the SESOs can reduce their energy 
consumption costs through energy transactions with the AESDC. The income of the 
AESDC in the whole dispatch cycle is CNY 98.46. 
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At peak load time, the TOU price of the grid is also at the peak. The AESDC reduces
its own real-time electricity price to encourage the communities to purchase electricity.
However, during the low electricity price period, the AESDC’s electricity price is higher
than the TOU price in order to ensure its benefits. Since user loads are also in the low period
at this time, the willingness of all communities to participate in the sharing mechanism
will not be weakened. According to Figure 8, the real-time electricity price of the SESO
is higher when discharging, while the real-time electricity price of the charging period
is lower. It is also a reasonable measure from the AESDC’s perspective, because it can
issue energy prices independently, and the pricing decision is more inclined to for its
own profits. The AESDC is in the leading position in the leader–follower game, and the
SESOs as followers will bear a certain loss of market efficiency when participating in the
leader–follower game. However, the pricing of the AESDC also takes into account the
influence of various SESOs in such a way that at noon when the PV power is abundant,
the communities have more surplus power, and the demand for electricity purchased from
the AESDC is greatly reduced, so the real-time electricity price is relatively low at this
time, reflecting the original intention of the AESDC to guide the community SESOs for
energy purchases.

(3) Cost sharing results and analysis

As there are multiple communities and users in this framework, the traditional Shapley
value method will fall into a dimensional disaster and cannot achieve feasible solutions.
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Then the cost was allocated based on Owen’s value method. Table 2 shows the cost sharing
results among communities.

Table 2. Results of cost sharing among communities.

Community 1 Shared
Cost (USD)

Community 2 Shared
Cost (USD)

Community 3 Shared
Cost (USD)

Scenario 1 102.39 77.01 76.08

Scenario 2 90.05 34.06 42.49

Scenario 3 79.00 21.47 32.89

As seen from Table 2, according to the results of scenario 1 and scenario 2, the cost
of each community in the shared ES mode is lower than that without the shared ES
mechanism, due to ES’s flexibility in promoting renewable utilization and maintaining a
power balance. According to the results of scenario 2 and scenario 3, the cost allocated to
each community under the shared ES framework is better than that without cooperation.
The cost allocation among communities is rational and is conducive to the stable operation
of the ES sharing mechanism.

Taking Community 1 as an example and combining it with the results of scenario 2
and scenario 3 in Table 2, the cost redistribution scheme of community users at the lower
layer is further analyzed. Table 3 shows the cost allocation results of the community users.

Table 3. Cost sharing results for users within Community 1.

Cost (USD) Scenario 2 Scenario 3 Cost Reduction Rate

User 1 11.53 10.32 10.53%

User 2 11.73 10.53 10.20%

User 3 11.37 10.44 8.20%

User 4 8.99 7.88 12.40%

User 5 12.13 10.92 9.94%

User 6 12.41 11.09 10.63%

User 7 8.47 7.37 12.99%

User 8 1.50 −0.26 117.67%

User 9 11.87 10.44 12.04%

Total cost 90.05 79.00 12.28%

As seen from Table 3, although the PV output of each user is similar, the cost reduction
degree of each user is different, which is because the load profile of each user is different, so
the contribution to the community is different. Therefore, the cost allocation among users
satisfies individual rationality and is also conducive to the practical application of the ES
sharing mechanism.

(4) Cost sharing analysis under scenarios of different typical days

An analysis is carried out under scenarios of typical days in the transition season, in
summer and in winter. Tables 4 and 5 show the cost sharing results among communities
under the scenarios of typical days in summer and winter, respectively.
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Table 4. Cost sharing results among communities (typical day in summer).

Community 1 Shared
Cost (USD)

Community 2 Shared
Cost (USD)

Community 3 Shared
Cost (USD)

Scenario 1 118.46 89.10 88.02

Scenario 2 100.14 39.41 49.16

Scenario 3 90.22 24.84 38.05

Table 5. Cost sharing results among communities (typical day in winter).

Community 1 Shared
Cost (USD)

Community 2 Shared
Cost (USD)

Community 3 Shared
Cost (USD)

Scenario 1 150.72 113.36 111.99

Scenario 2 132.55 50.14 62.55

Scenario 3 100.73 31.60 48.41

Under the scenarios of typical days in summer and winter, taking Community 1 as an
example, the cost redistribution scheme of community users in the lower layer is further
analyzed. Tables 6 and 7 show the cost allocation results for users in the community during
summer and winter.

Table 6. Cost sharing results for users within Community 1 (a typical day in summer).

Cost (USD) Scenario 2 Scenario 3 Cost Reduction Rate

User 1 12.82 11.79 8.08%

User 2 13.04 12.03 7.81%

User 3 12.64 11.92 5.70%

User 4 10.00 9.00 9.98%

User 5 13.49 12.47 7.55%

User 6 13.80 12.66 8.23%

User 7 9.42 8.42 10.64%

User 8 1.67 −0.30 117.80%

User 9 13.20 11.92 9.67%

Total cost 100.14 90.22 9.90%

Table 7. Cost sharing results for users within Community 1 (a typical day in winter).

Cost (USD) Scenario 2 Scenario 3 Cost Reduction Rate

User 1 16.97 13.16 22.45%

User 2 17.27 13.43 22.24%

User 3 16.74 13.31 20.49%

User 4 13.23 10.05 24.04%

User 5 17.86 13.92 22.06%

User 6 18.27 14.14 22.61%

User 7 12.47 9.40 24.62%

User 8 2.21 −0.33 114.93%

User 9 17.47 13.31 23.81%

Total cost 132.55 100.73 24.01%
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Tables 6 and 7 show that, under scenarios of typical days in winter and summer, the
cost of each community with the shared ES mechanism is apparently lower than the cost of
each community without ES sharing, and the cost allocated to each community is more
reasonable and fairer than the cost without cooperating. The cost allocation among users is
reasonable, and the cost for each user has been reduced. Therefore, it is concluded that the
presented cost allocation method is practical in different scenarios.

(5) Cost sharing analysis under different heuristic algorithms

Different heuristic algorithms are used to solve this optimization problem. Table 8
shows the cost sharing results of Community 1 under different algorithms.

Table 8. The cost sharing results of Community 1 under different algorithms.

Community 1 Shared Cost (USD) GA PSO PSO-HS

Scenario 1 110.66 110.38 102.39

Scenario 2 97.86 97.21 90.05

Scenario 3 85.74 85.47 79.00

From Table 8, the presented PSO-HS algorithm results in the lowest costs in all scenar-
ios. Moreover, the PSO-HS algorithm shows better performances in global convergence
and robustness.

4. Conclusions

To enhance the operational stability of the power system with high renewable penetra-
tions and further explore the economic benefits on the demand side, this paper proposes
an ES-sharing mechanism with energy scheduling, trading, and cost allocation for multiple
energy communities of EPs. The AESDC serves as the energy service provider of the
multiple-community alliance and the SESOs serve as agents for communities of EPs who
are responsible for the ES sharing mechanism. A double-layer optimal energy schedul-
ing model based on leader–follower game is established, which is transformed into a
single-layer model by using the KKT condition and then resolved by using the large M
method and the PSO-HS algorithm. On this basis, the cost allocation model of alliance and
community based on the Owen value method is established to solve the fairness of the
benefit distribution and the privacy of users. Through case studies, the economy of the
proposed ES sharing mechanism as well as the fairness and feasibility of the cost allocation
strategy are verified. The features of the adaptation and robustness of the proposed strategy
are verified by comparing the results under multiple scenarios of different seasons. The
solution results of multiple algorithms show that the PSO-HS algorithm adopted in this
paper is satisfactory in both computing speed and converging features.

In future works, the following will be focused on: (1) For the leader–follower game,
the bidding game among various communities will be further considered. (2) For energy
scheduling case studies in this paper, only the renewable output on sunny days is consid-
ered; in future works, fluctuations of the renewable DGs due to weather changes will be
considered, which will bring more challenges to the scheduling strategies but will be more
useful for justifying the functionality of the ES sharing mechanism.

Author Contributions: Conceptualization, U.B.; methodology, Y.G.; resources, W.L.; data curation,
W.W. (Wenguo Wang) and Y.S.; writing—original draft preparation, Y.Z. and W.W. (Wei Wang);
writing—review and editing, Y.L.; supervision, U.B.; project administration, U.B.; funding acquisition,
U.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Research Project of the Inner
Mongolia Power (Group) Co., Ltd. (No. 2023-5-36).



Energies 2024, 17, 5468 18 of 19

Data Availability Statement: The datasets presented in this article are not readily available because
the data are part of an ongoing study. Requests to access the datasets should be directed to the Inner
Mongolia Power (Group) Co., Ltd.

Conflicts of Interest: The authors declare no conflicts of interest. The authors declare that this study
received funding from the Science and Technology Research Project of the Inner Mongolia Power
(Group) Co., Ltd. (No. 2023-5-36). The funder was not involved in the study design, collection,
analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

References
1. Liang, Z.; Mu, L. Unified calculation of multi-energy flow for integrated energy system based on difference grid. J. Renew. Sustain.

Energy 2022, 14, 066301. [CrossRef]
2. Akarne, Y.; Essadki, A.; Nasser, T.; El Bhiri, B. Experimental Analysis of Efficient Dual-Layer Energy Management and Power

Control in an AC Microgrid System. IEEE Access 2024, 12, 30577–30592. [CrossRef]
3. Liu, J.; Zhang, N.; Kang, C.; Kirschen, D.; Xia, Q. Cloud energy storage for residential and small commercial consumers: A

business case study. Appl. Energy 2017, 188, 226–236. [CrossRef]
4. Salehi, M.K.; Rastegar, M. Distributed peer-to-peer transactive residential energy management with cloud energy storage. J.

Energy Storag. 2023, 58, 106401. [CrossRef]
5. Zhang, S.; Li, Y.; Du, E.; Fan, C.; Wu, Z.; Yao, Y.; Liu, L.; Zhang, N. A review and outlook on cloud energy storage: An aggregated

and shared utilizing method of energy storage system. Renew. Sustain. Energy Rev. 2023, 185, 113606. [CrossRef]
6. Zhang, T.; Qiu, W.; Zhang, Z.; Lin, Z.; Ding, Y.; Wang, Y.; Wang, L.; Yang, L. Optimal bidding strategy and profit allocation

method for shared energy storage-assisted VPP in joint energy and regulation markets. Appl. Energy 2023, 329, 120158. [CrossRef]
7. Chen, Y.; Zhao, C.; Low, S.H.; Wierman, A. An Energy Sharing Mechanism Considering Network Constraints and Market Power

Limitation. IEEE Trans. Smart Grid 2023, 14, 1027–1041. [CrossRef]
8. Dai, R.; Esmaeilbeigi, R.; Charkhgard, H. The Utilization of Shared Energy Storage in Energy Systems: A Comprehensive Review.

IEEE Trans. Smart Grid 2021, 12, 3163–3174. [CrossRef]
9. Xie, Y.; Yao, Y.; Wang, Y.; Cha, W.; Zhou, S.; Wu, Y.; Huang, C. A Cooperative Game-Based Sizing and Configuration of

Community-Shared Energy Storage. Energies 2022, 15, 8626. [CrossRef]
10. Steriotis, K.; Tsaousoglou, G. Real-time pricing in environments with shared ES systems. Energy Efficien. 2019, 12, 1085–1104.

[CrossRef]
11. Liu, D.; Cao, J.; Liu, M. Joint Optimization of Energy Storage Sharing and Demand Response in Microgrid Considering Multiple

Uncertainties. Energies 2022, 15, 3067. [CrossRef]
12. Li, L.; Cao, X.; Zhang, S. Shared ES system for prosumers in a community: Investment decision, economic operation, and benefits

allocation under a cost-effective way. J. Electr. Syst. 2022, 50, 104710.
13. Zhu, H.; Ouahada, K.; Rimer, S. Real Time ES Sharing with Load Scheduling: A Lyapunov-Based Approach. IEEE Access 2021, 9,

46626–46640. [CrossRef]
14. Lu, J.; Zheng, W.; Yu, Z.; Xu, Z. Optimizing Grid-Connected Multi-Microgrid Systems with Shared Energy Storage for Enhanced

Local Energy Consumption. IEEE Access 2024, 12, 13663–13677. [CrossRef]
15. Xiao, J.; Yang, Y.; Cui, S.; Liu, X. A new ES sharing framework with regard to both storage capacity and power capacity. Appl.

Energy 2022, 307, 118171. [CrossRef]
16. Wang, B.; Zhang, C.; Li, C.; Su, X.; Qiu, Z.; Dong, Z.Y. Multi-timescale Energy Sharing with Grid-BESS Capacity Rental Considering

Uncertainties. CSEE J. Power Energy Syst. 2023, 9, 1326–1336.
17. Lai, S.; Qiu, J.; Tao, Y. Credit-Based Pricing and Planning Strategies for Hydrogen and Electricity ES Sharing. IEEE Trans. Sustain.

Energy 2022, 13, 67–80. [CrossRef]
18. Wang, Q.; Zhang, X.; Yi, C.; Li, Z.; Xu, D. A Novel Shared ES Planning Method Considering the Correlation of Renewable

Uncer-tainties on the Supply Side. IEEE Trans. Sustain. Energy 2022, 13, 2051–2063. [CrossRef]
19. Wang, Y.; Liu, Z.; Cai, C.; Xue, L.; Ma, Y.; Shen, H.; Chen, X.; Liu, L. Research on the optimization method of integrated energy

system operation with multi-subject game. Energy 2022, 245, 123305. [CrossRef]
20. Guo, T.; Guo, Q.; Huang, L.; Guo, H.; Lu, Y.; Tu, L. Microgrid source-network-load-storage master-slave game optimization

method consid-ering the energy storage overcharge/overdischarge risk. Energy 2023, 282, 128897. [CrossRef]
21. Yang, Y.; Chen, T.; Yan, H.; Wang, J.; Yan, Z.; Liu, W. Optimization Operation Strategy for Shared Energy Storage and Regional

Integrated Energy Systems Based on Multi-Level Game. Energies 2024, 17, 1770. [CrossRef]
22. Dong, X.; Li, X.; Cheng, S. Energy Management Optimization of Microgrid Cluster Based on Multi-Agent-System and Hi-erarchical

Stackelberg Game Theory. IEEE Access 2020, 8, 206183–206197. [CrossRef]
23. Elliott, R.T.; Fernandez-Blanco, R.; Kozdras, K.; Kaplan, J.; Lockyear, B.; Zyskowski, J.; Kirschen, D.S. Sharing Energy Storage

Between Transmission and Distribution. IEEE Trans. Power Syst. 2019, 34, 152–162. [CrossRef]
24. Shen, W.; Zeng, B.; Zeng, M. Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid ES

system. Energy 2023, 283, 129006. [CrossRef]

https://doi.org/10.1063/5.0130484
https://doi.org/10.1109/ACCESS.2024.3370681
https://doi.org/10.1016/j.apenergy.2016.11.120
https://doi.org/10.1016/j.est.2022.106401
https://doi.org/10.1016/j.rser.2023.113606
https://doi.org/10.1016/j.apenergy.2022.120158
https://doi.org/10.1109/TSG.2022.3198721
https://doi.org/10.1109/TSG.2021.3061619
https://doi.org/10.3390/en15228626
https://doi.org/10.1007/s12053-018-9723-8
https://doi.org/10.3390/en15093067
https://doi.org/10.1109/ACCESS.2021.3067788
https://doi.org/10.1109/ACCESS.2024.3351855
https://doi.org/10.1016/j.apenergy.2021.118171
https://doi.org/10.1109/TSTE.2021.3103886
https://doi.org/10.1109/TSTE.2022.3179837
https://doi.org/10.1016/j.energy.2022.123305
https://doi.org/10.1016/j.energy.2023.128897
https://doi.org/10.3390/en17071770
https://doi.org/10.1109/ACCESS.2020.3037676
https://doi.org/10.1109/TPWRS.2018.2866420
https://doi.org/10.1016/j.energy.2023.129006


Energies 2024, 17, 5468 19 of 19

25. Dong, H.; Fu, Y.; Jia, Q.; Wen, X. Optimal dispatch of integrated energy microgrid considering hybrid structured elec-tric-thermal
ES. Renew. Energy 2022, 199, 628–639. [CrossRef]

26. Babu, K.V.S.M.; Vinay, K.S.S.; Chakraborty, P. Peer-to-Peer Sharing of Energy Storage Systems Under Net Metering and Time-of-
Use Pricing. IEEE Access 2023, 11, 3118–3128. [CrossRef]

27. Han, F.; Zeng, J.; Lin, J.; Gao, C. Multi-stage distributionally robust optimization for hybrid ES in regional integrated energy
system considering robustness and nonanticipativity. Energy 2023, 277, 127729. [CrossRef]

28. Liu, L.; Da, C.; Zhou, W.; Wang, M. A control strategy for hybrid ES based on double-layer fuzzy controller integrated with
second-ahead control thought. J. Renew. Sustain. Energy 2019, 11, 024104. [CrossRef]

29. Wang, Y.; Zhang, Y.; Xue, L.; Liu, C.; Song, F.; Sun, Y.; Liu, Y.; Che, B. Research on planning optimization of integrated energy
system based on the differential features of hybrid ES system. J. Electr. Sci. 2022, 55, 105368.

30. Liu, Y.; Li, X.; Cheng, G.; Zhu, J. Collaborative Optimization to Enable Economical and Grid Friendly Energy Interactions for
Residential Microgrid Clusters. J. Electr. Eng. Technol. 2023, 18, 1–14. [CrossRef]

31. Liang, N.; He, X.; Tan, J.; Pan, Z.; Zheng, F. Stackelberg game-based optimal scheduling for multi-community integrated energy
systems considering energy interaction and carbon trading. Int. J. Electr. Power Energy Syst. 2023, 153, 109360. [CrossRef]

32. Li, Y.; Wang, B.; Yang, Z.; Li, J.; Chen, C. Hierarchical stochastic scheduling of multi-community integrated energy systems in
uncertain environments via Stackelberg game. Appl. Energy 2022, 308, 118392. [CrossRef]

33. Zhang, D.; Han, R.; Wan, Y.; Qin, J.; Ran, L.; Ma, Q. Robust optimal energy management with dynamic price response: A
non-cooperative multi-community aggregative game perspective. Int. J. Electr. Power Energy Syst. 2023, 154, 109395. [CrossRef]

34. Sidorov, D.; Panasetsky, D.; Tomin, N.; Karamov, D.; Zhukov, A.; Muftahov, I.; Dreglea, A.; Liu, F.; Li, Y. Toward Zero-Emission
Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region. Energies
2020, 13, 1226. [CrossRef]

35. Tomin, N.; Shakirov, V.; Kozlov, A.; Sidorov, D.; Kurbatsky, V.; Rehtanz, C.; Lora, E.E. Design and optimal energy management of
community microgrids with flexible renewable energy sources. Renew. Energy 2022, 183, 903–921. [CrossRef]

36. Guo, J.; Wu, D.; Wang, Y.; Wang, L.; Guo, H. Co-optimization method research and comprehensive benefits analysis of regional
integrated energy system. Appl. Energy 2023, 340, 121034. [CrossRef]

37. Deng, H.; Wang, J.; Shao, Y.; Zhou, Y.; Cao, Y.; Zhang, X.; Li, W. Optimization of configurations and scheduling of shared hybrid
electric-hydrogen energy storages supporting to multi-microgrid system. J. Energy Storage 2023, 74, 109420. [CrossRef]

38. Zhu, S.-P.; Keshtegar, B.; Seghier, M.E.A.B.; Zio, E.; Taylan, O. Hybrid and enhanced PSO: Novel first order reliability method-
based hybrid intelligent approaches. Comput. Methods Appl. Mech. Eng. 2022, 393, 114730. [CrossRef]

39. Yu, X.; Du, Z.; Zhang, Q.; Zou, Z. Proportional Owen value for the coalition structure cooperative game under the incomplete
information. Syst. Eng. Theory Pract. 2019, 39, 2105–2115.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.renene.2022.09.027
https://doi.org/10.1109/ACCESS.2023.3234625
https://doi.org/10.1016/j.energy.2023.127729
https://doi.org/10.1063/1.5081993
https://doi.org/10.1007/s42835-022-01240-x
https://doi.org/10.1016/j.ijepes.2023.109360
https://doi.org/10.1016/j.apenergy.2021.118392
https://doi.org/10.1016/j.ijepes.2023.109395
https://doi.org/10.3390/en13051226
https://doi.org/10.1016/j.renene.2021.11.024
https://doi.org/10.1016/j.apenergy.2023.121034
https://doi.org/10.1016/j.est.2023.109420
https://doi.org/10.1016/j.cma.2022.114730

	Introduction 
	Optimal Collaboration of Shared ES in Multiple Energy Communities 
	Energy Storage (ES) Model 
	ES Sharing Mechanism for Clustered Energy Communities with Renewable DGs 
	Energy Scheduling Model Between Multiple Communities Based on Leader–Follower Game 
	Cost Allocation Strategy and Model of Multiple Participants 

	Case Study 
	Conclusions 
	References

