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Abstract: The advancement of hydrogen technology and rising environmental concerns have shifted
research toward renewable energy for green hydrogen production. This study introduces a novel tri-
level transaction methodology for microgrid clusters, addressing uncertainties and price fluctuations
in hydrogen. We establish a comprehensive microgrid topology with distributed power generation
and hydrogen production facilities. A polygonal uncertainty set method quantifies wind and solar en-
ergy uncertainties, while an enhanced interval optimization technique refines the model. We integrate
a sophisticated demand response model for hydrogen loading, capturing users’ behavior in response
to price changes, thereby improving renewable energy utilization and supporting economically viable
management practices. Additionally, we propose a tri-level game-theoretic framework for analyz-
ing stakeholder interactions in microgrid clusters, incorporating supply–demand dynamics and a
master–slave structure for microgrids and users. A distributed algorithm, “KKT & supply-demand
ratio”, solves large-scale optimization problems by integrating Karush–Kuhn–Tucker conditions with
a heuristic approach. Our simulations validate the methodology, demonstrating that accounting for
uncertainties and dynamic hydrogen prices enhances renewable energy use and economic efficiency,
optimizing social welfare for operators and economic benefits for microgrids and users.

Keywords: microgrid cluster; game theory; uncertainty optimization; dynamic hydrogen price;
demand response

1. Introduction

To address resource constraints and environmental challenges while aligning with
the United Nations’ UNEP Sustainable Development Goals [1,2], hydrogen energy offers
high energy density, environmental sustainability, extensive applications, and abundant
resources. It is widely acknowledged as a viable solution for global energy transformation
and sustainable development [3,4].

Hydrogen refueling stations are foundational and crucial in advancing the hydrogen
energy sector [5]. However, many stations rely on an external supply of high-pressure
gaseous hydrogen, raising significant concerns regarding transportation costs and safety [6].
Self-constructed hydrogen refueling stations can streamline hydrogen transportation,
achieving both cost-efficiency and zero carbon emissions during operation [7]. Addi-
tionally, renewable energy such as wind and solar offers complementary benefits over
time scales, enabling the flexible adjustment of hydrogen energy production. Therefore,
the reliability of hydrogen supply can be further enhanced through the strategic planning
of wind and photovoltaic power generation [8]. Researchers have investigated supply
facilities that employ renewable energy for on-site hydrogen production. It is proposed that
the hydrogen market integrates renewable energy sources upstream with hydrogen fuel
cells downstream [9]. It has been fully demonstrated that multi-energy complementarity
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offers significant potential for energy consumption. A high-proportion renewable energy
multi-energy system is constructed, utilizing large-scale hydrogen production units to
balance load demands across multi-energy systems and enhance renewable energy con-
sumption [10]. An optimization scheduling model for private hydrogenation stations is
proposed, which facilitates electrolytic water hydrogen production through grid integration
and incorporates a dynamic pricing mechanism to ensure profitability [11].

Notably, the existing research predominantly concentrates on optimizing hydrogen
energy systems based on energy generation and production, often overlooking the potential
impacts on the broader energy landscape [12]. To address uncertainties in energy output,
research methods include opportunity constraint planning, scenario analysis, robust opti-
mization, and interval analysis, as shown in Table 1. This paper addresses the solution of
large-scale interval uncertainty problems, selecting the interval method based on the analy-
sis of tabular data. Furthermore, to enhance the method’s handling of uncertain interval
widths, this paper introduces a convex hull algorithm to establish polygonal uncertainty sets
and optimize interval numbers. The improved method significantly enhances the accuracy
of traditional interval uncertainty models while reducing the computational complexity.

Table 1. Analysis of methods for dealing with uncertainty problems.

Method Illustration Positive Drawback Ref.

Constrained
planning method

Effectively reflecting the
reliability problem of

satisfying system constraints
under uncertain conditions.

Reduces the complexity of the
model; the solution results
have the advantages of low

cost or high efficiency.

Difficulty in dealing with
large-scale scenario problems

and violation risk issues in
structural constraints.

[13]

Scene analysis
method

By predicting and analyzing a
series of possible values of

uncertain factors in the future
environment.

The scene display assists
decision-makers in better

understanding the problem;
the computation scale can be
reduced, the efficiency can be

improved.

The process is subjective,
which affects the accuracy of

the results.
[14]

Robust
optimization

method

The constraints are satisfied
within the range of uncertain

parameters or in the
“worst-case” operating

scenario.

Strong reliability, ensuring that
constraints are still met even in

the harshest scenarios.

The output results are too
conservative; high demand for

computing resources and
complexity of process.

[15]

Interval method

Expands the uncertainty of
point variables into interval

representations and transforms
uncertainty problems into

deterministic boundary
problems based on interval

arithmetic.

The computational complexity
is small, suitable for handling

large-scale problems; being
able to provide a range of

uncertain values provides a
certain basis for decision

making.

The handling of uncertain
interval width significantly

affects the results; the
computational complexity is

high when dealing with
high-dimensional problems.

[16]

Additionally, uncertainties in the output and load of new energy sources lead to
imbalances in hydrogen energy supply and demand, which could impact the economic
efficiency and reliability of hydrogenation stations [17]. Currently, hydrogen fuel prices
are predominantly fixed and fail to adjust dynamically with hydrogen energy supply and
demand. This rigidity hampers the optimization of profits for new energy hydrogen pro-
duction stations and the efficient consumption of new energy [18]. Therefore, implementing
a dynamic hydrogen pricing strategy is proposed. The hydrogen price would be adjusted
dynamically based on fluctuations in energy output and hydrogen storage. This would
enable the hydrogen load to respond in real time, facilitating effective interaction between
supply and demand and achieving equilibrium in hydrogen energy supply. The recent
literature has explored dynamic hydrogen pricing. It is suggested that when new energy
generation exceeds load requirements, electricity prices should be reduced to encourage
timely electric vehicle charging, thereby promoting the consumption of new energy [19]. In
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the power distribution system, a solution for optimal current conditions yields marginal
distribution prices for various hydrogen refueling stations. A user demand model based on
traffic data determines hydrogen demand, and a 24 h optimal hydrogen pricing scheme is
developed, integrating power distribution costs and hydrogen demand [20]. However, this
method does not account for the impact of hydrogen storage levels on pricing decisions.
By implementing dynamic adjustment strategies, prices can be real-time adjusted based on
various factors such as market supply and demand, cost fluctuations, and policy directions.
This real-time responsiveness and flexibility allow for a more accurate reflection of market
conditions, thereby enhancing the effectiveness of the pricing mechanism.

The introduction of microgrid clusters (MGs) enhances the flexibility and economic
efficiency of regional energy systems by optimizing energy scheduling to achieve overall
regional energy savings and efficiency gains [21]. However, increased system degrees of
freedom and complex stakeholder interactions make optimizing the entire energy network
challenging. In [22,23], the authors propose a principal–agent game model involving a
microgrid cluster operator (MGCO) and microgrid (MG), providing a solution for the
equilibrium by using particle swarm optimization. However, this method is prone to local
optima, compromising solution reliability. Ref. [24] establish a bi-level optimization model
of a principal–agent game between energy service providers and power market operators,
solved using Karush–Kuhn–Tucker (KKT) conditions. However, this method suffers from
slow convergence rates. Ref. [25] introduce a tri-level market with a multi-leader–multi-
follower principal–agent game model, obtaining equilibrium trading strategies through
iterative methods. Overall, existing research has primarily focused on the operational
mechanisms and business models without delving into the interests and interactions among
multiple stakeholders in microgrid groups that incorporate new energy into the Internet.
Ref. [26] suggest the use of model-free deep reinforcement learning to address energy
management issues in the MG sector of the power industry, achieving significant success
in optimizing decision making. However, this approach requires a substantial amount of
training data, which considerably increase the complexity of the problem. Furthermore, the
algorithm is trained on data from a single location, which limit its scalability. Therefore, this
study constructs a tri-level trading system comprising MGCOs, MGs, and DUs and employs
distributed algorithms to solve equilibrium strategies among the three stakeholder levels
in microgrid clusters incorporating renewable energy. The constructed model encompasses
the interactions among multiple stakeholders, complicating the solution process. Currently,
no efficient method exists to tackle these optimization challenges. Traditional bi-level
optimization typically employs two primary approaches: one utilizes the KKT conditions
to convert the bi-level problem into a single-level format, solvable through mixed-integer
linear programming; effective linear transformation techniques are essential here. The
other approach involves designing distributed iterative algorithms based on analytical
or heuristic methods. Although the KKT method offers rapid computation, it requires
direct information flow, raising concerns about privacy. In contrast, distributed iterative
algorithms can become complex in large-scale problems, while heuristic algorithms often
fall short in computational efficiency. To effectively address these challenges, we propose a
“KKT & Supply-Demand Ratio” distributed iterative strategy aimed at solving the proposed
three-level optimization model.

The main contributions are as follows: (1) Considering the uncertainty from renew-
able energy generation, an improved polygonal uncertainty set is proposed to represent
intervals. (2) A dynamic hydrogen pricing strategy is proposed, and based on optimized
hydrogen prices, a hydrogen demand response mechanism is established to enhance stabil-
ity and economic efficiency. (3) A tri-level game structure is developed, enabling energy
cooperation and mutual benefit among the three stakeholders through game theory.
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2. Optimization Model of the System
2.1. Topology of Microgrid Cluster

Figure 1 illustrates the structure of the system. The renewable energy hydrogenation
station primarily generates wind and solar energy. It employs electrolysis technology
to produce hydrogen, stores it locally in hydrogen storage tanks (HTs), or supplies it to
hydrogen loads, achieving the station’s economic operation. To meet energy demands, the
system is equipped with wind turbines (WTs) and photovoltaic panels (PVs) as energy
production devices. Electrolyzers (ELs) and hydrogen fuel cells (FCs) serve as devices for
electricity-to-hydrogen energy conversion; HTs act as energy storage devices, facilitating
the absorption of wind and solar energy while providing a reserve for hydrogen demand.
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Figure 1. Topology of microgrid cluster.

The hydrogenation station’s electrical energy primarily comes from WTs and PVs,
with a portion supplied by the external grid. The station operates under two distinct modes:
(1) WTs-PVs output power is insufficient. The station purchases electricity from the external
grid to ensure daily operation; (2) WTs-PVs output exceeds demand. The station converts a
portion of the excess hydrogen into electricity using FCs and sells it to the external grid,
thereby generating economic returns.

2.2. Interval Uncertainty Model

Given the topology mentioned above, it is essential to account for the potential nega-
tive impacts of WTs-PVs power uncertainty on the system. The study employs an interval
number model to depict the uncertainty and subsequently refines the interval width based
on this model. Then, an interval linear optimization approach is utilized to optimize
the system.

2.2.1. Traditional Uncertainty Interval Model

Traditional interval number models use upper and lower bounds to characterize uncer-
tain variables, lacking explicit requirements for their statistical properties and membership
functions. Typically, these models construct uncertainty sets using historical data to derive
the interval bounds. The intervals for wind and solar power variables and the total output
of renewable energy are represented by Equations (1) and (2), respectively, as follows:
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{
P±

WT =
[

P−
WT , P+

WT

]
P±

PV =
[
P−

PV , P+
PV

] (1)

P±
REG =

[
P−

WD + P−
PV , P+

WD + P+
PV

]
(2)

where PWT
± and PPV

± represent the positive and negative intervals of WT and PV power,
respectively; PREG

± is the output power for new energy. In practical wind and solar
power plants, the probability of encountering extreme scenarios with either maximum or
minimum output is very low or may not occur. Traditional uncertain mathematical models
often use excessively broad intervals for renewable energy output, which can exacerbate
errors in the optimization process.

2.2.2. Improved Interval Model

This study employs convex hull algorithms to construct polygonal uncertainty sets for
interval optimization, enhancing the accuracy of traditional interval uncertainty models
and reducing the computational complexity. Polygonal uncertainty sets offer advantages in
optimizing two-dimensional variables due to their simple formulation and high accuracy.
The convex hull algorithm identifies and connects all boundary points to construct the
boundary of the polygonal uncertainty set, thereby narrowing the range of joint wind and
solar power output intervals. Each boundary of the polygon can be expressed as a linear
function, as shown in Equation (3):

MAX1≤i≤naix + biy + ci = 0 (3)

where n is the number of sides of the convex bag; i is the convex boundary; ai, bi, and ci are
coefficients of a linear equation calculated based on the coordinates of the two endpoints
of each boundary. The uncertainty set modeling is carried out using box boundary and
polygon boundary, as shown in Figure 2.
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As shown in Figure 2, the upper limit of the interval uncertainty set is often on the
boundary of the polygon uncertainty set. The interval width of the polygon uncertainty
set is significantly smaller than that of the box uncertainty set. This proves that research
methods can significantly enhance the accuracy and precision of system optimization to
achieve better economic results in interval optimization.
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3. Dynamic Hydrogen Pricing and Demand Response

In the electro-hydrogen system, hydrogen prices are prone to fluctuations due to
factors such as renewable energy output and supply–demand dynamics. Therefore, this
section proposes a dynamic hydrogen pricing scheme that considers the power output and
storage levels of the station. When the PREG(t) is high, and the EHT(t) is sufficient, the CH(t)
is adjusted downward to attract and increase hydrogen demand, thereby promoting the
absorption of renewable energy. Conversely, when PREG(t) is low and EHT(t) is insufficient,
CH(t) is adjusted upward to reduce demand and enhance the economic operation. The
model is given by Equations (4) and (5).

CH(t) = CH-MAX − CH-TRANS (4)

CH-TRANS = λ1PREG(t)/(PWT-MAX + PPV-MAX) + λ2[EHT(t)− EHT(t − 1)]/EHT-MAX (5)

where at time t, CH(t) is the hydrogen price; CH-TRANS(t) is the hydrogen adjustment price;
PREG(t) is the WTs-PVs power output; EHT(t) is the HTs’ capacity. CH-MAX and CH-MIN are
the maximum and minimum dynamic hydrogen prices. PWT-MAX, PPV-MAX, and EHT-MAX
are the maximum power output of WT, PV, and HT maximum power output. λ1 and λ2 are
the ratio coefficients of new energy output and hydrogen storage, respectively, representing
the weight of promoting the consumption of new energy and the weight of improving the
utilization rate of hydrogen storage tanks. Specifically, λ1 is set to 18 and λ2 to 0.15.

Based on the aforementioned dynamic hydrogen pricing scheme, hydrogen demand
adjusts according to fluctuations in hydrogen prices. Additionally, considering the tem-
poral scale, this approach assists hydrogen stations in adapting to the intermittency and
variability of renewable energy output. A hydrogen energy demand response model based
on different periods is constructed, as illustrated in Equation (6):{

εii = ∆Ei Mi/Ei∆Mi
εij = ∆Ei Mj/Ei∆Mj

(6)

where εii and εij represent the own-elasticity and the cross-elasticity coefficient. εii represents
the demand response of users in time period i to the hydrogen price in time period i; εij
represents the demand response of users in time period i to hydrogen prices in other
time periods j. ∆E denotes the change in hydrogen load, and E represents the forecasted
hydrogen load. ∆M indicates the change in hydrogen price, while M refers to the original
hydrogen price.

One day’s scheduling period is divided into n intervals. The hydrogenation demand
based on dynamic hydrogen prices across these n intervals collectively forms the elasticity
matrix, as shown in Equation (7).

∆E1
E1

∆E2
E2
...

∆En
En

 =


ε11 ε12 · · · ε1n
ε21 ε22 · · · ε2n
...

...
...

εn1 εn2 · · · εnn




∆M1
M1

∆M2
M2
...

∆Mn
Mn

 (7)

The hydrogen load at a renewable hydrogenation station is reducible, with the to-
tal daily hydrogen load varying in response to price changes. The hydrogen load after
responding to hydrogen demand, denoted as EHRES-n, is given by Equation (8):

EHRES-n = En + ∆En (8)
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4. Tri-Level Transaction Model

Figure 3 illustrates the framework of the system trading model. The MGCO, positioned
at the upper layer of the system, serves as the central hub connecting the internal and
external microgrids and distribution networks. It coordinates the supply and demand of
microgrid energy, acting as the information collection platform, trading center, and energy
flow allocator within the system. MGs, located at the middle layer of the system, connect
microgrid operators with end users, facilitating power and information exchanges while
independently conducting financial transactions with the MGCO. EUs, situated at the lower
layer of the system, connect with MGs to purchase electrical energy.
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As shown in Figure 3, the MGCO engages in transactions with the distribution network
to establish the electricity trading prices between MGs and each microgrid. MGs set
the electricity purchasing prices for EUs based on the trading prices determined by the
MGCO and the load demands of EUs, and subsequently provide this information to the
MGCO. EUs exhibit autonomous capability, enabling them to adjust their actual energy
consumption in response to the trading prices set by MGs, thereby balancing expenditure
with energy usage experience. They can also perform demand response and relay feedback
to MGs. MGs and EUs conform to a leader–follower game model, with MGs acting as the
leaders and EUs as the followers.
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4.1. Multi-Agent Transaction Model
4.1.1. MGCO Model

The MGCO participates in microgrid cluster optimization to maximize system social
welfare, with a benefit of 0. The constructed benefit objective function is shown in Equation (9):

FUP-MGCO =
T
∑

t=1

[
kMGs

SU (t)EMGs
SU (t)− kMGs

BU (t)EMGs
BU (t)

]
+

T
∑

t=1

[
N
∑

n=1

(
kMG

BMGs(t)EMG
BMGs(t)− kMG

SMGs(t)EMG
SMGs(t)

)]
= 0

(9)

where FUP-MGCO is the benefit, and n is the number of microgrids. kMGs
SU(t) and kMGs

BU(t),
and EMGs

SU(t), EMGs
BU(t) denote the sales, purchase price, and quantities of electricity from

the MGCO to the utility grid at time t. kMG
BMGs(t), kMG

SMGs(t), and EMG
BMGs(t), EMG

SMGs(t)
represent the purchase, sale price, and quantities of electricity from the MGCO to MGs at
time t.

The electricity transaction discrepancy ∆E(t) between the MGCO and the utility grid
is defined as shown in Equation (10):

∆E(t) =
T

∑
t=1

[
N

∑
n=1

EMGs
SU (t)− EMGs

BU (t)] (10)

When ∆E(t) ≥ 0, the MGCO is selling electricity; when ∆E(t) < 0, the MGCO is
purchasing electricity.

Based on the price and energy supply–demand relationship, the supply–demand ratio
of the MGs can be expressed as shown in Equation (11):

K(t) =
N

∑
n=1

EMG
SMGs(t)/

N

∑
n=1

EMG
BMGs(t) (11)

where K(t) represents the ratio of energy supply to demand in the MGs during time t.
Equations (12) and (13) illustrate the relationship between the supply–demand ratio

and price.

kMG
SMGs(t) =


kMGs

SU (t)[kMGs
SU (t)+kMGs

BU (t)]
kMGs

SU (t)[1+K(t)]+kMGs
BU (t)[1−K(t)]

, 0 ⩽ K(t) ⩽ 1

kMG
BMGs(t)G(t) + [1 − K(t)]kMGs

SU (t), 1 < K(t)
(12)

kMG
BMGs(t) =


kMG

SMGs(t)K(t) + kMGs
BU (t)[1 − K(t)], 0 ⩽ K(t) ⩽ 1

kMGs
SU (t)[kMGs

SU (t)+kMGs
BU (t)]

kMGs
SU (t)[1+G(t)]+kMGs

BU (t)[1−G(t)]
, 1 < K(t)

(13)

The MGCO only acts as either a sole supplier or seller when K(t) or G(t) = 0. Cur-
rently, the internal electricity trading price is set equal to the price established by the
distribution network.

4.1.2. MG Model

(1) Objective function

The MG derives its revenue primarily from the energy payments made by users and
transaction fees with the MGCO, minus the costs associated with energy storage system
maintenance, as represented by Equation (14):

FMID−MG = max


T
∑

t=1

(
I

∑
i=1

kLOADn
BMG (t)ELOADn

BMG−i

)
+

T
∑

t=1

(
kMG

SMGs(t)EMG
SMGs(t)− kMG

BMGs(t)EMG
BMGs(t)

)
−

T
∑

t=1
CES(PEL(t) + PFUEL(t))

 (14)



Energies 2024, 17, 5497 9 of 20

where FMID-MG represents the benefit of the nth microgrid; i denotes the ith user within
the MG, where i = 1,2, . . ., I; KLOADn

BMG(t) and ELOADn
BMG-i are the electricity purchase

price and the load of the ith EUs at time t. CES is the operational cost of the energy storage
system; PEL(t) and PFUEL(t) are the power of the ELs and FCs at time t.

(2) Constraints

1. Power balance constraints: the system power balance during operation, as shown
in Equation (15):

PPV(t) + PWD(t) + PMG
BMGs(t) + PFUEL(t) = PLOAD(t) + PMG

SMGs(t) + PEL(t) (15)

where PLOAD(t) represents the load power at time t;
2. Energy storage System constraints: it is necessary to model each component

of the energy storage system and impose capacity and power constraints, as shown in
Equations (16) to (21):

The production rate of the Els is dependent on the input power and operational
efficiency, as shown in Equation (16):

EEL(t) = ηELPEL(t)∆t/L1 (16)

0 ≤ PEL(t) ≤ PEL,max (17)

where EEL(t) and PEL(t) are the hydrogen capacity and power of the ELs at time t; ηEL
is the efficiency; L1 is the conversion coefficient; PEL,max is the upper limit of the ELs
power output.

In renewable hydrogenation stations, produced hydrogen is stored directly in HTs
and simultaneously dispensed to hydrogen loads, as shown in Equations (18) and (19):

EHT(t) = EHT(t − 1) + EEL(t − 1)− EHLOAD(t − 1)− EFUEL(t − 1) (18)

EHT,min ≤ EHT(t) ≤ EHT,max (19)

where EHT,min and EHT,max represent the minimum and maximum capacity limits of the
HTs, respectively.

The FCs utilize proton exchange membrane technology to facilitate the coupling
between the hydrogen energy and electrical energy, as shown in Equations (20) and (21):

PFC(t) = ηFCEFC(t)L2/∆t (20)

0 ≤ PFC(t) ≤ EFC,max (21)

where L2 is the hydrogen-to-electricity conversion coefficient of the FCs.
3. Operational constraints: constraints on the energy storage system’s charging and

discharging behaviors, and the MG’s electricity purchasing and selling activities, as shown
in Equations (22) and (23):

PHESS(t) = aPEL(t) + (1 − a)PFUEL(t) (22)

PMG(t) = bPMGB(t) + (1 − b)PMGS(t) (23)

where PHESS(t) is the operational power of the energy storage system at time t. a represents
the operational status indicator for the energy storage system, where a = 1, system charging.
And a = 0 indicates system discharging. PMG(t), PMGB(t), and PMGS(t) are the operational,
purchasing, and selling power of the MGs. b is the operational status indicator; where b = 1,
the system is purchasing electricity, and where b = 0, the system is selling electricity.
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4.1.3. EUs Model

(1) Objective function

The objective function of the EUs is defined as the difference between the user’s utility
and the cost of electricity procurement. The quadratic function is used as depicted in
Equation (24).

FLOW−EUsn = max
T

∑
t=1

[
aEMG

BMGs(t)−
b
2

(
EMG

BMGs(t)
)2

− kMGs
SU (t)EMG

BMGs(t)
]

(24)

where FLOW-EUsn represents the benefit of user i in the nth microgrid; a and b denote the
preference constants for energy consumption.

(2) Constraints

The constraints of the user model are presented in Equations (25) and (26).
EMG

BMGs(t) = EMG
BMGs(t) + TMG

BMGs(t)
T
∑

t=1
TMG

BMGs(t)∆t = NMG
BMGs

(25)

0 ≤ TMG
BMGs(t) ≤ TMG

BMGs,max (26)

where EMG
BMGs(t) and TMG

BMGs(t) denote the base electrical load and the transferable electrical
load of user i in the nth microgrid at time t. TMG

BMGs,max is the upper limit of the user’s
transferable load; and NMG

BMGs indicates the total amount of transferable load over the ∆t.

5. Establish and Solve Model

This section develops and solves the optimization model. Firstly, it addresses modeling
for interval uncertainty. Subsequently, a tri-level optimization model for multi-stakeholder
game theory is constructed based on this foundation. Finally, a distributed method is
employed for solving the model, as illustrated in Figure 4.
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Figure 4. System modeling process.

To address the uncertainty in wind and solar power outputs within defined intervals,
we developed a mathematical model. This model integrates uncertainty sets based on
spectral box technology to create a polygonal uncertainty framework. Building upon
this foundation, we incorporated dynamic hydrogen pricing adjustments and a demand
response mechanism, leading to the design of a corresponding system operation strat-
egy. Furthermore, we constructed a tri-level optimization game model involving multiple
stakeholders. At the Middle–Lower Level, the MG serves as the leader, while EUs act as
followers, establishing a principal–agent game structure. To solve this game problem, we
employed the KKT conditions alongside convex optimization techniques, reformulating it
as a bi-level mixed-integer quadratic programming model for efficient resolution. To further
analyze and optimize system performance, we introduced the concept of supply–demand



Energies 2024, 17, 5497 11 of 20

ratios, subsequently constructing an Upper–Middle Level model. Through iterative cal-
culations, this model produces equilibrium strategy solutions under various conditions,
providing a scientific basis for decision making.

5.1. Solve Uncertainty Model

In the interval uncertainty modeling, the decision variables are PEL(t) and PFC(t), while
the interval variable represents the range of WTs-PVs power output. The interval model is
transformed into two sub-models, namely the optimistic and pessimistic models, which
are solved using distinct procedures. The optimistic model corresponds to the scenario
of maximum WTs-PVs power output, yielding the optimistic optimal value Z−, as shown
in Equation (27). Conversely, the pessimistic model represents the scenario of minimum
output, resulting in the pessimistic optimal value Z+, as depicted in Equation (28).

minZ− = A−X + B−

s.t. C−X ≤ w+

D−X ≤ k+

D+X ≤ k−

L−X ≤ U

(27)


minZ+ = A+X + B+

s.t. C+X ≤ w−

D−X ≤ k+

orD+X ≤ k−

L ≤ X ≤ U

(28)

where A∈R1×Ng, X∈RNg×1, B∈RNg×1, C∈RM×Ng, and D∈RT×Ng; R is the real number
matrix; Ng is the number of decision variables; M is the number of interval inequality; T
is the number of interval equations; U and L are the set of upper and lower boundaries.
Optimistic solution Z− and pessimistic solution Z+ constitute the optimal value interval
[Z−, Z+].

5.2. Game Model

The game is specifically characterized as follows: (1) The trading prices set by the
MGCO influence the energy trading strategies of the MG, while the real-time prices offered
by the MG also affect the load demand of the EUs. (2) The energy purchasing strategies
of the EUs, following demand response, impact the MG’s pricing strategy and its energy
procurement from the MGCO, thereby indirectly influencing the MGCO’s pricing strategy.

In the iterative interaction process, stakeholders continuously adjust their strategies, ul-
timately achieving a state of equilibrium. Specifically, the trading strategies between the MG
and EUs adhere to a leader–follower game model. By defining the participants, decisions,
and payoff functions of G, the optimization problem can be expressed as Equation (29).

G = {S; {γ1, γ2}; {F1, F2}} (29)

(1) Participants: S denotes the participants, which include the MG and EUs.
(2) Decision Set: The strategy of the MG is derived from the MGCO’s transaction

plan and the real-time electricity purchasing prices set for users. Among those,
γ1 = [PMGs

B (t), PMGs
S (t), PLOADn

BMG (t)]. The strategy of the EUs, which conforms to demand
response, is denoted as γ2 = [TMG

BMGs(t)].
(3) Utility Functions: {F1, F2} represents the set of utility functions, which denotes the

objective functions of the stakeholders.

5.3. KKT and Convex Optimization

To address the bi-level optimization game model involving the MG and EUs, this paper
transforms the lower-level EU model into constraint conditions for the MG optimization
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model using KKT conditions. Consequently, the bi-level optimization problem is reduced
to a single-level optimization problem, as expressed in Equations (30) and (31):

∂LMG
BMGs(t)

∂TMG
BMGs(t)

= a − b[EMG
BMGs(t) + TMG

BMGs(t)]− kLOADn
BMG (t) + α1 − α2 + µ = 0 (30)

{
0 ≤ TMG

BMGs(t)⊥α1 ≥ 0

0 ≤ [TMG
BMGs,max − TMG

BMGs(t)]⊥α2 ≥ 0
(31)

where LMG
BMGs is the Lagrange function constructed by the EUs, with Formula (28) as a

partial derivative and set to 0;
α1, α2, and µ are dual variables introduced in the KKT process. Among those,

0 ≤ A⊥B ≥ 0, means a ≥ 0, b ≥ 0 and a·b = 0.
There are nonlinear items in the constraint condition, so it needs to be convex opti-

mized. In the converted single-layer model, the constraint Equation (31) is a nonlinear
constraint. And kMGs

SU (t)EMG
BMGs(t) is a nonlinear constraint in Equation (24). Thus, we

adopt the large M method, by attracting several 0–1 variables, and the original nonlinear
constraint Equation (31) is converted into a mixed-integer linear constraint, as shown in
Equation (32): 

0 ≤ TMG
BMGs(t) ≤ β1M

0 ≤ α1 ≤ (1 − β1)M

0 ≤ [TMG
BMGs,max − TMG

BMGs(t)] ≤ β2M

0 ≤ α2 ≤ (1 − β2)M

(32)

where β1 and β2 are the binary variables; M is a constant large number.

5.4. Distributed Method Solution Process

This article proposes a distributed algorithm to solve the master–slave game model of
“MGCO-MG-EUs”. The specific solution process is shown in Figure 5.

(1) Solving the Interval Optimization Model
The initial step involves the initialization of system parameters, followed by the input

of uncertainty ranges within the WTs-PVs framework, aimed at refining the interval range.
Subsequently, the interval optimization objective function, denoted as min[f ], is established.
The optimistic and pessimistic models are then solved to yield the corresponding optimal
solutions, min f− and min f +, along with the dynamic hydrogen prices. These dynamic
prices, informed by demand response mechanisms, are generated for both scenarios and
subsequently integrated into the tri-level optimization model.

(2) Solving the Tri-Level Stakeholders Trading Model
The trading prices of the MGCO are initially defined as the foundational input con-

ditions for the optimization process. Following this, the KKT conditions and convex
optimization techniques are employed to delineate the principal–agent game strategies
between the MG and its users. The optimized energy purchase plans from each microgrid
are subsequently relayed back to the MGCO. In its capacity as a public welfare entity, the
MGCO engages with microgrids to enhance social welfare, iteratively adjusting the trading
prices until convergence is reached and an equilibrium solution is established. Throughout
each iteration, participants exchange only essential information, such as energy trading
prices and purchase strategies, thereby preventing information leakage and ensuring the
confidentiality of all parties involved.
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6. Case Analysis
6.1. Example Setting

The case study constructs a model of a WTs-PVs AC-DC grid-connected microgrid as
the smallest unit for simulation experiments. Wind and solar output forecasting data are
based on historical wind and solar data from typical summer and winter days (June and
December) at a specific location. Hydrogen load data for the refueling station are shown in
Figure 6. Time-of-use electricity prices are presented in Table 2. Elasticity coefficients are
adjusted for different periods, with two distinct coefficients set to increase the hydrogen
load during lower price periods. The specific settings are detailed in Table 3. Multiple
scenarios are constructed to validate the model, as shown in Table 4. The case study is mod-
eled using the MATLAB 2021b platform and solved with the Gurobi solver, with simulation
performed on hardware equipped with an Intel Core i7-12700H CPU @ 2.30 GHz.
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Table 2. Time-of-use electricity price.

Period Type Period Electricity Purchase Price
($/kWh)

Electricity Sales Price
($/kWh)

Low valley 23:00–07:00 0.055 0.042

Daily 11:00–14:00, 18:00–23:00 0.105 0.042

Peak 07:00–11:00, 14:00–18:00 0.162 0.042

Table 3. Elasticity coefficient setting.

Classification Period Value

Sub elasticity coefficient E1 00:00–24:00 −1.5

Mutual elasticity coefficient E2 06:00–10:00, 18:00–24:00 0.03

Mutual elasticity coefficient E3 11:00–17:00 0.05

Mutual elasticity coefficient E4 01:00–05:00 0

Table 4. Scenario condition setting.

Scenarios Multilateral
Uncertainty Set

Dynamic Hydrogen
Price Demand Response

1 × × ×
2

√
× ×

3
√ √

×
4

√ √ √

6.2. Results Analysis
6.2.1. Uncertainty Results Analysis

This section aims to validate the effectiveness of the proposed method for handling
uncertainties by analyzing the operation of the hydrogenation station under different
scenarios, as shown in Table 5. Furthermore, Figure 7 compares the output ranges for
Scenario 1 and Scenario 2 during typical days.
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Table 5. Operational performance of hydrogenation stations.

Scenarios Typical Days The Price of Hydrogen ($/kg) Total Hydrogen Load (kg) Revenue ($)

1
Summer 5.601 289.6 [885.54, 1661.88]
Winter 5.601 289.6 [1050.64, 1817.41]

2
Summer 5.601 289.6 [1070.51, 1687.47]
Winter 5.601 289.6 [1053.94, 1820]

3
Summer [4.901, 6.301] 289.6 [1133.91, 1534.37]
Winter [4.901, 6.301] 289.6 [1104.84, 1719.43]

4
Summer [4.901, 6.301] [273.1, 301.4] [1206.34, 1741.3]
Winter [4.901, 6.301] [273.1, 301.4] [1103.27, 1666.54]
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Figure 7. Comparison of interval optimization results: (a) power output in summer, (b) power output
in winter.

Analysis of Table 5 and Figure 7 reveals that in summer, the increase in the minimum
wind and solar output results in a reduction in the electricity purchase costs for the hydro-
gen refueling station and an improvement in the minimum revenue. In winter, the reduced
sunlight leads to a decrease in the peak renewable energy output, and the difference be-
tween the optimized polygonal uncertainty set interval and the original box-based interval
is minimal. Therefore, it can be concluded that when wind and solar output is excessive in
summer and insufficient in winter, optimizing the wind and solar data using the polygonal
uncertainty set results in improved revenue intervals for the hydrogen refueling station.

Further analysis of Scenarios 1 and 2 in Figure 7 indicates that the original data align
with the energy output boundary defined by the box-type uncertainty set. In contrast, the
optimized data conform to the same boundary defined by the polygonal uncertainty set. As
demonstrated in Figure 7, applying polygonal uncertainty in power output optimization
effectively reduces some extreme scenarios, leading to a decrease in the upper boundary and
an increase in the lower boundary. Consequently, the interval derived from the polygonal
uncertainty set offers a more precise representation than that obtained from the box-type
uncertainty set.

6.2.2. Dynamic Hydrogen Price and Demand Response Results Analysis

Scenario 3 is constructed to assess the validity of the dynamic hydrogen pricing. As
illustrated in Figure 8, the dynamic variations in hydrogen prices are demonstrated.

Analysis combining Figure 8 and Table 5 reveals that during the 11:00–14:00 period,
when the total power output is high, hydrogen prices significantly decrease. Conversely,
in the evening, when hydrogen demand is high, and hydrogen storage fluctuates more
frequently, hydrogen prices notably increase. Considering the dynamic hydrogen prices
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influenced by the renewable energy output and hydrogen storage levels, these prices fluc-
tuate due to the variations in the power output and hydrogen storage. Furthermore, in the
optimization process, the hydrogen production volume primarily depends on hydrogen
demand, resulting in no significant changes in the hydrogen production volume at these
stations. Fluctuations in hydrogen prices directly affect the revenue range of refueling sta-
tions. Specifically, the minimum revenue increases while the maximum revenue decreases,
which adversely impacts the profitability of these stations. Therefore, adopting a demand
response model based on dynamic hydrogen prices, which adjusts hydrogen demand
according to these prices, is a crucial strategy for enhancing the economic efficiency of
the system.
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creases, which adversely impacts the profitability of these stations. Therefore, adopting a 
demand response model based on dynamic hydrogen prices, which adjusts hydrogen de-
mand according to these prices, is a crucial strategy for enhancing the economic efficiency 
of the system. 

Furthermore, the hydrogen load curve is illustrated in Figure 9. An analysis of Fig-
ures 8 and 9 reveals that on a typical winter day, when power output is at its lowest, the 
minimum revenue in Scenario 4 is slightly lower than in Scenario 3 but still higher than in 
Scenario 2 due to the reduction in hydrogen load. This demonstrates that the introduction 
of dynamic hydrogen pricing strategies and demand response mechanisms can enhance 
the revenue of hydrogen refueling stations under the worst-case scenarios. Comparative 
analysis of typical day results shows that during seasons with higher overall power out-
put, dynamic hydrogen pricing strategies and demand response mechanisms can signifi-
cantly increase the revenue of hydrogen refueling stations. The results thoroughly vali-
date the proposed dynamic hydrogen pricing strategy and hydrogen load demand re-
sponse mechanism, demonstrating effectiveness in achieving interaction and enhancing 
the revenue of hydrogenation stations during periods of both surplus and deficit in energy 
power output. 
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Figure 8. Hydrogen price curve: (a) price in summer, (b) price in winter.

Furthermore, the hydrogen load curve is illustrated in Figure 9. An analysis of
Figures 8 and 9 reveals that on a typical winter day, when power output is at its lowest,
the minimum revenue in Scenario 4 is slightly lower than in Scenario 3 but still higher
than in Scenario 2 due to the reduction in hydrogen load. This demonstrates that the
introduction of dynamic hydrogen pricing strategies and demand response mechanisms
can enhance the revenue of hydrogen refueling stations under the worst-case scenarios.
Comparative analysis of typical day results shows that during seasons with higher overall
power output, dynamic hydrogen pricing strategies and demand response mechanisms can
significantly increase the revenue of hydrogen refueling stations. The results thoroughly
validate the proposed dynamic hydrogen pricing strategy and hydrogen load demand
response mechanism, demonstrating effectiveness in achieving interaction and enhancing
the revenue of hydrogenation stations during periods of both surplus and deficit in energy
power output.
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6.2.3. Transaction Result Analysis

• MG Operation Result Analysis

Figure 10 presents the optimized electrical output results for each microgrid within
the cluster. MG2 typically functions as the electricity demand entity, while MG1 and MG3
primarily serve as the electricity supply sources.
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Figure 10. Output results for each microgrid: (a) MG1, (b) MG2, (c) MG3.

It is noteworthy that there is a significant disparity in the energy supply and demand at
the peak electrical output of MG1 and MG3. Consequently, the MGCO integrates resources
such that surplus electricity within the cluster is preferentially sold to other microgrids
experiencing a shortage, facilitating energy exchange between microgrids.

• EUs Optimization Result analysis

Table 6 presents the results before and after user optimization. The study employs a
benefit function to quantify user satisfaction, indicating that higher benefits are associated
with greater user satisfaction.

Table 6. User economic optimization results.

User Type

Optimize the Goal ($) Cost Function ($)

Before
Optimization

After
Optimization

Optimization
Rate

Before
Optimization

After
Optimization

Optimization
Rate

EU1 410.0294 490.1148 19.53% 798.9328 722.6499 9.54%

EU2 380.6569 467.5588 22.83% 796.3768 719.056 9.71%

EU3 166.7465 227.3978 36.37% 443.8627 403.5896 9.07%



Energies 2024, 17, 5497 18 of 20

As shown in Table 6, optimizing EU1, EU2, and EU3 results in reduced costs and
increased overall benefits. Specifically, the costs for EU1, EU2, and EU3 have been reduced
by 9.54%, 9.71%, and 9.07%, respectively. Therefore, the proposed model, which utilizes
the KKT method to solve the bi-level game problem for microgrids and their users, yields
results that facilitate demand response while enhancing user satisfaction.

• MGs Result analysis

This part establishes two comparative scenarios. Figure 11 illustrates the comparison
of energy transactions under the two scenarios. Scenario 1: independent optimization,
where each microgrid is optimized independently as a standalone entity without the
involvement of the MGCO, and each microgrid directly engages in transactions with the
external distribution network. Scenario 2: joint optimization, wherein the method proposed
in this study is used to set intra-group trading prices. This allows the MGCO to centrally
manage and coordinate energy transactions within the group.
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Figure 11. Transaction power.

From the perspective of the overall energy trading volume, the joint optimization
of the microgrid cluster allowed the three proposed microgrids to engage in significant
internal trading via the MGCO, resulting in a 24.78% increase in traded energy and notably
decreasing the cluster’s dependence on the distribution network. This demonstrates that
post-optimization, the microgrid cluster effectively balanced excess and deficit energy
within the group, further reflecting and validating the experimental results shown in
Figure 10. Consequently, the approach prioritized the internal absorption of surplus energy,
enhancing the safety and reliability of the microgrid cluster.

7. Conclusions

This study considers the fluctuations in power generation and hydrogen load demand,
proposing a game-theoretic framework method for the tri-level transaction of microgrid
clusters. The conclusions are as follows:

(1) The interval number model based on polygonal uncertainty sets, which incorpo-
rates wind–solar correlation, effectively eliminates extreme scenarios and enhances the
rationality of subsequent design phases and the economic viability of returns.

(2) Implementing dynamic hydrogen pricing strategies and incorporating demand
response adjustments effectively ensure the minimum economic returns for hydrogen
stations, broaden the interaction between energy sources and loads, and achieve proactive
energy consumption of hydrogenation stations.

(3) The tri-layer method incentivizes microgrids to participate in local energy trading
markets. This approach significantly improves the economic efficiency of multiple system
stakeholders and reduces microgrid clusters’ reliance on the distribution network.
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This paper primarily investigates a single new energy hydrogenation station. Fu-
ture research will extend to examining operational scenarios for multiple hydrogenation
stations at the urban scale and addressing various hydrogen load demands, including
industrial applications.
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