
Citation: Best, O.; Khan, A.; Sharma,

S.; Collins, K.; Gianni, M. Leading

Edge Erosion Classification in

Offshore Wind Turbines Using Feature

Extraction and Classical Machine

Learning. Energies 2024, 17, 5475.

https://doi.org/10.3390/en17215475

Academic Editors: Manuel

Pineda-Sanchez,

Javier Martinez-Roman,

Martin Riera-Guasp,

Angel Sapena-Bano and

Jordi Burriel-Valencia

Received: 23 September 2024

Revised: 22 October 2024

Accepted: 29 October 2024

Published: 1 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Leading Edge Erosion Classification in Offshore Wind Turbines
Using Feature Extraction and Classical Machine Learning
Oscar Best 1,*, Asiya Khan 1 , Sanjay Sharma 1, Keri Collins 1 and Mario Gianni 2

1 School of Engineering, Computing and Mathematics, Faculty of Science and Engineering,
University of Plymouth, Plymouth PL4 8AA, UK

2 School of Electrical Engineering, Electronics and Computer Science, University of Liverpool,
Liverpool L69 3BX, UK

* Correspondence: oscar.best@plymouth.ac.uk

Abstract: Leading edge (LE) erosion is a type of damage that inhibits the aerodynamic performance
of a wind turbine, resulting in high operation and maintenance (O&M) costs. This paper makes use
of a small dataset consisting of 50 images of LE erosion and healthy blades for feature extraction
and the training of four types of classifiers, namely, support vector machine (SVM), random forest,
K-nearest neighbour (KNN), and multi-layer perceptron (MLP). Six feature extraction methods were
used with these classifiers to train 24 models. The dataset has also been used to train a convolutional
neural network (CNN) model developed using Keras. The purpose of this work is to determine
whether classical machine learning (ML) classifiers trained with extracted features can produce higher-
accuracy results, train faster, and classify faster than deep learning (DL) models for the application
of LE damage detection of wind turbine blades. The oriented fast and rotated brief (ORB)-trained
SVM achieved an accuracy of 90% ± 0.01, took 80.4 s to train, and achieved inference speeds of
63 frames per second (FPS), compared to the CNN model, which achieved an accuracy of 79.4% ± 2.07,
took 4667.4 s to train, and achieved an inference speed of 1.3 FPS. These results suggest that classical
ML models can be more accurate and efficient than DL models if the appropriate feature extraction
method is used.

Keywords: machine learning; damage detection; feature extraction; offshore devices

1. Introduction

Offshore wind turbines are susceptible to surface damage over time. The blades of the
structure are particularly affected, and damage is worsened by exposure to extreme envi-
ronmental conditions [1]. Such damages include delamination, which is the degradation
of the resin between the laminate plies covering the blade that is mostly found along the
tip of the blade. Weakened areas of delamination are exposed to further cracking due to
the fatigue load on the wind turbine blade [2]. Splitting of the two blade halves along the
trailing edge can result in longitudinal cracks where these halves are bonded. This type of
damage is mostly found at the base and tip of the blade and is a result of reduced blade
stiffness [3]. LE erosion is another type of damage caused by particulates, such as rain and
hail, removing material from the blade’s leading edge. This has become an important issue
for the offshore industry, as LE erosion can negatively impact the aerodynamic efficiency of
the turbine [4].

Operation and maintenance (O&M) costs for offshore farms account for almost a
quarter of the total life cycle cost. If offshore wind turbines are damaged and need repair, the
limited options are either to tow the device to port for repairs or deploy installation vessels
offshore [5]. Both methods are costly and time-consuming and cannot be sustained with
the growing number of offshore wind farms. Offshore wind farms are particularly costly
compared to onshore wind farms. This is due to the limited accessibility caused by the vast

Energies 2024, 17, 5475. https://doi.org/10.3390/en17215475 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17215475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3620-3048
https://orcid.org/0000-0001-5410-2377
https://doi.org/10.3390/en17215475
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17215475?type=check_update&version=1

Energies 2024, 17, 5475 2 of 19

distance to shore and high water depths [6]. With the operation and maintenance (O&M)
cost of these offshore renewable energy (ORE) devices being so high [7], it is important
to facilitate the identification of LE erosion so that repairs can be made. Computer vision
and deep learning have proven their worth by allowing for faster and safer inspections of
surface damage on wind turbine blades, as opposed to more conventional practices with
crewed teams [8]. Drones fitted with cameras are more able to retrieve data, which can be
further analysed. CNNs are neural networks designed for image analysis [9], and they are
an effective tool for many vision-based applications, already making significant impacts in
the application of ORE device inspection. The issue with this approach is that these DL
models require a significant amount of data to train them to be effective [10]. Secondly,
they are computationally expensive [11].

In the case of Shihavuddin et al. [12], they were provided with a non-public inspection
dataset from the private company EasyInspect ApS (Brøndby, Denmark), which contained
4000 × 3000-pixel images of different types of wind turbine blade damage. With this,
they trained faster region-based CNN (faster R-CNN) models with different backbones,
such as InceptionV2, Inception-ResNet-V2, ResNet-50, and ResNet-101. For comparison,
the dataset was used to train and evaluate single-shot detectors (SSD) and region-based
fully convolutional networks (RFCN). Their results showed that faster R-CNN models
outperformed in terms of accuracy when real-time processing was not needed, and they
concluded that larger models generally resulted in higher mean average precision (mAP)
scores. The largest model, Inception-ResNet-V2, achieved an accuracy of 81.1%, compared
to 71.67%, 71.93%, and 72.86% for Inception-V2, ResNet-50, and ResNet-101, respectively.
For their work, they chose four classes of surface damage, which include LE erosion, a
vortex generator (VG) panel, a VG panel with missing teeth, and a lightning receptor.
Their reasoning for choosing these was because the classes produce visual traits that are
identifiable by humans rather than the significance of the damages’ impact on the operation
of the wind turbine.

Aird et al. [13] specifically describe the significance of LE erosion, stating that this
damage type is responsible for decreasing blade performance and longevity, increasing
maintenance costs, and causing reductions in annual energy production (AEP). They
worked with a small dataset of 140 images containing deep and shallow LE erosion classes.
These data were used to train and evaluate two ML models. The first was a supervised
ML model that employed CNNs for feature extraction from an annotated training dataset.
The second was an unsupervised ML model that aggregated pixel intensity thresholding
through the calculation of pixel-by-pixel shadow ratio to identify the features within the
image [14–16]. Both models were used to determine the percentage area of the blade that
was damaged, with both models successfully identifying approximately 65% of the surface
damage area. Deeper damage was easier to detect for both models; however, the supervised
model proved more successful at identifying shallow damage types. The paper explains the
choice of LE erosion as the focus damage type because it is an important contributing factor
to the wind turbine lifespan. In addition, the use of machine learning, both supervised and
unsupervised, was explored to identify two different instances of LE erosion.

Similarly, Deng et al. [17] have used machine learning to classify blade surface damage.
They used a dataset of 1200 images, with each of the four classes containing 300 images.
The four damage types were nick, crack, blister, and spot. The authors used an improved
particle swarm optimisation (PSO) method to allow for adaptive image filtering before
applying the Log-Gabor filter to extract edge features [18,19]. The resulting features were
used to train an SVM that would discriminate among the four classes. The SVM trained
with features extracted without PSO achieved a mean accuracy of 87%, whereas with PSO,
the trained SVM achieved a mean accuracy of 94%. The paper highlights the importance
of image preprocessing prior to feature extraction because the quality of the features is
affected by the quality of the image.

Yang et al. [20] have also pre-processed images prior to feature extraction. Their work
is more concerned with the issue of visual noise generated by the background of the image

Energies 2024, 17, 5475 3 of 19

as opposed to the clarity of the image. They used a maximum inter-class variance threshold
segmentation method known as the Otsu method to eliminate the background in the image,
leaving only the blade [21]. The binary image containing just the blade is superimposed
onto the original image, in which all background pixels are set to black. This method allows
just the blade to contain noticeable features.

Feature extraction using the histogram of oriented gradients (HoG) approach was
used by Wang and Zou [22]. This method extracted texture features from 507 images
containing crack and non-crack damage classes. The dataset was split 70:30 for training and
testing, and extracted features were used to train an SVM classifier. The authors reported a
training accuracy of 89.02% and a test accuracy of 33.99%. The paper compares the results
of the trained SVM to a CNN trained on the same dataset. The DL model achieved a
training accuracy of 96%; however, there was no report for testing accuracy to make a true
comparison between the two methods. The paper further mentions how larger datasets are
needed for training DL models compared to ML models.

These papers have explored limited techniques for feature extraction, achieving vary-
ing results. Because of this, it is difficult to determine whether alternative feature extraction
methods would have been more appropriate for their application. Model efficiency is an
issue that has been seemingly overlooked and should be seriously considered for practical
implementations. Insufficient data for training deep learning models is also an issue echoed
by multiple papers. The purpose of this work is twofold. The first aim is to identify
which feature extraction method and classical ML classifier produces a model with a high
classification accuracy, short training time, and low inference latency using a small dataset
of 50 images given in [23]. The second aim is to compare the accuracy and efficiency of this
ML model to a CNN model to determine whether it is more beneficial to use classical ML
approaches instead of deep learning for the application of wind turbine LE erosion classifi-
cation. DL models can be computationally expensive and require a significant amount of
data to be useful; therefore, ML classifiers have been used as an alternative approach and
have been provided with features that have been manually extracted using different feature
extraction techniques. Using a limited dataset, the classifiers will discriminate between
healthy blades and blades with LE erosion.

The structure of this paper is as follows: Section 2 explains the methods used for this
work. The first is how image preprocessing has been applied to the small dataset. The
second is which feature extraction methods have been used to collect training features.
The third is which classical ML models have been used for classification, and finally, the
parameters and conditions for training and inference are described for all classical ML
models and a CNN model. Section 3 lists the accuracy results, training times, and inference
performance of each classical ML model and CNN model. The robustness of the ORB-SVM
model is tested on various noise-induced images. A comparison is made between the
ORB-SVM algorithm and current existing algorithms. Lastly, the discussion and conclusion
are contained within Section 4.

2. Materials and Methods
2.1. Data Preprocessing

A small dataset [23] containing 50 images, 25 images of wind turbine blades with LE
erosion and 25 healthy blades, was created from selected images from online sources [24–30].
All images were first converted to grayscale to reduce the image dimension from 3 channels
to 1, and they were resized to 160 × 160. TensorFlow’s (version 2.11.0) ImageData-Generator
class has been used to expand the dataset from a total of 50 images to 500 images during
runtime, with an equal number of class samples. This is important because too few images
may appear similar and not fully represent the class to which they belong. By applying
image augmentations, the intra-class variance is increased, which allows for a greater gen-
eralisation of the classification model. The types of augmentation that occur include width
and height shifts of 10% of the original image size (after resizing), rotations of 0–45 degrees,
vertical and horizontal flipping, channel shifts from 0 to 20% of the original pixel values,

Energies 2024, 17, 5475 4 of 19

zoom ranging from 0 to 150% of the original image, and shear ranging from 0 to 20 degrees.
Figure 1 shows a selection of both LE erosion and healthy blade samples included in the
dataset after augmentation.

Energies 2024, 17, x FOR PEER REVIEW 4 of 19

a greater generalisation of the classification model. The types of augmentation that occur
include width and height shifts of 10% of the original image size (after resizing), rotations
of 0–45 degrees, vertical and horizontal flipping, channel shifts from 0 to 20% of the orig-
inal pixel values, zoom ranging from 0 to 150% of the original image, and shear ranging
from 0 to 20 degrees. Figure 1 shows a selection of both LE erosion and healthy blade
samples included in the dataset after augmentation.

Figure 1. Dataset samples of LE erosion (top row) and healthy blades (bottom row).

2.2. Feature Extraction Methods
A selection of feature extraction techniques was used for this dataset to process the

images and reduce the dimensionality of the data. The chosen feature extraction methods
are well-known and have been used for image processing in numerous applications, par-
ticularly for damage detection.

2.2.1. Two-Dimensional Discrete Wavelet Transform (2D-DWT)
Wavelet analysis is used to divide signal information within an image into two com-

ponents, which are approximation and detail coefficients. The image is passed through
two filters, a high-pass and a low-pass filter. The 2D discrete wavelet transform splits an
image into four coefficients, namely, cA, cH, cV, and cD. The decomposition creates an
approximation of the original image, represented as cA, which is the result of the low-
pass filter and is equal to the original image without the remaining coefficients (cH, cV,
and cD) [31]. These remaining coefficients represent the detail of the original image and
are the result of the high-pass filter, with each containing different details: horizontal de-
tails (cH), vertical details (cV), and diagonal details (CD). The approximation can be fur-
ther decomposed into another four coefficients in the same way [32]. This technique can
continue through multiple levels; however, for this paper, a 3-level decomposition was
chosen. The goal was to extract sparse coefficients containing only important details orig-
inating from the original input image, much like the feature maps obtained from convo-
lutional layers in a CNN. Figure 2 shows the three level 3 detail coefficients extracted from
the original image.

Figure 1. Dataset samples of LE erosion (top row) and healthy blades (bottom row).

2.2. Feature Extraction Methods

A selection of feature extraction techniques was used for this dataset to process the
images and reduce the dimensionality of the data. The chosen feature extraction meth-
ods are well-known and have been used for image processing in numerous applications,
particularly for damage detection.

2.2.1. Two-Dimensional Discrete Wavelet Transform (2D-DWT)

Wavelet analysis is used to divide signal information within an image into two com-
ponents, which are approximation and detail coefficients. The image is passed through two
filters, a high-pass and a low-pass filter. The 2D discrete wavelet transform splits an image
into four coefficients, namely, cA, cH, cV, and cD. The decomposition creates an approxi-
mation of the original image, represented as cA, which is the result of the low-pass filter
and is equal to the original image without the remaining coefficients (cH, cV, and cD) [31].
These remaining coefficients represent the detail of the original image and are the result of
the high-pass filter, with each containing different details: horizontal details (cH), vertical
details (cV), and diagonal details (CD). The approximation can be further decomposed
into another four coefficients in the same way [32]. This technique can continue through
multiple levels; however, for this paper, a 3-level decomposition was chosen. The goal was
to extract sparse coefficients containing only important details originating from the original
input image, much like the feature maps obtained from convolutional layers in a CNN.
Figure 2 shows the three level 3 detail coefficients extracted from the original image.

Energies 2024, 17, x FOR PEER REVIEW 5 of 19

Figure 2. Original image (left) and level 3 decomposition detail coefficients (right).

2.2.2. Discrete Fourier Transform (DFT)
Discrete Fourier transform was used to decompose each image into its sine and co-

sine components. The spatial information was transformed into the frequency domain at
which each point in the transform magnitude represents a certain frequency contained
within the spatial image. Only a set sample of frequencies is contained within the image,
which is enough to describe the spatial image and its important features whilst removing
unnecessary frequencies. The DFT of a spatial image 𝑓 with size 𝑀 ൈ 𝑁 can be repre-
sented as an image 𝐹 of the same size, as defined by the following equation: 𝐹ሺ𝑢, 𝑣ሻ = ∑ ∑ 𝑓ሺ𝑚, 𝑛ሻ𝑒ି௝ଶగቀೠ೘ಾ ାೡ೙ಿቁேିଵ௡ୀ଴ெିଵ௠ୀ଴ (1)

Figure 3 shows the magnitude of the DFT of the original image. Low-frequency sig-
nals are concentrated around the centre of the image and represent areas in which pixel
intensities slowly evolve from one pixel to the other. High-frequency signals are repre-
sented near the boundary of the image and correspond to pixels within the image with
sharp-intensity transitions. Due to the shape and intensity of the low-frequency signal
near the horizontal axis, we can deduce that the image contains a distinct contrast in pixel
values along a vertical area of the image. This most likely represents the difference in pixel
intensity between the leading edge and the background.

Figure 3. Original image (left) and discrete Fourier transform amplitude (right).

2.2.3. Laplacian of Gaussian (LoG)
To extract features using the Laplace transform, each image is passed through a

Gaussian filter to remove noise. A Laplacian filter is then used to detect edges by compu-
ting the second derivatives of each image. This technique determines whether a change in
adjacent pixel value is from an edge or not. The resulting extracted features contain key
points, which represent regions with sudden changes in pixel intensity. The Laplacian 𝐿ሺ𝑥, 𝑦ሻ of an image with pixel intensity values 𝐼ሺ𝑥, 𝑦ሻ are given by the following equation
[33]: 𝐿ሺ𝑥, 𝑦ሻ = డమூడ௫మ ൅ డమூడ௬మ (2)

Figure 2. Original image (left) and level 3 decomposition detail coefficients (right).

Energies 2024, 17, 5475 5 of 19

2.2.2. Discrete Fourier Transform (DFT)

Discrete Fourier transform was used to decompose each image into its sine and cosine
components. The spatial information was transformed into the frequency domain at
which each point in the transform magnitude represents a certain frequency contained
within the spatial image. Only a set sample of frequencies is contained within the image,
which is enough to describe the spatial image and its important features whilst removing
unnecessary frequencies. The DFT of a spatial image f with size M × N can be represented
as an image F of the same size, as defined by the following equation:

F(u, v) = ∑M−1
m=0 ∑N−1

n=0 f (m, n)e−j2π(um
M + vn

N) (1)

Figure 3 shows the magnitude of the DFT of the original image. Low-frequency
signals are concentrated around the centre of the image and represent areas in which
pixel intensities slowly evolve from one pixel to the other. High-frequency signals are
represented near the boundary of the image and correspond to pixels within the image
with sharp-intensity transitions. Due to the shape and intensity of the low-frequency signal
near the horizontal axis, we can deduce that the image contains a distinct contrast in pixel
values along a vertical area of the image. This most likely represents the difference in pixel
intensity between the leading edge and the background.

Energies 2024, 17, x FOR PEER REVIEW 5 of 19

Figure 2. Original image (left) and level 3 decomposition detail coefficients (right).

2.2.2. Discrete Fourier Transform (DFT)
Discrete Fourier transform was used to decompose each image into its sine and co-

sine components. The spatial information was transformed into the frequency domain at
which each point in the transform magnitude represents a certain frequency contained
within the spatial image. Only a set sample of frequencies is contained within the image,
which is enough to describe the spatial image and its important features whilst removing
unnecessary frequencies. The DFT of a spatial image 𝑓 with size 𝑀 ൈ 𝑁 can be repre-
sented as an image 𝐹 of the same size, as defined by the following equation: 𝐹ሺ𝑢, 𝑣ሻ = ∑ ∑ 𝑓ሺ𝑚, 𝑛ሻ𝑒ି௝ଶగቀೠ೘ಾ ାೡ೙ಿቁேିଵ௡ୀ଴ெିଵ௠ୀ଴ (1)

Figure 3 shows the magnitude of the DFT of the original image. Low-frequency sig-
nals are concentrated around the centre of the image and represent areas in which pixel
intensities slowly evolve from one pixel to the other. High-frequency signals are repre-
sented near the boundary of the image and correspond to pixels within the image with
sharp-intensity transitions. Due to the shape and intensity of the low-frequency signal
near the horizontal axis, we can deduce that the image contains a distinct contrast in pixel
values along a vertical area of the image. This most likely represents the difference in pixel
intensity between the leading edge and the background.

Figure 3. Original image (left) and discrete Fourier transform amplitude (right).

2.2.3. Laplacian of Gaussian (LoG)
To extract features using the Laplace transform, each image is passed through a

Gaussian filter to remove noise. A Laplacian filter is then used to detect edges by compu-
ting the second derivatives of each image. This technique determines whether a change in
adjacent pixel value is from an edge or not. The resulting extracted features contain key
points, which represent regions with sudden changes in pixel intensity. The Laplacian 𝐿ሺ𝑥, 𝑦ሻ of an image with pixel intensity values 𝐼ሺ𝑥, 𝑦ሻ are given by the following equation
[33]: 𝐿ሺ𝑥, 𝑦ሻ = డమூడ௫మ ൅ డమூడ௬మ (2)

Figure 3. Original image (left) and discrete Fourier transform amplitude (right).

2.2.3. Laplacian of Gaussian (LoG)

To extract features using the Laplace transform, each image is passed through a Gaus-
sian filter to remove noise. A Laplacian filter is then used to detect edges by computing the
second derivatives of each image. This technique determines whether a change in adjacent
pixel value is from an edge or not. The resulting extracted features contain key points,
which represent regions with sudden changes in pixel intensity. The Laplacian L(x, y) of
an image with pixel intensity values I(x, y) are given by the following equation [33]:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (2)

When combined with a Gaussian smoothing filter, the 2D LoG(x, y) of an image can
be represented as the following equation, with Gaussian standard deviation σ centred
on zero:

LoG(x, y) = − 1
πσ4

[
1 − x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3)

Figure 4 shows the original image with the applied LoG filter. The edges from erosion
are highlighted by this feature extraction method, which are fine details represented in the
original image.

Energies 2024, 17, 5475 6 of 19

Energies 2024, 17, x FOR PEER REVIEW 6 of 19

When combined with a Gaussian smoothing filter, the 2D 𝐿𝑜𝐺ሺ𝑥, 𝑦ሻ of an image can
be represented as the following equation, with Gaussian standard deviation 𝜎 centred on
zero: 𝐿𝑜𝐺ሺ𝑥, 𝑦ሻ = െ ଵగఙర ቂ1 െ ௫మା ௬మଶఙమ ቃ 𝑒ିೣమశ ೤మమ഑మ (3)

Figure 4 shows the original image with the applied LoG filter. The edges from erosion
are highlighted by this feature extraction method, which are fine details represented in
the original image.

Figure 4. Original image (left) and LoG transform (right).

2.2.4. Histogram of Oriented Gradients (HoG)
For this method, the gradient is calculated for the pixel intensities in both the vertical 𝐺௬ and horizontal 𝐺௫ directions of the image [34]. These two feature maps are used to

calculate the gradient magnitude 𝐺 and direction 𝜃 using the following equations: 𝐺 = ඥ𝐺௫ଶ ൅ 𝐺௬ଶ 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቀீ೤ீೣቁ
(4)

Each image is then split into cells of size 8 × 8, whereby the histogram of the gradient
is calculated for each cell. The sum of the magnitudes with corresponding gradient angles
is represented by 9 bins before concatenating all cells into a single array for normalisation
using the L2 Norm. HoG features are finally collected from all 2 × 2 blocks and concate-
nated to form a final feature vector representing the entire image. Figure 5 shows the HoG
descriptor for the original image. The 400 cells contain both magnitude and direction for
each gradient. Intense magnitudes along the leading edge show the contrast between
blade and background pixel intensities, whereas the varying directions of the middle cells
suggest a disturbance of the leading edge surface.

Figure 5. Original image (left) and HoG descriptor (right).

Figure 4. Original image (left) and LoG transform (right).

2.2.4. Histogram of Oriented Gradients (HoG)

For this method, the gradient is calculated for the pixel intensities in both the vertical
Gy and horizontal Gx directions of the image [34]. These two feature maps are used to
calculate the gradient magnitude G and direction θ using the following equations:

G =
√

G2
x + G2

y

θ = arctan
(

Gy
Gx

) (4)

Each image is then split into cells of size 8 × 8, whereby the histogram of the gradient
is calculated for each cell. The sum of the magnitudes with corresponding gradient angles
is represented by 9 bins before concatenating all cells into a single array for normalisation
using the L2 Norm. HoG features are finally collected from all 2 × 2 blocks and concatenated
to form a final feature vector representing the entire image. Figure 5 shows the HoG
descriptor for the original image. The 400 cells contain both magnitude and direction for
each gradient. Intense magnitudes along the leading edge show the contrast between blade
and background pixel intensities, whereas the varying directions of the middle cells suggest
a disturbance of the leading edge surface.

Energies 2024, 17, x FOR PEER REVIEW 6 of 19

When combined with a Gaussian smoothing filter, the 2D 𝐿𝑜𝐺ሺ𝑥, 𝑦ሻ of an image can
be represented as the following equation, with Gaussian standard deviation 𝜎 centred on
zero: 𝐿𝑜𝐺ሺ𝑥, 𝑦ሻ = െ ଵగఙర ቂ1 െ ௫మା ௬మଶఙమ ቃ 𝑒ିೣమశ ೤మమ഑మ (3)

Figure 4 shows the original image with the applied LoG filter. The edges from erosion
are highlighted by this feature extraction method, which are fine details represented in
the original image.

Figure 4. Original image (left) and LoG transform (right).

2.2.4. Histogram of Oriented Gradients (HoG)
For this method, the gradient is calculated for the pixel intensities in both the vertical 𝐺௬ and horizontal 𝐺௫ directions of the image [34]. These two feature maps are used to

calculate the gradient magnitude 𝐺 and direction 𝜃 using the following equations: 𝐺 = ඥ𝐺௫ଶ ൅ 𝐺௬ଶ 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 ቀீ೤ீೣቁ
(4)

Each image is then split into cells of size 8 × 8, whereby the histogram of the gradient
is calculated for each cell. The sum of the magnitudes with corresponding gradient angles
is represented by 9 bins before concatenating all cells into a single array for normalisation
using the L2 Norm. HoG features are finally collected from all 2 × 2 blocks and concate-
nated to form a final feature vector representing the entire image. Figure 5 shows the HoG
descriptor for the original image. The 400 cells contain both magnitude and direction for
each gradient. Intense magnitudes along the leading edge show the contrast between
blade and background pixel intensities, whereas the varying directions of the middle cells
suggest a disturbance of the leading edge surface.

Figure 5. Original image (left) and HoG descriptor (right).

Figure 5. Original image (left) and HoG descriptor (right).

2.2.5. Oriented FAST and Rotated BRIEF (ORB)

ORB is a feature extraction technique developed at OpenCV Labs by Rublee E. et al. It
was created as a viable opponent to SURF and SIFT because these are patented algorithms.
ORB builds on the features from accelerated segment test (FAST) key point detector and
binary robust independent elementary feature (BRIEF) descriptor algorithms. First, FAST
with a multiscale image pyramid is applied to the image to identify scale-invariant key
points. A rotation-aware BRIEF (rBRIEF) method is then used to group all identified key
points and convert them into a binary feature vector [35]. Figure 6 shows the detected key
points of the original image. Many of the key points chosen by the algorithm are heavily
concentrated around the leading edge of the blade. This area of interest is likely caused by
surface erosion differing from the appearance of the remaining blade surface.

Energies 2024, 17, 5475 7 of 19

Energies 2024, 17, x FOR PEER REVIEW 7 of 19

2.2.5. Oriented FAST and Rotated BRIEF (ORB)
ORB is a feature extraction technique developed at OpenCV Labs by Rublee E. et al.

It was created as a viable opponent to SURF and SIFT because these are patented algo-
rithms. ORB builds on the features from accelerated segment test (FAST) key point detec-
tor and binary robust independent elementary feature (BRIEF) descriptor algorithms.
First, FAST with a multiscale image pyramid is applied to the image to identify scale-
invariant key points. A rotation-aware BRIEF (rBRIEF) method is then used to group all
identified key points and convert them into a binary feature vector [35]. Figure 6 shows
the detected key points of the original image. Many of the key points chosen by the algo-
rithm are heavily concentrated around the leading edge of the blade. This area of interest
is likely caused by surface erosion differing from the appearance of the remaining blade
surface.

Figure 6. Original image (left) and ORB key points (right).

2.2.6. Canny Edge
An adaptive canny edge feature extraction method was used to automatically select

appropriate upper and lower pixel thresholds. The first step of this process is to smooth
the image using a Gaussian filter, which will help to remove noise from the image. The
second step involves a pair of convolution masks applied to the image to detect vertical
and horizontal details. The gradient magnitude and direction are then calculated using
the same equation used for HoG [36]. Finally, adaptive thresholding was used to deter-
mine appropriate upper and lower thresholds for hysteresis thresholding, and the median
pixel intensity was calculated for each image. The thresholds were then determined
around this median value and controlled by a fixed variable 𝜎 . These thresholds are
shown by the following equations, where 𝑀 is the median pixel intensity of the image
and 𝜎 is a fixed variable: 𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ሺ1 ൅ 𝜎ሻ𝑀 𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ሺ1 െ 𝜎ሻ𝑀

(5)

Figure 7 shows the original image after the adaptive thresholding canny edge has
been applied. The thresholding has successfully retained detail of interest, showing de-
tected edges of the LE erosion.

Figure 6. Original image (left) and ORB key points (right).

2.2.6. Canny Edge

An adaptive canny edge feature extraction method was used to automatically select
appropriate upper and lower pixel thresholds. The first step of this process is to smooth
the image using a Gaussian filter, which will help to remove noise from the image. The
second step involves a pair of convolution masks applied to the image to detect vertical
and horizontal details. The gradient magnitude and direction are then calculated using the
same equation used for HoG [36]. Finally, adaptive thresholding was used to determine
appropriate upper and lower thresholds for hysteresis thresholding, and the median pixel
intensity was calculated for each image. The thresholds were then determined around
this median value and controlled by a fixed variable σ. These thresholds are shown by
the following equations, where M is the median pixel intensity of the image and σ is a
fixed variable:

Upper Threshold = (1 + σ)M
Lower Threshold = (1 − σ)M

(5)

Figure 7 shows the original image after the adaptive thresholding canny edge has been
applied. The thresholding has successfully retained detail of interest, showing detected
edges of the LE erosion.

Energies 2024, 17, x FOR PEER REVIEW 8 of 19

Figure 7. Original image (left) and canny edge transform (right).

2.3. Classical Machine Learning Methods
2.3.1. Support Vector Machine (SVM)

The support vector machine is currently one of the most widely used supervised ML
models. This algorithm can be used for both regression and classification problems. For
this paper, it is used for image classification. The SVM works by finding the hyperplane
that separates the different classes in the feature space. The idea is to maximise the dis-
tance between the closest points of the different classes so that input data can be better
distinguished. These feature points closest to the hyperplane are known as support vec-
tors because without these points the hyperplane would shift [37]. Figure 8 shows an ex-
ample of an SVM using a linear kernel. This type of SVM is useful for classifying between
two classes; however, there are also polynomials, radial basis functions (RBFs), and sig-
moid kernels, which can be used to solve more complex non-linear problems.

Figure 8. Decision boundary determined by maximising support vector distance. Red and blue
points represent different classes [38].

2.3.2. Random Forest
The random forest algorithm is a machine learning technique that creates numerous

decision trees during training. The decision tree is a supervised learning branched model
that consists of a hierarchy of decision nodes. Each node splits the data based on a specific
test of an attribute, creating branches to further nodes until a decision leaf is reached. This
decides the resulting label. Training a decision tree consists of a greedy selection of the
best splits, which minimises a cost function. With random forest, each tree is trained on a
random subset of the input features. For classification, the majority class identified by all
decision trees is represented as the final output class [37]. By forcing a subset of data to
each decision tree and analysing collective decisions, the random forest algorithm

Figure 7. Original image (left) and canny edge transform (right).

2.3. Classical Machine Learning Methods
2.3.1. Support Vector Machine (SVM)

The support vector machine is currently one of the most widely used supervised ML
models. This algorithm can be used for both regression and classification problems. For
this paper, it is used for image classification. The SVM works by finding the hyperplane
that separates the different classes in the feature space. The idea is to maximise the
distance between the closest points of the different classes so that input data can be better
distinguished. These feature points closest to the hyperplane are known as support vectors
because without these points the hyperplane would shift [37]. Figure 8 shows an example
of an SVM using a linear kernel. This type of SVM is useful for classifying between two
classes; however, there are also polynomials, radial basis functions (RBFs), and sigmoid
kernels, which can be used to solve more complex non-linear problems.

Energies 2024, 17, 5475 8 of 19

Energies 2024, 17, x FOR PEER REVIEW 8 of 19

Figure 7. Original image (left) and canny edge transform (right).

2.3. Classical Machine Learning Methods
2.3.1. Support Vector Machine (SVM)

The support vector machine is currently one of the most widely used supervised ML
models. This algorithm can be used for both regression and classification problems. For
this paper, it is used for image classification. The SVM works by finding the hyperplane
that separates the different classes in the feature space. The idea is to maximise the dis-
tance between the closest points of the different classes so that input data can be better
distinguished. These feature points closest to the hyperplane are known as support vec-
tors because without these points the hyperplane would shift [37]. Figure 8 shows an ex-
ample of an SVM using a linear kernel. This type of SVM is useful for classifying between
two classes; however, there are also polynomials, radial basis functions (RBFs), and sig-
moid kernels, which can be used to solve more complex non-linear problems.

Figure 8. Decision boundary determined by maximising support vector distance. Red and blue
points represent different classes [38].

2.3.2. Random Forest
The random forest algorithm is a machine learning technique that creates numerous

decision trees during training. The decision tree is a supervised learning branched model
that consists of a hierarchy of decision nodes. Each node splits the data based on a specific
test of an attribute, creating branches to further nodes until a decision leaf is reached. This
decides the resulting label. Training a decision tree consists of a greedy selection of the
best splits, which minimises a cost function. With random forest, each tree is trained on a
random subset of the input features. For classification, the majority class identified by all
decision trees is represented as the final output class [37]. By forcing a subset of data to
each decision tree and analysing collective decisions, the random forest algorithm

Figure 8. Decision boundary determined by maximising support vector distance. Red and blue
points represent different classes [38].

2.3.2. Random Forest

The random forest algorithm is a machine learning technique that creates numerous
decision trees during training. The decision tree is a supervised learning branched model
that consists of a hierarchy of decision nodes. Each node splits the data based on a specific
test of an attribute, creating branches to further nodes until a decision leaf is reached. This
decides the resulting label. Training a decision tree consists of a greedy selection of the
best splits, which minimises a cost function. With random forest, each tree is trained on a
random subset of the input features. For classification, the majority class identified by all
decision trees is represented as the final output class [37]. By forcing a subset of data to
each decision tree and analysing collective decisions, the random forest algorithm becomes
more robust to overfitting. Figure 9 shows the general structure of a random forest model.

Energies 2024, 17, x FOR PEER REVIEW 9 of 19

becomes more robust to overfitting. Figure 9 shows the general structure of a random for-
est model.

Figure 9. Random forest structure. Red circles show decision path for each tree. Result is determined
by a majority voting [39].

2.3.3. K-Nearest Neighbour (KNN)
KNN is a supervised learning classification model that uses proximity to assign class

labels to feature points. It works by taking a new feature point and calculating the distance
of this point to all prior classified points. The value of K represents the number of nearest
neighbouring points that are included when deciding the majority class of surrounding
points. The new feature point is then assigned to this class. For image classification, the
majority class assigned to the total feature points of an image decides the overall class of
the input image [40]. Figure 10 shows an example of KNN with K = 3, where two of the
surrounding three neighbours belong to class B, which results in the new feature point
adopting the same label.

Figure 10. Stages of KNN. A new feature point adopted by the majority class of its nearest neigh-
bour, determined by the value of K [41].

2.3.4. Multi-Layer Perceptron (MLP)
The multi-layered perceptron is a type of artificial neural network (ANN) that con-

sists of an input layer, an output decision layer, and a variable number of fully connected
hidden layers that connect the input to the output [42]. Each hidden layer is made up of
neurons, with an associated weight that determines its connection strength to the proceed-
ing layers. As training commences, input features pass through the network, in which an

Figure 9. Random forest structure. Red circles show decision path for each tree. Result is determined
by a majority voting [39].

2.3.3. K-Nearest Neighbour (KNN)

KNN is a supervised learning classification model that uses proximity to assign class
labels to feature points. It works by taking a new feature point and calculating the distance
of this point to all prior classified points. The value of K represents the number of nearest
neighbouring points that are included when deciding the majority class of surrounding
points. The new feature point is then assigned to this class. For image classification, the
majority class assigned to the total feature points of an image decides the overall class of
the input image [40]. Figure 10 shows an example of KNN with K = 3, where two of the
surrounding three neighbours belong to class B, which results in the new feature point
adopting the same label.

Energies 2024, 17, 5475 9 of 19

Energies 2024, 17, x FOR PEER REVIEW 9 of 19

becomes more robust to overfitting. Figure 9 shows the general structure of a random for-
est model.

Figure 9. Random forest structure. Red circles show decision path for each tree. Result is determined
by a majority voting [39].

2.3.3. K-Nearest Neighbour (KNN)
KNN is a supervised learning classification model that uses proximity to assign class

labels to feature points. It works by taking a new feature point and calculating the distance
of this point to all prior classified points. The value of K represents the number of nearest
neighbouring points that are included when deciding the majority class of surrounding
points. The new feature point is then assigned to this class. For image classification, the
majority class assigned to the total feature points of an image decides the overall class of
the input image [40]. Figure 10 shows an example of KNN with K = 3, where two of the
surrounding three neighbours belong to class B, which results in the new feature point
adopting the same label.

Figure 10. Stages of KNN. A new feature point adopted by the majority class of its nearest neigh-
bour, determined by the value of K [41].

2.3.4. Multi-Layer Perceptron (MLP)
The multi-layered perceptron is a type of artificial neural network (ANN) that con-

sists of an input layer, an output decision layer, and a variable number of fully connected
hidden layers that connect the input to the output [42]. Each hidden layer is made up of
neurons, with an associated weight that determines its connection strength to the proceed-
ing layers. As training commences, input features pass through the network, in which an

Figure 10. Stages of KNN. A new feature point adopted by the majority class of its nearest neighbour,
determined by the value of K [41].

2.3.4. Multi-Layer Perceptron (MLP)

The multi-layered perceptron is a type of artificial neural network (ANN) that consists
of an input layer, an output decision layer, and a variable number of fully connected hidden
layers that connect the input to the output [42]. Each hidden layer is made up of neurons,
with an associated weight that determines its connection strength to the proceeding layers.
As training commences, input features pass through the network, in which an output
is generated by the last layer. The predicted output from the MLP is measured against
the true output using a cost function to produce a network error, which is the difference
between the two values. Backpropagation is the process whereby this error is propagated
back through the network to tune the neuron weights and minimise the error value. As
training continues, this process is repeated until the error can no longer be further reduced,
thus producing a predicted output close to that of the true output. Figure 11 shows the
structure of a simple MLP with a single hidden layer.

Energies 2024, 17, x FOR PEER REVIEW 10 of 19

output is generated by the last layer. The predicted output from the MLP is measured
against the true output using a cost function to produce a network error, which is the
difference between the two values. Backpropagation is the process whereby this error is
propagated back through the network to tune the neuron weights and minimise the error
value. As training continues, this process is repeated until the error can no longer be fur-
ther reduced, thus producing a predicted output close to that of the true output. Figure 11
shows the structure of a simple MLP with a single hidden layer.

Figure 11. Schematic of an MLP with a single hidden layer [43].

2.4. Training and Inference
2.4.1. Machine Learning Models

Training for all models was performed using all 8 cores of an Intel(R) Core(TM) i7-
7820X CPU @ 3.60 GHz, 3600 Mhz, manufactured by Intel and sourced from Hsinchu,
Taiwan. The data was first pre-processed by resizing and grey-scaling to produce single-
channel 160 × 160 × 1 images before data augmentation was used to expand the dataset.
Feature extraction for each method took place after data pre-processing. The extracted
features were used as input to all four classifiers. Nested Kfold cross-validation (CV) was
used for training each classifier using 4 folds for both inner and outer CV. Outer CV would
split the dataset into 4 folds, consisting of 3 training and 1 testing fold. The 3 training folds
were further split into 4 folds in the same manner using inner CV. Here, Halving
GridSearchCV was used across the inner folds to determine the optimal hyperparameters
for the first outer fold. This process took place for each of the outer folds. The mean and
standard deviation for all outer fold accuracies have been measured per model. The accu-
racy can be determined using the following formula, where true positive (𝑇𝑃) is the correct
detection of the positive class; true negative (𝑇𝑁) is the correct detection of the negative
class; false positive (𝐹𝑃) is the incorrect detection of the positive class; and false negative
(𝐹𝑁) is the incorrect detection of the negative class: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =   ்௉ା்ே்௉ା்ேାி௉ାிே (6)

The training time of the nested Kfold CV for each model was recorded in seconds.
The inference FPS was measured using a Jetson Nano 2gb developer board, manufactured
by NVIDIA and sourced from Shenzhen, China.

2.4.2. CNN Model
The dataset was further used to train a convolutional neural network so that a com-

parison could be made between deep learning and classical machine learning models. Fig-
ure 12 shows the structure of a simple convolution neural network implementation using
Keras. The model is composed of five convolutional layers using the activation function
ReLU, with a 3 × 3 kernel, zero padding, and a stride of 1. Each convolutional layer outputs
double the number of input channels, whilst the output feature map dimensions are

Figure 11. Schematic of an MLP with a single hidden layer [43].

2.4. Training and Inference
2.4.1. Machine Learning Models

Training for all models was performed using all 8 cores of an Intel(R) Core(TM) i7-
7820X CPU @ 3.60 GHz, 3600 Mhz, manufactured by Intel and sourced from Hsinchu,
Taiwan. The data was first pre-processed by resizing and grey-scaling to produce single-
channel 160 × 160 × 1 images before data augmentation was used to expand the dataset.
Feature extraction for each method took place after data pre-processing. The extracted
features were used as input to all four classifiers. Nested Kfold cross-validation (CV) was
used for training each classifier using 4 folds for both inner and outer CV. Outer CV would

Energies 2024, 17, 5475 10 of 19

split the dataset into 4 folds, consisting of 3 training and 1 testing fold. The 3 training
folds were further split into 4 folds in the same manner using inner CV. Here, Halving
GridSearchCV was used across the inner folds to determine the optimal hyperparameters
for the first outer fold. This process took place for each of the outer folds. The mean
and standard deviation for all outer fold accuracies have been measured per model. The
accuracy can be determined using the following formula, where true positive (TP) is the
correct detection of the positive class; true negative (TN) is the correct detection of the
negative class; false positive (FP) is the incorrect detection of the positive class; and false
negative (FN) is the incorrect detection of the negative class:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The training time of the nested Kfold CV for each model was recorded in seconds. The
inference FPS was measured using a Jetson Nano 2gb developer board, manufactured by
NVIDIA and sourced from Shenzhen, China.

2.4.2. CNN Model

The dataset was further used to train a convolutional neural network so that a compari-
son could be made between deep learning and classical machine learning models. Figure 12
shows the structure of a simple convolution neural network implementation using Keras.
The model is composed of five convolutional layers using the activation function ReLU,
with a 3 × 3 kernel, zero padding, and a stride of 1. Each convolutional layer outputs dou-
ble the number of input channels, whilst the output feature map dimensions are affected
by the following formulas, where W and H are the width and height of the feature map,
respectively, K is the kernel size, S is the stride, and P is the padding:

Wout =
Win−K+2P

S + 1
Hout =

Hin−K+2P
S + 1

(7)

The input size for the network is 160 × 160 × 1, which allows for the greyscale images
in the dataset to be used. Two stacked convolutional layers follow the input layer before a
maximum pooling layer is applied. This is to allow for a richer feature extraction before the
spatial information is reduced further into the network [44]. The maximum pooling layers
in the network have a pool size of 2 × 2, which reduces the input feature dimensions by
half. Finally, the output feature maps are flattened and passed through a fully connected
layer consisting of 256 units, followed by a 25% dropout layer, which temporarily removes
25% of the previous nodes during both forward and backward propagation. This method
helps avoid model overfitting by creating a new network architecture from the parent
network [45]. Finally, an output layer containing a single unit with a sigmoid activation
function is used for the binary classification. The fully connected layers in the model are
responsible for classifying the inputs and tuning the model’s weights.

For training the model, an Adam optimiser with a learning rate of 0.00002 and a binary
cross entropy loss function were optimised parameters predetermined by a hyperband
parameter tuner used on each fold of 4-fold cross-validation. A batch size of 32 was used
to train for 100 epochs per fold. The mean and standard deviation for all fold accuracies
were measured. After cross-validation, the final model was trained on 80% of the entire
dataset, leaving 20% for validation using the same predetermined parameters. The training
time for the 4-fold cross-validation was measured in seconds. Inference was measured on a
Jetson Nano 2gb developer board where the trained model was deployed.

Energies 2024, 17, 5475 11 of 19

Energies 2024, 17, x FOR PEER REVIEW 11 of 19

affected by the following formulas, where 𝑊 and 𝐻 are the width and height of the fea-
ture map, respectively, 𝐾 is the kernel size, 𝑆 is the stride, and 𝑃 is the padding: 𝑊௢௨௧ = ௐ೔೙ି௄ାଶ௉ௌ ൅ 1 𝐻௢௨௧ = ு೔೙ି௄ାଶ௉ௌ ൅ 1

(7)

The input size for the network is 160 × 160 × 1, which allows for the greyscale images
in the dataset to be used. Two stacked convolutional layers follow the input layer before
a maximum pooling layer is applied. This is to allow for a richer feature extraction before
the spatial information is reduced further into the network [44]. The maximum pooling
layers in the network have a pool size of 2 × 2, which reduces the input feature dimensions
by half. Finally, the output feature maps are flattened and passed through a fully con-
nected layer consisting of 256 units, followed by a 25% dropout layer, which temporarily
removes 25% of the previous nodes during both forward and backward propagation. This
method helps avoid model overfitting by creating a new network architecture from the
parent network [45]. Finally, an output layer containing a single unit with a sigmoid acti-
vation function is used for the binary classification. The fully connected layers in the
model are responsible for classifying the inputs and tuning the model’s weights.

Figure 12. CNN model architecture. Figure 12. CNN model architecture.

3. Results
3.1. Machine Learning Results

Table 1 shows the mean and standard deviation of the nested fourfold cross-validation
accuracies obtained for each classification model trained with different extracted features.

Table 1. Accuracy (%), mean, and standard deviation across all outer folds of each model.

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB

MLP 69.2 ± 0.06 50.8 ± 0.02 59 ± 0.05 74.8 ± 0.03 62.4 ± 0.03 75.6 ± 0.08
SVM 72.6 ± 0.06 72.6 ± 0.03 83.8 ± 0.01 72.8 ± 0.006 67 ± 0.06 90 ± 0.01

Random Forest 68.6 ± 0.03 76.4 ± 0.03 81.2 ± 0.05 70 ± 0.03 70 ± 0.03 74.6 ± 0.05
KNN 50 ± 0.004 50.2 ± 0.007 78.2 ± 0.04 53.6 ± 0.01 69.4 ± 0.04 78 ± 0.02

The SVM trained with ORB features obtained the highest accuracy of 90%, with a low
standard deviation of 0.01. The best parameters were found to be the polynomial kernel,
C = 0.1, and gamma = 0.001.

The receiver operation characteristic (ROC) is a two-dimensional measure of classifica-
tion performance [46]. The curve plots the probability of correctly classifying the positive

Energies 2024, 17, 5475 12 of 19

class compared to the rate of falsely identifying the positive class at varying thresholds. The
area under the curve (AUC) value is a key measure obtained from the curve that represents
how well the classifier distinguishes between classes. Figure 13 shows the ROC curves
for each fold of the ORB-SVM, which gave the best mean accuracy of 90%. Here we can
observe that the difference between the curves is marginal, which is representative of a
robust model. The red dotted line equates to a 50% chance of positive classification. The
mean curve is close to the vertical axis, which is further above this line and means that the
model has a high chance of positive classification. This can also be deduced by the high
average AUC value. The ROC analysis shows that the model successfully identifies more
of the positive class with fewer false positives.

Energies 2024, 17, x FOR PEER REVIEW 12 of 19

For training the model, an Adam optimiser with a learning rate of 0.00002 and a bi-
nary cross entropy loss function were optimised parameters predetermined by a hyper-
band parameter tuner used on each fold of 4-fold cross-validation. A batch size of 32 was
used to train for 100 epochs per fold. The mean and standard deviation for all fold accu-
racies were measured. After cross-validation, the final model was trained on 80% of the
entire dataset, leaving 20% for validation using the same predetermined parameters. The
training time for the 4-fold cross-validation was measured in seconds. Inference was meas-
ured on a Jetson Nano 2gb developer board where the trained model was deployed.

3. Results
3.1. Machine Learning Results

Table 1 shows the mean and standard deviation of the nested fourfold cross-valida-
tion accuracies obtained for each classification model trained with different extracted fea-
tures.
The SVM trained with ORB features obtained the highest accuracy of 90%, with a low
standard deviation of 0.01. The best parameters were found to be the polynomial kernel,
C = 0.1, and gamma = 0.001.

Table 1. Accuracy (%), mean, and standard deviation across all outer folds of each model.

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB
MLP 69.2 ± 0.06 50.8 ± 0.02 59 ± 0.05 74.8 ± 0.03 62.4 ± 0.03 75.6 ± 0.08
SVM 72.6 ± 0.06 72.6 ± 0.03 83.8 ± 0.01 72.8 ± 0.006 67 ± 0.06 90 ± 0.01

Random Forest 68.6 ± 0.03 76.4 ± 0.03 81.2 ± 0.05 70 ± 0.03 70 ± 0.03 74.6 ± 0.05
KNN 50 ± 0.004 50.2 ± 0.007 78.2 ± 0.04 53.6 ± 0.01 69.4 ± 0.04 78 ± 0.02

The receiver operation characteristic (ROC) is a two-dimensional measure of classifi-
cation performance [46]. The curve plots the probability of correctly classifying the posi-
tive class compared to the rate of falsely identifying the positive class at varying thresh-
olds. The area under the curve (AUC) value is a key measure obtained from the curve that
represents how well the classifier distinguishes between classes. Figure 13 shows the ROC
curves for each fold of the ORB-SVM, which gave the best mean accuracy of 90%. Here we
can observe that the difference between the curves is marginal, which is representative of
a robust model. The red dotted line equates to a 50% chance of positive classification. The
mean curve is close to the vertical axis, which is further above this line and means that the
model has a high chance of positive classification. This can also be deduced by the high
average AUC value. The ROC analysis shows that the model successfully identifies more
of the positive class with fewer false positives.

Figure 13. ROC curve of 4-fold cross-validation of the ORB-SVM.

Table 2 shows the time taken for each model to complete training using fourfold cross-
validation. In most cases, the random forest classifiers took less time than the remaining
three types of classifiers, whereas the MLP models took considerably longer to train. DWT
produced the least extracted features, which is why the training times for each model are
much smaller than others. There is a correlation between training time and the number of
extracted features used to train the model.

Table 2. Training times in seconds for each model.

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB

MLP 865.2 36.3 672.1 978.4 470.3 540.8
SVM 139.2 8.7 125.2 142.4 70.0 80.4

Random Forest 40.0 38.5 63.3 41.1 47.8 49.6
KNN 184.4 12.7 228 130.2 106.5 136.4

The inference results displayed in Table 3 show that the MLP models classify images
faster than the remaining machine learning models, with most KNN models producing the
lowest FPS. Again, ML models trained using DWT features classify significantly faster due
to the small number of extracted features.

Table 3. Inference times of models represented as frames per second (FPS).

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB

MLP 59 526 135 91 77 182
SVM 17 303 37 13 63 63

Random Forest 12 13 43 16 13 45
KNN 0.83 100 6 1.6 4 3

Energies 2024, 17, 5475 13 of 19

To ensure the ORB-SVM algorithm showed robustness to image interference, various
types of noise were added to a test image of LE erosion. The types of noise reflect conditions
that may be faced by a drone whilst collecting images such as brightness, cloud cover, and
wind turbulence. Figure 14 shows the test image with different applied noise. To simulate
brightness, all pixels were increased by the value of 100. Similarly, to simulate cloud cover,
all pixels were decreased by 100 to create a ‘dimming’ effect. Vertical and horizontal motion
blur was added to simulate heavy turbulence caused by winds. Each image was classified
using the ORB-SVM algorithm, which provided a class label and confidence value. Despite
the simulated interference, the algorithm correctly identified that the image contained
LE erosion with minimal change in confidence. Vertical motion blur has decreased the
model’s prediction confidence the most. This can be explained by the reduction in pixel
intensity changes within the image, resulting in fewer FAST key points detected by the
ORB algorithm. Overall, the ORB-SVM algorithm has shown robustness to image external
interference and proves a level of reliability for practical use in an industrial setting.

Energies 2024, 17, x FOR PEER REVIEW 13 of 19

Figure 13. ROC curve of 4-fold cross-validation of the ORB-SVM.

Table 2 shows the time taken for each model to complete training using fourfold
cross-validation. In most cases, the random forest classifiers took less time than the re-
maining three types of classifiers, whereas the MLP models took considerably longer to
train. DWT produced the least extracted features, which is why the training times for each
model are much smaller than others. There is a correlation between training time and the
number of extracted features used to train the model.

The inference results displayed in Table 3 show that the MLP models classify images
faster than the remaining machine learning models, with most KNN models producing
the lowest FPS. Again, ML models trained using DWT features classify significantly faster
due to the small number of extracted features.

Table 2. Training times in seconds for each model.

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB
MLP 865.2 36.3 672.1 978.4 470.3 540.8
SVM 139.2 8.7 125.2 142.4 70.0 80.4

Random Forest 40.0 38.5 63.3 41.1 47.8 49.6
KNN 184.4 12.7 228 130.2 106.5 136.4

Table 3. Inference times of models represented as frames per second (FPS).

Feature Extraction Canny Edge DWT DFT Laplace HoG ORB
MLP 59 526 135 91 77 182
SVM 17 303 37 13 63 63

Random Forest 12 13 43 16 13 45
KNN 0.83 100 6 1.6 4 3

To ensure the ORB-SVM algorithm showed robustness to image interference, various
types of noise were added to a test image of LE erosion. The types of noise reflect condi-
tions that may be faced by a drone whilst collecting images such as brightness, cloud
cover, and wind turbulence. Figure 14 shows the test image with different applied noise.
To simulate brightness, all pixels were increased by the value of 100. Similarly, to simulate
cloud cover, all pixels were decreased by 100 to create a ‘dimming’ effect. Vertical and
horizontal motion blur was added to simulate heavy turbulence caused by winds. Each
image was classified using the ORB-SVM algorithm, which provided a class label and
confidence value. Despite the simulated interference, the algorithm correctly identified
that the image contained LE erosion with minimal change in confidence. Vertical motion
blur has decreased the model’s prediction confidence the most. This can be explained by
the reduction in pixel intensity changes within the image, resulting in fewer FAST key
points detected by the ORB algorithm. Overall, the ORB-SVM algorithm has shown ro-
bustness to image external interference and proves a level of reliability for practical use in
an industrial setting.

Figure 14. Test image with various noise. From left to right: original image, brightened, dimmed,
horizontal blur, and vertical blur.

Figure 14. Test image with various noise. From left to right: original image, brightened, dimmed,
horizontal blur, and vertical blur.

3.2. CNN Results

After 100 epochs per fold, the mean accuracy attained by the model was 79.4% ± 2.07,
with an average validation loss of 0.44 in a total of 4667.4 s. The results for validation loss
and validation accuracy per fold are represented in Figure 15. The accuracy of the model is
likely limited by the size of the dataset; however, the variation between folds is visible but
not vast, which suggests that the dataset is consistent, and the model is not dependent on
specific train-split configurations to achieve a higher accuracy.

Table 4 shows the comparison between the CNN and ORB-SVM in terms of accuracies
and speeds for both training and inference. From Table 4, ORB-SVM achieved an accu-
racy 10.6% higher than that of the CNN model, with a lower cross-validation variance,
suggesting a more efficient generalisation of the training data. Using the system CPU, the
CNN took longer to train at 4667.4 s compared to the ORB-SVM at 327.5 s. For inference
on the embedded system, ORB-SVM achieved an FPS rate of 63, compared to 1.3 from the
CNN model. From this comparison, the ORB-SVM algorithm would be more suitable for
deployment on an embedded system.

Table 4. Comparison between ORB-SVM and CNN model.

Algorithm Accuracy (%) Training Time (s) Inference (FPS)

ORB-SVM 90 ± 0.01 327.5 63
CNN 79.4% ± 2.07 4667.4 1.3

Energies 2024, 17, 5475 14 of 19

Energies 2024, 17, x FOR PEER REVIEW 14 of 19

3.2. CNN Results
After 100 epochs per fold, the mean accuracy attained by the model was 79.4% ± 2.07,

with an average validation loss of 0.44 in a total of 4667.4 s. The results for validation loss
and validation accuracy per fold are represented in Figure 15. The accuracy of the model
is likely limited by the size of the dataset; however, the variation between folds is visible
but not vast, which suggests that the dataset is consistent, and the model is not dependent
on specific train-split configurations to achieve a higher accuracy.

Figure 15. CNN validation, training accuracy, and loss graphs for 4-fold cross-validation.

Table 4 shows the comparison between the CNN and ORB-SVM in terms of accura-
cies and speeds for both training and inference. From Table 4, ORB-SVM achieved an ac-
curacy 10.6% higher than that of the CNN model, with a lower cross-validation variance,
suggesting a more efficient generalisation of the training data. Using the system CPU, the
CNN took longer to train at 4667.4 s compared to the ORB-SVM at 327.5 s. For inference
on the embedded system, ORB-SVM achieved an FPS rate of 63, compared to 1.3 from the
CNN model. From this comparison, the ORB-SVM algorithm would be more suitable for
deployment on an embedded system.

Table 4. Comparison between ORB-SVM and CNN model.

Algorithm Accuracy (%) Training Time (s) Inference (FPS)
ORB-SVM 90 ± 0.01 327.5 63

CNN 79.4% ± 2.07 4667.4 1.3

3.3. Comparison Experiments
To demonstrate the effectiveness of the ORB-SVM algorithm, a comparison was made

with a selection of advanced lightweight algorithms, namely, EfficientNetB0,

Figure 15. CNN validation, training accuracy, and loss graphs for 4-fold cross-validation.

3.3. Comparison Experiments

To demonstrate the effectiveness of the ORB-SVM algorithm, a comparison was made
with a selection of advanced lightweight algorithms, namely, EfficientNetB0, MobileNetV2,
and DenseNet121. For this comparison, computations were made using an AMD Ryzen 9
CPU, NVIDIA Geforce 3050 Ti laptop, manufactured by ASUS and sourced from Suzhou,
China. All four algorithms used the same number of images (500) with the same augmenta-
tions. Fourfold cross-validation accuracies, training times, and inference FPS can be found
in Table 5.

Table 5. Comparison between ORB-SVM, EfficientNetB0, MobileNetV2, and DenseNet121.

Algorithm Accuracy (%) Training Time (s) Inference (FPS)

ORB-SVM 90 ± 0.01 327.5 20,134.2
EfficientNetB0 78.4 ± 0.8 1051 24.8
MobileNetV2 85.2 ± 5.32 560.6 29.8
DenseNet121 91 ± 0.35 1283 29.9

In Table 5, ORB-SVM shows an accuracy that is 11.6% higher than that of Efficient-
NetB0 and 4.8% higher than that of MobileNetV2, with a lower cross-validation variance,
which suggests the model generalises more efficiently to the training data. DenseNet121
showed an increase of 1% to that of the ORB-SVM algorithm but showed significantly less
inference FPS in comparison. ORB-SVM shows an improvement in inference speed at a
minimal cost to classification accuracy. Figure 16 shows the memory consumption during
training and inference for ORB-SVM (green), EfficientNetB0 (blue), MobileNetV2 (red), and
DenseNet121 (black).

Energies 2024, 17, 5475 15 of 19

Energies 2024, 17, x FOR PEER REVIEW 15 of 19

MobileNetV2, and DenseNet121. For this comparison, computations were made using an
AMD Ryzen 9 CPU, NVIDIA Geforce 3050 Ti laptop, manufactured by ASUS and sourced
from Suzhou, China. All four algorithms used the same number of images (500) with the
same augmentations. Fourfold cross-validation accuracies, training times, and inference
FPS can be found in Table 5.

Table 5. Comparison between ORB-SVM, EfficientNetB0, MobileNetV2, and DenseNet121.

Algorithm Accuracy (%) Training Time (s) Inference (FPS)
ORB-SVM 90 ± 0.01 327.5 20,134.2

EfficientNetB0 78.4 ± 0.8 1051 24.8
MobileNetV2 85.2 ± 5.32 560.6 29.8
DenseNet121 91 ± 0.35 1283 29.9

In Table 5, ORB-SVM shows an accuracy that is 11.6% higher than that of Efficient-
NetB0 and 4.8% higher than that of MobileNetV2, with a lower cross-validation variance,
which suggests the model generalises more efficiently to the training data. DenseNet121
showed an increase of 1% to that of the ORB-SVM algorithm but showed significantly less
inference FPS in comparison. ORB-SVM shows an improvement in inference speed at a
minimal cost to classification accuracy. Figure 16 shows the memory consumption during
training and inference for ORB-SVM (green), EfficientNetB0 (blue), MobileNetV2 (red),
and DenseNet121 (black).

Figure 16. Training and inference memory consumption of ORB-SVM, EfficientNetB0, Mo-
bileNetV2, and DenseNet121.

In Figure 16, ORB-SVM shows a fraction of the memory consumption when com-
pared to the other algorithms during training. It consumed approximately 1000 MiB, com-
pared to DenseNet121, which consumed the highest amount of over 7000 MiB. For infer-
ence, ORB-SVM consumed 600 MiB compared to the remaining three algorithms, which
all consumed approximately 1500 MiB. The significant reduction in memory consumption
suggests that ORB-SVM is more efficient than the remaining models.

Figure 16. Training and inference memory consumption of ORB-SVM, EfficientNetB0, MobileNetV2,
and DenseNet121.

In Figure 16, ORB-SVM shows a fraction of the memory consumption when compared
to the other algorithms during training. It consumed approximately 1000 MiB, compared
to DenseNet121, which consumed the highest amount of over 7000 MiB. For inference,
ORB-SVM consumed 600 MiB compared to the remaining three algorithms, which all
consumed approximately 1500 MiB. The significant reduction in memory consumption
suggests that ORB-SVM is more efficient than the remaining models.

4. Discussion

In this study, a small dataset was created to classify LE erosion. The dataset, consisting
of 50 images, was small and sought to address the challenges associated with insufficient
data. Four types of ML classifiers were selected, including MLP, SVM, random forest, and
KNN, and trained on various feature extraction methods to produce 24 models. A CNN
model was also trained on the dataset for comparison. This was to identify how each
classifier would perform given different features as input.

From the results in Table 1, the model with the highest accuracy was the ORB-trained
SVM, which achieved 90% accuracy. This suggests that reducing the dimensionality of
the image to only key features can prove beneficial to classification performance. This
result suggests that the model has a small percentage of incorrect predictions, with most
predictions correctly detecting instances of LE erosion and no LE erosion. The reliability
of correct classifications is crucial for operational decisions. Alerting to damage on the
blade when there is none could waste time if the decision is made to act on the incorrect
classification. Similarly, undetected damage that is left unattended may cause further
damage to the structure of the blade in the future and increase maintenance costs. Both
scenarios demonstrate why minimising the FNs and FPs of the classification model is
important. The selection of both the classifier and feature extraction method is important.
In Table 1, it can be seen that the canny edge, LoG, and DWT features have produced
underperforming KNN models, with the lowest accuracy of 50%. These models would be
inappropriate for industrial use because an accuracy of 50% means that there is an equal
chance that a false classification is made as a correct one, which results in a ‘guessing’ model.

Energies 2024, 17, 5475 16 of 19

When trained from scratch on the dataset, the CNN model achieved a mean accuracy of
79.4%, which is 10.6 percentage points lower than that of the ORB-SVM. This result further
backs the conclusions of other researchers that deep learning models require a large amount
of data to achieve a higher accuracy. Although this is not an underperforming result, the
margin for error is higher than that of the ORB-SVM, which could prove more costly,
especially if the model would be used to analyse a large volume of images. With respect
to cost and safety, the rate of FNs should be considered more carefully compared to FPs
because missed damages can result in destructive errors further down the line. This would
not only prove more costly but may increase the risk of danger to those nearby, whereas
non-existent detected damage may cause an unnecessary further inspection, but this would
be the extent of the consequence caused by the incorrect classification.

With a training time of 4667.4 s, the CNN model took considerably longer to train
than all machine learning classifiers, with the DWT-SVM having the lowest time taken to
train at 8.7 s. High training times can be problematic if there is a limited timeframe for an
inspection to take place. Any changes to the model or added training images requiring the
model to be re-trained would result in a lengthy wait each time; therefore, it is important
for this process to be minimised. For inference, the MLP models were the fastest, with the
highest FPS of 526 from the DWT-MLP. Whether inference takes place offline or in real time,
it will affect the overall processing time. If inference takes place onboard a drone, then
fast and efficient detection is even more important to allow for all frames to be processed
within the given flight time and reduce the processing power needed to process each
frame. It is important to find the appropriate trade-off between accuracy and efficiency
when evaluating a model. For example, the ORB-SVM, with an accuracy of 90%, achieved
63 FPS during inference compared to the fastest inference of 526 FPS by the DWT-MLP
model. This model only achieved an accuracy of 50.8%, which is poor; therefore, it would
be best to select the ORB-SVM model. Indubitably, the accuracy of the model should take
more priority over efficiency because an accuracy that is too low can cause further delays
to the damage detection process, as mentioned.

The conclusion of this work suggests that machine learning methods can compete
with current state-of-the-art deep learning models, especially when training data are a
limiting factor. This is a common issue, and public data are scarcely made available by
private companies. This is largely due to the difficulties faced when obtaining the images.
For the most part, the wind turbine would need to be shut down to allow the drone to
approach close enough to the blades to attain detailed images. The weather conditions
can further limit this opportunity, specifically, strong winds and heavy rain, which would
require waterproofing and a robust control system. Situations in which the turbine is in
motion introduce the issue of motion blurring to captured images, and these would need
pre-processing first before being used in a dataset.

With the recent advances in AI, realistic images can be generated from key phrase
inputs to aid with dataset building. This can be a strong tool for collecting images of
damaged blades that closely resemble those of a real damaged blade. This is a unique
way for a model to learn trends and patterns exhibited in real-world images and learn to
classify based on this; however, real-world images would be more desirable because these
would be 100% representations of what the model would be exposed to during inference,
including not just the blade and damage itself but also the effects of environmental factors,
such as weather, lighting, and noise.

This work shows that less computationally expensive approaches can be used in this
domain while still providing competitive performance. This is becoming more important
as the focus shifts more toward real-world applications of this technology [47]. It is useful
to experiment with cutting-edge systems to discover new possible solutions; however,
if these findings cannot be translated into scalable, practical solutions, then their use is
limited. Refining existing technology and ensuring its reliable and efficient use in the field
is what is needed for the technology to achieve its intended purpose. Since the batteries of
a drone can only allow for short flights at a time [48], it is crucial to maximise this flight

Energies 2024, 17, 5475 17 of 19

time when possible, which includes reducing the onboard computer power requirements
whilst minimising the impact on performance. For damage detection, this could further be
improved by looking at which features contribute to a certain class more than others. The
interpretation of a classifier’s output may give more insight into the true effects of selected
features and allow us to make informed decisions for model tuning or feature filtering and
further reduce unnecessary computations. Future work should be developed and tested on
real-world scenarios that emulate the true environment to ensure efficiency and feasibility
on a larger scale.

5. Conclusions

In this paper, four machine learning classifiers were trained using six different feature
extraction methods to create a total of 24 models. The combination of ORB features and the
support vector machine created the model with the highest accuracy of 90%. The model
was tested on an image with different interferences applied to simulate environmental
challenges. The model correctly classified the images with little change in model confidence,
proving adequate robustness. It was then compared with a CNN model trained on the
same dataset. The ORB-SVM produced a classification accuracy that was 10.6% higher than
that of the CNN model. The ORB-SVM classified images faster at 63 FPS, compared to the
1.3 FPS speed of the CNN model. The model was further compared with three current
advanced algorithms, namely, EfficientNetB0, MobileNetV2, and DenseNet121. ORB-SVM
was found to classify images significantly faster, with little impact on classification accuracy,
and, for both training and inference, ORB-SVM consumed less memory than the other
three models.

Author Contributions: Methodology, O.B.; software, O.B.; supervision, A.K., S.S., M.G. and K.C.;
writing—original draft, O.B.; writing—review and editing, O.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Data Availability Statement: The publicly available dataset can be found at the following web ad-
dress: LE_erosion (https://www.kaggle.com/datasets/oscarbest/le-erosion, accessed on 11 Septem-
ber 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feijóo, M.d.C.; Zambrano, Y.; Vidal, Y.; Tutivén, C. Unsupervised damage detection for offshore jacket wind turbine foundations

based on an autoencoder neural network. Sensors 2021, 21, 3333. [CrossRef] [PubMed]
2. Katsaprakakis, D.A.; Papadakis, N.; Ntintakis, I. A comprehensive analysis of wind turbine blade damage. Energies 2021, 14, 5974.

[CrossRef]
3. Wang, W.; Xue, Y.; He, C.; Zhao, Y. Review of the typical damage and damage-detection methods of large wind turbine blades.

Energies 2022, 15, 5672. [CrossRef]
4. Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of existing protection

solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. [CrossRef]
5. Shi, J.; Hu, M.; Zhang, Y.; Chen, X.; Yang, S.; Hallak, T.S.; Chen, M. Dynamic Analysis of Crane Vessel and Floating Wind Turbine

during Temporary Berthing for Offshore On-Site Maintenance Operations. J. Mar. Sci. Eng. 2024, 12, 1393. [CrossRef]
6. Zhang, K.; Pakrashi, V.; Murphy, J.; Hao, G. Inspection of Floating Offshore Wind Turbines Using Multi-Rotor Unmanned Aerial

Vehicles: Literature Review and Trends. Sensors 2024, 24, 911. [CrossRef]
7. Rinaldi, G.; Thies, P.R.; Johanning, L. Current status and future trends in the operation and maintenance of offshore wind turbines:

A review. Energies 2021, 14, 2484. [CrossRef]
8. Chung, H.-M.; Maharjan, S.; Zhang, Y.; Eliassen, F.; Strunz, K. Placement and routing optimization for automated inspection with

unmanned aerial vehicles: A study in offshore wind farm. IEEE Trans. Ind. Inform. 2020, 17, 3032–3043. [CrossRef]
9. Mishra, M. Convolutional Neural Networks, Explained. Towards Data Science 2020. Available online: https://towardsdatascience.

com/convolutional-neural-networks-explained-9cc5188c4939 (accessed on 14 August 2024).
10. Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep learning method for fault detection of wind turbine converter. Appl. Sci. 2021, 11,

1280. [CrossRef]
11. Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The computational limits of deep learning. arXiv 2020, arXiv:2007.05558.

https://www.kaggle.com/datasets/oscarbest/le-erosion
https://doi.org/10.3390/s21103333
https://www.ncbi.nlm.nih.gov/pubmed/34065018
https://doi.org/10.3390/en14185974
https://doi.org/10.3390/en15155672
https://doi.org/10.1016/j.rser.2019.109382
https://doi.org/10.3390/jmse12081393
https://doi.org/10.3390/s24030911
https://doi.org/10.3390/en14092484
https://doi.org/10.1109/TII.2020.3004816
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://doi.org/10.3390/app11031280

Energies 2024, 17, 5475 18 of 19

12. Shihavuddin, A.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.; Bjorholm Dahl, A.;
Reinhold Paulsen, R. Wind turbine surface damage detection by deep learning aided drone inspection analysis. Energies 2019, 12,
676. [CrossRef]

13. Aird, J.A.; Barthelmie, R.J.; Pryor, S.C. Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images.
Energies 2023, 16, 2820. [CrossRef]

14. Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [CrossRef]
15. Zulpe, N.; Pawar, V. GLCM textural features for brain tumor classification. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 354.
16. Sirmacek, B.; Unsalan, C. Damaged building detection in aerial images using shadow information. In Proceedings of the 2009 4th

International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 11–13 June 2009; pp. 249–252.
17. Deng, L.; Guo, Y.; Chai, B. Defect detection on a wind turbine blade based on digital image processing. Processes 2021, 9, 1452.

[CrossRef]
18. Kumar, P.P.; Rao, I.K. Log Gabor filter based feature detection in image verification application. Int. J. Sci. Res. 2014, 3, 703–707.
19. Wang, J.-F.; Zhao, G.; Zhai, X.-Q.; Feng, L.-J. Study on the Improved PSO Algorithm Used in Coal Mine Safety Resource Allocation.

In Proceedings of the 23rd International Conference on Industrial Engineering and Engineering Management 2016: Theory and
Application of Industrial Engineering, Bali, Indonesia, 4–7 December 2016; pp. 149–156.

20. Yang, X.; Zhang, Y.; Lv, W.; Wang, D. Image recognition of wind turbine blade damage based on a deep learning model with
transfer learning and an ensemble learning classifier. Renew. Energy 2021, 163, 386–397. [CrossRef]

21. Khambampati, A.; Liu, D.; Konki, S.; Kim, K. An automatic detection of the ROI using Otsu thresholding in nonlinear difference
EIT imaging. IEEE Sens. J. 2018, 18, 5133–5142. [CrossRef]

22. Wang, Y.; Zou, L. Research on surface damage detection of wind turbinebladebased on machine vision. Proc. J. Phys. Conf. Ser.
2022, 2184, 012018. [CrossRef]

23. Best, O. LE Erosion Dataset. 2024. Available online: https://www.kaggle.com/ (accessed on 11 September 2024).
24. Brscotia. Scottish Wind Turbine Close Up—Parrot Bebop 2 Power FPV Drone Footage. 2017. Available online: https://www.

youtube.com/watch?v=h069SuhUxZs (accessed on 23 July 2024).
25. DefaultName. Drone Inspecting Wind Turbine. 2015. Available online: https://www.youtube.com/watch?v=VB24RIm3yDE

(accessed on 15 July 2024).
26. MegaZoom. Wind Turbine Close Up/MegaZoom. 2022. Available online: https://www.youtube.com/watch?v=5zVgjXyAe-I&

t=18s (accessed on 15 July 2024).
27. Mosegaard, I. Blade Inspection Video. 2014. Available online: https://www.youtube.com/watch?v=meDXOM4poQA (accessed

on 18 July 2024).
28. Reynolds, N. Windmill Drone Footage. 2018. Available online: https://www.youtube.com/watch?v=TzN--DftGuw (accessed on

15 July 2024).
29. Services, H.D. Raw Video from a Wind Turbine Flyover. 2021. Available online: https://www.youtube.com/watch?v=98

oAdazXQgs (accessed on 17 July 2024).
30. UAV, D. Wind Turbine Inspection Tests by DroneworX Technology Belgium. 2014. Available online: https://www.youtube.com/

watch?v=ZPa0ZIPWjok (accessed on 15 July 2024).
31. Samra, A.S.; Allah, S.E.T.G.; Ibrahim, R.M. Face recognition using wavelet transform, fast Fourier transform and discrete cosine

transform. In Proceedings of the 2003 46th Midwest Symposium on Circuits and Systems, Cairo, Egypt, 27–30 December 2003;
pp. 272–275.

32. Tao, Z.; Wei, T.; Li, J. Wavelet multi-level attention capsule network for texture classification. IEEE Signal Process. Lett. 2021, 28,
1215–1219. [CrossRef]

33. Anand, A.; Tripathy, S.S.; Kumar, R.S. An improved edge detection using morphological Laplacian of Gaussian operator. In
Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20
February 2015; pp. 532–536.

34. Zhou, W.; Gao, S.; Zhang, L.; Lou, X. Histogram of oriented gradients feature extraction from raw bayer pattern images. IEEE
Trans. Circuits Syst. II Express Briefs 2020, 67, 946–950. [CrossRef]

35. Guangyun, W.; Zhiping, Z. An improved ORB feature extraction and matching algorithm. In Proceedings of the 2021 33rd
Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 7289–7292.

36. Mittal, H.; Garg, N. Hand Symbol Recognition Using Canny Edge Algorithm And Convolutional Neural Network. In Proceedings
of the 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation
(IATMSI), Gwalior, India, 14–16 March 2024; pp. 1–5.

37. Das, D.; Singh, M.; Mohanty, S.S.; Chakravarty, S. Leaf disease detection using support vector machine. In Proceedings of the
2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 1036–1040.

38. Mallick, S. Support Vector Machines (SVM). 2018. Available online: https://learnopencv.com/support-vector-machines-svm/
(accessed on 2 August 2024).

39. Christiansen, S.D. Ischemic Stroke Thrombus Characterization through Quantitative Magnetic Resonance Imaging. Doctoral
Dissertation, The University of Western Ontario, London, ON, Canada, 2021.

40. Li, J.; Zhang, J.; Zhang, J.; Zhang, S. Quantum KNN classification with K Value selection and neighbor selection. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2023, 43, 1332–1345. [CrossRef]

https://doi.org/10.3390/en12040676
https://doi.org/10.3390/en16062820
https://doi.org/10.1080/2151237X.2007.10129236
https://doi.org/10.3390/pr9081452
https://doi.org/10.1016/j.renene.2020.08.125
https://doi.org/10.1109/JSEN.2018.2828312
https://doi.org/10.1088/1742-6596/2184/1/012018
https://www.kaggle.com/
https://www.youtube.com/watch?v=h069SuhUxZs
https://www.youtube.com/watch?v=h069SuhUxZs
https://www.youtube.com/watch?v=VB24RIm3yDE
https://www.youtube.com/watch?v=5zVgjXyAe-I&t=18s
https://www.youtube.com/watch?v=5zVgjXyAe-I&t=18s
https://www.youtube.com/watch?v=meDXOM4poQA
https://www.youtube.com/watch?v=TzN--DftGuw
https://www.youtube.com/watch?v=98oAdazXQgs
https://www.youtube.com/watch?v=98oAdazXQgs
https://www.youtube.com/watch?v=ZPa0ZIPWjok
https://www.youtube.com/watch?v=ZPa0ZIPWjok
https://doi.org/10.1109/LSP.2021.3088052
https://doi.org/10.1109/TCSII.2020.2980557
https://learnopencv.com/support-vector-machines-svm/
https://doi.org/10.1109/TCAD.2023.3345251

Energies 2024, 17, 5475 19 of 19

41. Shafi, A. K-Nearest Neighbors (KNN) Classification with Scikit-Learn. 2023. Available online: https://www.datacamp.com/
tutorial/k-nearest-neighbor-classification-scikit-learn (accessed on 5 August 2024).

42. Juna, A.; Umer, M.; Sadiq, S.; Karamti, H.; Eshmawi, A.A.; Mohamed, A.; Ashraf, I. Water quality prediction using KNN imputer
and multilayer perceptron. Water 2022, 14, 2592. [CrossRef]

43. Zhu, Z. Effects of environmental factors on ozone flux over a wheat field modeled with an artificial neural network. Adv. Meteorol.
2019, 2019, 1257910. [CrossRef]

44. O’shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
45. Dileep, P.; Das, D.; Bora, P.K. Dense layer dropout based CNN architecture for automatic modulation classification. In Proceedings

of the 2020 National Conference on Communications (NCC), Kharagpur, India, 21–23 February 2020; pp. 1–5.
46. Rakotomamonjy, A. Optimizing Area Under Roc Curve with SVMs. In Proceedings of the ROCAI, Valencia, Spain, 22 August

2004; pp. 71–80.
47. Memari, M.; Shakya, P.; Shekaramiz, M.; Seibi, A.C.; Masoum, M.A. Review on the Advancements in Wind Turbine Blade

Inspection: Integrating Drone and Deep Learning Technologies for Enhanced Defect Detection. IEEE Access 2024, 12, 33236–33282.
[CrossRef]

48. Aquilina, J.P.; Farrugia, R.N.; Sant, T. On the energy requirements of UAVs used for blade inspection in offshore wind farms. In
Proceedings of the 2019 Offshore Energy and Storage Summit (OSES), Brest, France, 10–12 July 2019; pp. 1–7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn
https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn
https://doi.org/10.3390/w14172592
https://doi.org/10.1155/2019/1257910
https://doi.org/10.1109/ACCESS.2024.3371493

	Introduction
	Materials and Methods
	Data Preprocessing
	Feature Extraction Methods
	Two-Dimensional Discrete Wavelet Transform (2D-DWT)
	Discrete Fourier Transform (DFT)
	Laplacian of Gaussian (LoG)
	Histogram of Oriented Gradients (HoG)
	Oriented FAST and Rotated BRIEF (ORB)
	Canny Edge

	Classical Machine Learning Methods
	Support Vector Machine (SVM)
	Random Forest
	K-Nearest Neighbour (KNN)
	Multi-Layer Perceptron (MLP)

	Training and Inference
	Machine Learning Models
	CNN Model

	Results
	Machine Learning Results
	CNN Results
	Comparison Experiments

	Discussion
	Conclusions
	References

