Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City
Abstract
:1. Introduction
1.1. Smart Energy as a Key Factor for Smart Cities
1.2. Providing Heating and Hot Water for the Smart City Communities
1.3. Utilization of Geothermal Energy in Smart Cities
1.4. The Role of Geothermal Energy Among Renewable Energy Sources and in the Hungarian Energy Mix
2. Materials and Methods
2.1. Analysis of Statistical Data Series Relevant to the Topic
2.2. The Method of Calculating the Energy Conversion Factor and the Share of Renewable Energy Sources in the District Heating Service
2.2.1. Original Primary Energy Conversion Factor (edistrict heating)
- ei: According to point 1.9 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
- h: According to point 1.6 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
- eelectr: According to point 1.8 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
- αelectr: According to point 1.10 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
2.2.2. Share of Renewable Energy in District Heating (eSUS, district heating):
- αelectr: According to point 1.10 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
- eSUS,electr: According to point 2.4 of Annex 7 to TNM Decree 7/2006 (24 May 2006)
2.3. Stakeholder Interviews and Civil Forum
- What do you think of the term resource efficiency?
- In your opinion, what are the main characteristics of a city’s resource-efficient management?
- What is the first thing that comes to mind when you hear the term renewable energy sources?
- Do they know what renewable energy sources Miskolc uses to support its resource efficiency?
- In your opinion, did the coronavirus epidemic and the Ukrainian-Russian war affect the use of renewable energy sources in Miskolc?
- Do you think the city plans to support its resource needs with additional renewable energy? (If so, what solutions would you recommend?)
- Is it considered feasible to extend the district heat and hot water service from geothermal or other renewable sources to the entire city, including the residential areas?
3. Results
3.1. The Transformation of Energy Production and Consumption in Hungary, with Particular Regard to Thermal Energy
3.2. Use of Geothermal Energy in the Miskolc District Heating Service
3.3. Findings from the Focus Group Interview
3.4. The Experiences of the Public Forum and Analysis of Transferred Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molnár, L.; Nagy, Z.; Péter, Z.; Szép, T.; Szendi, D. Miskolc as a “Smart City”: Experiences of a Questionnaire Survey. Theory Methodol. Pract. Rev. Bus. Manag. 2021, 17, 11–21. [Google Scholar] [CrossRef]
- Tudásközpont, L. URBACT Nemzeti Tájékoztatási Pont Szervezetfejlesztés az okos városban. (Organisational development in the smart city). Inf. Társadalom 2016, 16, 179–183. [Google Scholar]
- Tomay, T.S.; Szend, D. Analysing economic and environmental sustainability in Hungary: How cities with county rights perform in SDGs. Urbani Izziv 2023, 34, 87–97. [Google Scholar] [CrossRef]
- Dürr, M. Illiberal smart urbanism? Lessons from the politics of state-led smart securitisation in Miskolc, Hungary. Urban Stud. 2023, 60, 554–571. [Google Scholar] [CrossRef]
- Al Sharif, R.; Pokharel, S. Smart City Dimensions and Associated Risks: Review of literature. Sustain. Cities Soc. 2022, 77, 103542. [Google Scholar] [CrossRef]
- Official website of Miskolc. Available online: https://miskolc.hu/ (accessed on 10 April 2024).
- Varró, K.; Szalai, Á. Discourses and practices of the smart city in Central Eastern Europe: Insights from Hungary’s ‘big’ cities. Urban Res. Pract. 2022, 15, 699–723. [Google Scholar] [CrossRef]
- EX-ACT Project Ltd. Miskolc Megyei Jogú Város Integrált Településfejlesztési Stratégiája ˙(Integrated Urban Development Strategy of the City of Miskolc) (2021–2027). Miskolc. 2022. Available online: https://www.miskolc.hu/varoshaza/onkormanyzat/strategiak-koncepciok# (accessed on 10 April 2024).
- Ezra, A.; Zhu, K.; Dávid, L.D.; Yakubu, B.N.; Ritter, K. Assessing the Hydrological Impacts of Climate Change on the Upper Benue River Basin in Nigeria: Trends, Relationships, and Mitigation Strategies. Climate 2023, 11, 198. [Google Scholar] [CrossRef]
- Wang, C.; Gu, J.; Martínez, O.S.; Crespo, R.G. Economic and environmental impacts of energy efficiency over smart cities and regulatory measures using a smart technological solution. Sustain. Energy Technol. Assess. 2021, 47, 101422. [Google Scholar] [CrossRef]
- O’dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef]
- Aleksandrs, Z.; Jurgis, Z.; Kristina, T.; Anatolijs, B. Concept of smart city: First experience from city of Riga. J. Sustain. Arch. Civ. Eng. 2014, 7, 54–59. [Google Scholar] [CrossRef]
- Maier, S. Smart energy systems for smart city districts: Case study Reininghaus District. Energy Sustain. Soc. 2016, 6, 23. [Google Scholar] [CrossRef]
- Haarstad, H.; Wathne, M.W. Are smart city projects catalyzing urban energy sustainability? Energy Policy 2019, 129, 918–925. [Google Scholar] [CrossRef]
- Chen, Z.; Sivaparthipan, C.; Muthu, B. IoT based smart and intelligent smart city energy optimization. Sustain. Energy Technol. Assess. 2022, 49, 101724. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Bisello, A.; Vaccaro, R.; D’Alonzo, V.; Hunter, G.W.; Vettorato, D. Smart energy city development: A story told by urban planners. Cities 2017, 64, 54–65. [Google Scholar] [CrossRef]
- Káposzta, J.; Nagy, H. The major relationships in the economic growth of the rural space. Eur Countrys. 2022, 14, 67–86. [Google Scholar] [CrossRef]
- Poggi, F.; Amado, M. The spatial dimension of energy consumption in cities. Energy Policy 2024, 187, 114023. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: The evolution of the city-energy-sustainability nexus. Environ. Dev. 2021, 39, 100626. [Google Scholar] [CrossRef]
- Morvaj, B.; Lugaric, L.; Krajcar, S. Demonstrating smart buildings and smart grid features in a smart energy city. In Proceedings of the IEEE 3rd International Youth Conference on Energetics (IYCE), Zagreb, Croatia, 25–27 May 2011; pp. 1–8. [Google Scholar]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pham, V.V.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Tóth, T.; Káposzta, J. Successful management of settlements to boost rural development. Eur. Countrys. 2021, 13, 819–833. [Google Scholar] [CrossRef]
- Cortese, T.T.P.; de Almeida, J.F.S.; Batista, G.Q.; Storopoli, J.E.; Liu, A.; Yigitcanlar, T. Understanding Sustainable Energy in the Context of Smart Cities: A Prisma Review. Energies 2022, 15, 2382. [Google Scholar] [CrossRef]
- Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K.; Starczewski, T. Smart energy in a smart city: Utopia or reality? Evidence from Poland. Energies 2020, 13, 5795. [Google Scholar] [CrossRef]
- Ceglia, F.; Esposito, P.; Marrasso, E.; Sasso, M. From smart energy community to smart energy municipalities: Literature review, agendas and pathways. J. Clean. Prod. 2020, 254, 120118. [Google Scholar] [CrossRef]
- Razmjoo, A.; Gandomi, A.H.; Pazhoohesh, M.; Mirjalili, S.; Rezaei, M. The key role of clean energy and technology in smart cities development. Energy Strat. Rev. 2022, 44, 100943. [Google Scholar] [CrossRef]
- Causone, F.; Sangalli, A.; Pagliano, L.; Carlucci, S. An Exergy Analysis for Milano Smart City. Energy Procedia 2017, 111, 867–876. [Google Scholar] [CrossRef]
- Kiss, V.M. Modelling the energy system of Pécs—The first step towards a sustainable city. Energy 2015, 80, 373–387. [Google Scholar] [CrossRef]
- Calvillo, C.; Sánchez-Miralles, A.; Villar, J. Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- Shafiullah, M.; Rahman, S.; Imteyaz, B.; Aroua, M.K.; Hossain, M.I.; Rahman, S.M. Review of smart city energy modeling in Southeast Asia. Smart Cities 2022, 6, 72–99. [Google Scholar] [CrossRef]
- Thellufsen, J.Z.; Lund, H.; Sorknæs, P.; Østergaard, P.A.; Chang, M.; Drysdale, D.; Nielsen, S.; Djørup, S.R.; Sperling, K. Smart energy cities in a 100% renewable energy context. Renew. Sustain. Energy Rev. 2020, 129, 109922. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Di Nucci, M.R.; Vettorato, D. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach. Energy Policy 2017, 105, 191–201. [Google Scholar] [CrossRef]
- Lim, Y.; Edelenbos, J.; Gianoli, A. Smart energy transition: An evaluation of cities in South Korea. Informatics 2019, 6, 50. [Google Scholar] [CrossRef]
- Bertalan, L. Citizens’ Perception of Urban Problems and Possibilites for Smart City Solutions. Case Study from Sopron, Hungary. E-CONOM 2016, 4, 17–28. [Google Scholar] [CrossRef]
- Čorejová, T.; Haľamová, E.; Madleňák, R.; Neszmélyi, G.I. The concept of smart city and the perceptions of urban inhabitants: A case study from Žilina, Slovakia. Hung. Geogr. Bull. 2021, 70, 113–128. [Google Scholar] [CrossRef]
- Patkós, C.; Radics, Z.; Tóth, J.B.; Kovács, E.; Csorba, P.; Fazekas, I.; Szabó, G.; Tóth, T. Climate and energy governance perspectives from a municipal point of view in Hungary. Climate 2019, 7, 97. [Google Scholar] [CrossRef]
- Durmishi, L.; Bazsik, I.; Farkas, T. Community support and collaboration in women’s social cooperative Krusha E Madhe. Eur. Countrys. 2023, 15, 49–65. [Google Scholar] [CrossRef]
- Vincze, J.; Láposi, R.; Koncz, G. Energetikai célú biomassza ellátási láncok újraszervezése. LXI. In Proceedings of the Georgikon Napok Konferenciakötete: Innovációs Kihívások a XXI. Században, Keszthely, Hungary, 25–27 April 2019; pp. 534–542. [Google Scholar]
- Colding, J.; Colding, M.; Barthel, S. The smart city model: A new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 2020, 47, 179–187. [Google Scholar] [CrossRef]
- Wyrwicka, M.K.; WięcSek-Janka, E.; Brzeziński, Ł. Transition to sustainable energy system for smart cities—Literature review. Energies 2023, 16, 7224. [Google Scholar] [CrossRef]
- Kulcsár, B.; Mankovits, T.; Ailer, P.G. The renewable energy production capability of settlements to meet local electricity and transport energy demands. Sustainability 2021, 13, 3636. [Google Scholar] [CrossRef]
- Molnár, F. Smart Solutions for Securing the Power Supply of Smart Cities. Interdiscip. Descr. Complex Syst. 2023, 21, 161–167. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Dumas, P. A European perspective of the development of deep geothermal in urban areas: Smart thermal grids, geothermal integration into smart cities. Geomech. Tunn. 2016, 9, 447–450. [Google Scholar] [CrossRef]
- Koós, T.; Kókai, P. Távhőszolgáltatás kiterjesztésének és a földgázalapú hőtermelés biomassza tüzeléssel való kiváltási lehetőségeinek elemzése. Miskolci Egy. Közleményei Anyagmérnöki Tudományok 2012, 37, 229–236. [Google Scholar]
- Cicea, C.; Marinescu, C.; Pintilie, N. Smart cities using smart choices for energy: Integrating modern bioenergy in consumption. Theor. Empir. Res. Urban Manag. 2019, 14, 22–34. [Google Scholar]
- Bánkuti, G.; Zanatyné Uitz, Z. A Good Practice in Urban Energetics in a Hungarian Small Town, Kaposvár. In Handbook of Smart Energy Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–28. [Google Scholar] [CrossRef]
- Idroes, G.M.; Syahnur, S.; Majid, M.S.A.; Idroes, R.; Kusumo, F.; Hardi, I. Unveiling the Carbon Footprint: Biomass vs. Geothermal Energy in Indonesia. Èkon. J. Econ. 2023, 1, 10–18. [Google Scholar] [CrossRef]
- Moret, S.; Peduzzi, E.; Gerber, L.; Maréchal, F. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems. Energy Convers. Manag. 2016, 129, 305–318. [Google Scholar] [CrossRef]
- Dominković, D.; Bačeković, I.; Sveinbjörnsson, D.; Pedersen, A.; Krajačić, G. On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system. Energy 2017, 137, 941–960. [Google Scholar] [CrossRef]
- Huculak, M.; Jarczewski, W.; Dej, M. Economic aspects of the use of deep geothermal heat in district heating in Poland. Renew. Sustain. Energy Rev. 2015, 49, 29–40. [Google Scholar] [CrossRef]
- Hast, A.; Syri, S.; Lekavičius, V.; Galinis, A. District heating in cities as a part of low-carbon energy system. Energy 2018, 152, 627–639. [Google Scholar] [CrossRef]
- Acheilas, I.; Hooimeijer, F.; Ersoy, A. A Decision support tool for implementing district heating in existing cities, focusing on using a geothermal source. Energies 2020, 13, 2750. [Google Scholar] [CrossRef]
- Rokicki, T.; Bórawski, P.; Szeberényi, A. The Impact of the 2020–2022 Crises on EU countries’ independence from energy imports, particularly from russia. Energies 2023, 16, 6629. [Google Scholar] [CrossRef]
- Rokicki, T.; Jadczak, R.; Kucharski, A.; Bórawski, P.; Bełdycka-Bórawska, A.; Szeberényi, A.; Perkowska, A. Changes in energy consumption and energy intensity in eu countries as a result of the COVID-19 Pandemic by sector and area economy. Energies 2022, 15, 6243. [Google Scholar] [CrossRef]
- Horváth, G.; Kotek, P.; Simonovits, A.; Tóth, B.T. Az energiaárak támogatása Magyarországon–egy egyszerű modell. Közgazdasági Szle. 2023, 70, 589–612. [Google Scholar] [CrossRef]
- Bozsik, N.; Szeberényi, A.; Bozsik, N. Examination of the Hungarian Electricity Industry Structure with Special Regard to Renewables. Energies 2023, 16, 3826. [Google Scholar] [CrossRef]
- Mannheim, V.; Nehéz, K.; Brbhan, S.; Bencs, P. Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment. Energies 2023, 16, 6995. [Google Scholar] [CrossRef]
- Gent, J. Biomassza Energia Magyarországon. Összefoglaló. CEEweb for Biodiversity. 2022. Available online: https://www.ceeweb.org/ducuments/publications/Bioenergia_brief_Hun_CEEweb.pdf (accessed on 13 May 2024).
- Mádlné Szőnyi, J.; Rybach, L.; Lenkey, L.; Hámor, T.; Zsemle, F. A Geotermikus Energiahasznosítás Nemzetközi és Hazai Helyzete, Jövőbeni Lehetőségei Magyarországon; Magyar Tudományos Akadémia: Budapest, Hungary, 2008; p. 97. [Google Scholar]
- Toth, A.; Szucs, P.; Fenerty, D. Geothermal Power Project’s Manageable Risks in Hungary. Earth Sci. 2021, 10, 170. [Google Scholar] [CrossRef]
- Nyikos, A.; Tóth, A.N. A geotermikus energia szerepe a magyar hőellátásban. Magy. Tudomány 2019, 180, 1772–1777. [Google Scholar] [CrossRef]
- Lund, J.W.; Huttrer, G.W.; Toth, A.N. Characteristics and trends in geothermal development and use, 1995 to 2020. Geothermics 2022, 105, 102522. [Google Scholar] [CrossRef]
- Campos, J.; Csontos, C.; Munkácsy, B. Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition. Energy 2023, 278, 127971. [Google Scholar] [CrossRef]
- Strasszer, D.; Xydis, G. Integrating geothermal energy in Hungary: A case study on sustainable urban heating and emissions mitigation through the district heating infrastructure. Tunn. Undergr. Space Technol. 2024, 149, 105804. [Google Scholar] [CrossRef]
- Ádók, J. A Hódmezővásárhelyi Geotermikus Fűtési Rendszer Hazai Mérnöki Tudással Készült a Geotermikus Energiafel-Használás Egyik Legkitűnőbb Magyarországi Példája, a Hódmezővásárhelyi Közműrendszer. 2012. Available online: https://geotermia.lapunk.hu/ (accessed on 1 August 2024).
- Talamon, A.; Kujbus, A. Developing Geothermal Projects Using Energy Demand Profiles in the Pannonian Basin. In Proceedings of the 49th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2024. [Google Scholar]
- Nagypál, N.C.; Papanitz, A. Overview of the support of geothermal energy investments in the programming period 2014–2020 in Hungary. Econ. Policy Energy Environ. 2024, 1, 115–130. [Google Scholar] [CrossRef]
- Gürsan, C.; de Gooyert, V. The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition? Renew. Sustain. Energy Rev. 2021, 138, 110552. [Google Scholar] [CrossRef]
- Nagy, Z.; Szép, T.S.; Szendi, D. Regional Disparities in Hungarian Urban Energy Consumption—A Link Between Smart Cities and Successful Cities. Geogr. Tech. 2019, 14, 92–102. [Google Scholar] [CrossRef]
- Nagy, Z.; Szép, T.S.; Szendi, D. Regional inequalities in residential energy use of hungarian urban areas. Trends Econ. Manag. 2019, 13, 59–70. [Google Scholar] [CrossRef]
- Titov, A.; Kövér, G.; Tóth, K.; Gelencsér, G.; Kovács, B.H. Acceptance and Potential of renewable energy sources based on biomass in rural areas of Hungary. Sustainability 2021, 13, 2294. [Google Scholar] [CrossRef]
- Vámos, V.; Horváth, M. The effect of building refurbishment and changing occupancy on the district heating consumption of multifamily buildings: Case study of Miskolc, Hungary. J. Build. Eng. 2023, 81, 108132. [Google Scholar] [CrossRef]
- Veres, G.P.; Tóth, A.N. Current Situation and Potential of Miskolc District Heating. Euroheat Power 2021, 4, 38–42. [Google Scholar]
- Lee, W.J. A study on word cloud techniques for analysis of unstructured text data. J. Converg. Cult. Technol. 2020, 6, 715–720. [Google Scholar] [CrossRef]
- Heimerl, F.; Lohmann, S.; Lange, S.; Ertl, T. Word Cloud Explorer: Text analytics based on word clouds. In Proceedings of the IEEE 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 1833–1842. [Google Scholar] [CrossRef]
- Szeberényi, A.; Fűrész, Á.; Rokicki, T. Renewable Energy in Hungary: Awareness, Challenges, and Opportunities. In Proceedings of the 8th FEB International Scientific Conference: Challenges in the Turbulent Economic Environment and Organizations’ Sustainable Development, Maribor, Slovenia, 21–22 March 2024; Belak, J., Nedelko, Z., Eds.; University of Maribor Press: Maribor, Slovenia, 2024; pp. 509–518. [Google Scholar] [CrossRef]
- Szabó, G.; Fazekas, I.; Radics, Z.; Csorba, P.; Patkós, C.; Kovács, E.; Tóth, T.; Mester, T.; Szabó, L. Assessing the public knowledge structure towards renewable energy sources in Hungary. Int. J. Renew. Energy Res. 2020, 10, 1476–1487. [Google Scholar] [CrossRef]
- Dőry, Z.M.; Dőry, I. Megújuló energiaforrások háztartási méretű alkalmazásának kutatási és gyakorlati tapasztalatai. Acta Period. 2021, 22, 4–17. [Google Scholar] [CrossRef]
- Törőcsik, M.; Jakopánecz, E.; Németh, P.; Szűcs, K. Megújuló energiaforrások elfogadottsága a magyar felnőtt lakosság körében. Mark. És Menedzsment 2014, 48, 89–101. [Google Scholar]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Rao, C.K.; Sahoo, S.K.; Yanine, F.F. A literature review on an IoT-based intelligent smart energy management systems for PV power generation. Hybrid Adv. 2024, 5, 100136. [Google Scholar] [CrossRef]
- Csontos, C.; Soha, T.; Harmat, Á.; Campos, J.; Csüllög, G.; Munkácsy, B. Spatial analysis of renewable-based hybrid district heating possibilities in a Hungarian rural area. Int. J. Sustain. Energy Plan. Manag. 2020, 27, 17–36. [Google Scholar] [CrossRef]
- Yarashynskaya, A.; Prus, P. Smart Energy for a Smart City: A Review of Polish Urban Development Plans. Energies 2022, 15, 8676. [Google Scholar] [CrossRef]
- Kousky, C.; Schneider, S.H. Global climate policy: Will cities lead the way? Clim. Policy 2003, 3, 359–372. [Google Scholar] [CrossRef]
- Corsini, F.; Certomà, C.; Dyer, M.; Frey, M. Participatory energy: Research, imaginaries and practices on people’ contribute to energy systems in the smart city. Technol. Forecast. Soc. Chang. 2018, 142, 322–332. [Google Scholar] [CrossRef]
- Villa-Arrieta, M.; Sumper, A. Contribution of smart cities to the energy sustainability of the binomial between city and country. Appl. Sci. 2019, 9, 3247. [Google Scholar] [CrossRef]
- Pandiyan, P.; Saravanan, S.; Usha, K.; Kannadasan, R.; Alsharif, M.H.; Kim, M.-K. Technological advancements toward smart energy management in smart cities. Energy Rep. 2023, 10, 648–677. [Google Scholar] [CrossRef]
- Toth, A.N. Creating a geothermal atlas of Hungary. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 13–15 February 2017; Volume 424, pp. 380–386. [Google Scholar]
- Carpaneto, E.; Lazzeroni, P.; Repetto, M. Optimal integration of solar energy in a district heating network. Renew. Energy 2015, 75, 714–721. [Google Scholar] [CrossRef]
- Soloha, R.; Pakere, I.; Blumberga, D. Solar energy use in district heating systems. A case study in Latvia. Energy 2017, 137, 586–594. [Google Scholar] [CrossRef]
- Menapace, A.; Thellufsen, J.Z.; Pernigotto, G.; Roberti, F.; Gasparella, A.; Righetti, M.; Baratieri, M.; Lund, H. The design of 100% renewable smart urban energy systems: The case of Bozen-Bolzano. Energy 2020, 207, 118198. [Google Scholar] [CrossRef]
- Ram, M.; Gulagi, A.; Aghahosseini, A.; Bogdanov, D.; Breyer, C. Energy transition in megacities towards 100% renewable energy: A case for Delhi. Renew. Energy 2022, 195, 578–589. [Google Scholar] [CrossRef]
- Dadkhah, M.; Bujdosó, Z.; Dávid, L.D. Transitioning from net-zero to climate-positive supply chains. Oecon. Copernic. 2024, 15, 359–366. [Google Scholar] [CrossRef]
Renewable Energy Source | Solar Energy | Geothermal Energy | Biomass | Wind Energy |
---|---|---|---|---|
Way of extracting or producing energy | Solar panel, Solar collector | Geothermal well, Heat pump | Boiler, During a chemical process | Wind turbine |
Possibilities of energy use | Production of electricity, Heating and cooling, Production of hot water | Production of electricity, Heating and cooling, Food-drying, Heating of liquids (ex. production of hot water), Bathing, Production of biogas, Breeding of aquatic animal species, Food preservation | Production of electricity, Heating, forage, Industrial raw material | Production of electricity |
Energy use in Miskolc | Supplementing and supplying electric energy, heating-cooling and hot water needs of family houses. Supplementing and supplying electric energy to public institutions and businesses, heating-cooling. | Cooling and heating of family houses with a heat pump. Heating of housing estates and hot water supply using a geothermal well. Ensuring the water needs of wellness and beach baths. Heating of greenhouses. | Heating of housing estates. | - |
Share of electricity produced from renewable energy sources in EU-27 [%], (2022) | 18.2 | 0.2 | 6.9 | 37.5 |
Share of electricity produced from renewable energy sources in Hungary [%], (2022) | 61.8 | 0.1 | 22.1 | 8.0 |
Use of primary renewable energy sources by energy source in Hungary [PJ], (2022) | 17.7 | 6.9 | 88.6 | 2.2 |
Electricity production in Hungary [GWh], (2022) | 4732 | 4 | 1693 | 610 |
Heat production in Hungary [TJ], (2022) | 0 | 3133 | 3898 | 0 |
Purchased/ Produced | Purchased | Produced | ||||||
---|---|---|---|---|---|---|---|---|
Primary Energy Source | Natural Gas | Geo-Thermal | Natural Gas | Wood Chips | Biogas | |||
Technology | Boiler | Gas engine | Gas turbine | Boiler | Gas engine | |||
ei: | 1.12 | 0.55 | 0.54 | 0 | 1.12 | 0.6 | 0.6 | 0.432 |
αi: | 0.1095 | 0.0053 | 0.2850 | 0.5840 | 0.0163 | 0.0000 | 0.0000 | 0.0000 |
h: | 0.15 | |||||||
eelectr: | 2.5 | |||||||
αelectr: | 0.006 |
Purchased/ Produced | Purchased | Produced | ||||||
---|---|---|---|---|---|---|---|---|
Primary Energy Source | Natural Gas | Geo-Thermal | Natural Gas | Wood Chips | Biogas | |||
Technology | Boiler | Gas engine | Gas turbine | Boiler | Gas engine | |||
αi: | 0.1095 | 0.0053 | 0.2850 | 0.5840 | 0.0163 | 0.0000 | 0.0000 | 0.0000 |
eSUS,i: | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
αelectr: | 0.006 | |||||||
eSUS,electr: | 0.1 |
Ranking & City Name | Number of Apartments Connected to District Heating | Proportion (%) of Apartments Connected to District Heating | Amount of Heat Energy Supplied (GJ) |
---|---|---|---|
1. Budapest | 240,777 | 25.0 | 7,503,213 |
2. Debrecen | 31,928 | 31.9 | 841,739 |
3. Miskolc | 31,547 | 39.9 | 962,229 |
4. Pécs | 31,309 | 42.2 | 774,833 |
5. Szeged | 27,647 | 31.3 | 764,173 |
6. Győr | 26,081 | 40.7 | 703,721 |
7. Tatabánya | 22,662 | 72.1 | 720,604 |
8. Székesfehérvár | 21,877 | 45.3 | 517,798 |
9. Dunaújváros | 19,088 | 82.8 | 495,485 |
10. Nyíregyháza | 16,629 | 31.0 | 424,839 |
Source of Heat Production | Type of Heat Generation | 2014 | 2022 |
---|---|---|---|
Renewable | Geothermal energy (purchased) | 45.808% | 51.873% |
Biomass boiler (purchased, 2014/own, 2022) | 2.908% | 2.674% | |
Biogas boiler (own) | 0.004% | 0.134% | |
Biogas engine (own) | 0.396% | 0.000% | |
Fossil | Gas boiler (own) | 12.126% | 11.843% |
Gas boiler (purchased) | 24.968% | 11.531% | |
Gas engine power plant (purchased) | 13.669% | 3.290% | |
Combined cycle gas turbine power plant (purchased) | 0.122% | 18.656% | |
Total | 100.000% | 100.000% |
Name of District Heating System | Amount of Primary Energy (MWh) | Primary Energy Conversion Factor (edistrict heating) | Share of Renewable Energy (%) | The Source of Renewable Energy |
---|---|---|---|---|
Avas area | 165,610 | 0.3634 | 65.09 | geothermal |
Downtown area | 165,462 | 0.3678 | 58.11 | geothermal |
Diósgyőr Heating plant | 31,542 | 1.0864 | 0.08 | - |
Bulgárföld Heating plant | 14,628 | 1.3500 | 0.11 | - |
Kilián-South Boiler House | 12,741 | 0.8427 | 82.13 | wood chips |
Boiler house of the cement factory in Hejőcsaba | 3227 | 1.3500 | 16.29 | biogas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greutter-Gregus, É.; Koncz, G.; Némedi-Kollár, K. Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City. Energies 2024, 17, 5498. https://doi.org/10.3390/en17215498
Greutter-Gregus É, Koncz G, Némedi-Kollár K. Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City. Energies. 2024; 17(21):5498. https://doi.org/10.3390/en17215498
Chicago/Turabian StyleGreutter-Gregus, Éva, Gábor Koncz, and Kitti Némedi-Kollár. 2024. "Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City" Energies 17, no. 21: 5498. https://doi.org/10.3390/en17215498
APA StyleGreutter-Gregus, É., Koncz, G., & Némedi-Kollár, K. (2024). Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City. Energies, 17(21), 5498. https://doi.org/10.3390/en17215498