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Abstract: The Cool Roof concept, known for its efficiency in summer due to high temperatures during
this period, employs a light coating that covers the roof to prevent the absorption of heat and maintain
lower indoor temperatures. This study integrates a chemical component with biomaterials to enhance
performance and reduce CO2 emissions. The composition investigated in this research is recognized
for its durability and ability to lower outside temperatures, thereby mitigating the urban heat island
effect. This experimental study evaluates the sustainability of CoolRoofs in a cold room located in
Signes, France. Temperature measurements are conducted from 25 September 2023 to 27 July 2024,
both with and without the coating, to assess energy performance and CO2 emissions. The selection
of the building type ensures optimal performance in both summer and winter. Results show that
the maximum outside and inside surface temperatures for a Cool Roof are 48.7 ◦C and 25.6 ◦C,
respectively, compared to 72.9 ◦C and 32.2 ◦C for an uncoated roof. Additionally, implementing a
CoolRoof reduces thermal load through the cold room by 56%, while CO2 emissions can be reduced
by up to 27.31 kg CO2/m2 over a 20-year period. This study presents a solution for enhancing energy
and environmental performance year-round using a resilient composite.

Keywords: CoolRoof; coating; energy performance; thermal performance; CO2 emissions

1. Introduction

Rising global temperatures due to greenhouse gas emissions pose a significant chal-
lenge. The Intergovernmental Panel on Climate Change (IPCC) [1] predicts that even if
greenhouse gas emissions are reduced by 50% by 2030, global temperatures could still
exceed 1.5 ◦C between 2021 and 2040. This warming trend has a direct impact on buildings.
Nearly half of a building’s energy consumption is dedicated to maintaining a comfortable
indoor temperature, underscoring the critical importance of enhancing building perfor-
mance [2].

Among building components, the roof accounts for 5–10% of total building energy
consumption and over 40% of electricity usage in upper-level constructions [3]. Due to its
direct exposure to sun radiation, the roof’s external surface temperature rises by 50–70 ◦C,
raising the indoor temperature [4]. This is why prioritizing the reduction in cooling loads is
crucial, across passive solutions that serve to decrease energy usage and enhance the indoor
comfort levels. Within these passive solutions for summer, shading, natural ventilation,
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and Cool Roofs can be found [5]. Cool Roofs are known for their ability to reflect sunlight
and rapidly release absorbed heat as infrared radiation. This is due to their high solar
reflectance and high infrared emittance, respectively. These properties work together to
decrease heat transfer to the building [6].

Bozonnet et al. [7] suggest that research in France prioritizes improving building
envelope insulation for winter energy performance. Cool Roof techniques, which could
offer a solution for summer conditions, are not yet widely adopted. Macintyre et al. [8]
found that 20 to 70% of energy savings could be attributed to increasing the roof’s albedo.
While Synnefa et al. [9] established that increasing the solar reflectance of the roof lead to a
decreasing in cooling load 18–93%. Piselli et al. [2] explored that the optimal typology of
the roof is increasing the solar reflectance and decreasing the insulation thickness except
for extreme climate. The main findings extracted from reviewed papers on Cool Roof
studies are presented in Table 1. Several studies have investigated integration of material to
improve the Cool Roof system such as the PCM [10–12], Thermochromic Cool Roof [13,14],
and recycled material such as waste glass [15]. Challenges in evaluating Cool Roofs
include accounting for factors like coating material resilience, sunlight reflection, and
outdoor thermal comfort, with existing frameworks falling short of fully capturing their
performance. Challenges of Urban Scale Simulations also contribute to the difficulty of
evaluating Cool Roof effectiveness at the city level [16].

Table 1. Overview of analyzed Cool Roof technologies.

Location Type of Building CoolRoof Type Specification and
Reflectivity Conclusion Reference

Seoul, Korea - PCM CoolRoof
System

Phase Change Material
with Wood–Plastic
Composite

5.7 ◦C reduction in summer
peak surface temperature [10]

Athens Residential
Thermochromic
Dye-Based Roof
Coating

Roof with
Uroo f = 3 w/m2K

17.13% reduction in energy
consumption compared to
the Baseline Scenario

[13]

- - Recycled Waste Glass
Coated Roof Tile

Lead silica waste glass
derived mainly from
cathode ray tube of
television sets

Increased normal solar
reflectance by 47.5% (flat
tiles) and 27% (curved tiles)

[15]

India - CoolRoof Tile

Metakaolin (Chinese
clay), Expanded
polystyrene sheet,
Sodium Silicate, Coating
Material

Exterior: 8 ◦C reduction,
Interior: 12 ◦C reduction
during daytime

[17]

Central Italy Residential
(traditional) Cool Clay Tile

Thermal Emissivity:
0.89Solar Reflectance:
0.77

Up to 4.7 ◦C reduction in
summer peak indoor
temperature

[18]

Barcelona Palermo,
Cairo Residential building Thermochromic

CoolRoof Static CoolRoof: 0.75

Annual energy savings up
to 8.5% compared to
CoolRoof, and 19%
compared to conventional
roof

[19]

New York City Apartment Super CoolRoofing
materials

Albedo > 0.95 Emissivity
> 0.95

Reduction in outdoor air
temperature of 0.85 K [20]

Wuhan, China Ventilation roof
(SPCM)

The roof design
incorporates
ventilation features
with shape-stabilized
phase change
material

30 mm thickness, phase
change.
Temperature: 36–38 ◦C.
Night ventilation
(v = 3 m/s)

The incorporation of the
PCM reduced peak indoor
air temperatures by 2.9 ◦C
the cumulative cooling load
decreased by 19.2% without
night ventilation and by
22.9% with night
ventilation

[21]

This research aims to assess the energy and environmental performance of a novel
material, including a portion of biomaterial, as a CoolRoof coating through an experimental
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study. The objective is to implement this solution in cold rooms to ensure optimal perfor-
mance throughout both summer and winter, given the imperative for low temperatures
indoors. By enhancing the reflectivity and emittance of the CoolRoof, reductions in both in-
door and outdoor temperatures are anticipated, thereby achieving energy consumption and
CO2 emission reductions, along with mitigating the urban heat island effect. Additionally,
this study will explore coating materials with long-term durability.

2. Materials and Methods
2.1. Theoretical Approach: Understanding the Impact of Heat Transfer Modes and Cool Roof
Characteristics on Energy Performance and Thermal Stability

To comprehensively analyze the Cool Roof system, it is essential to grasp the intricacies
of solar radiation and the influence of heat transfer modes, as well as the characteristics of
CoolRoofs on energy performance and thermal Stability.

Before delving into the direct impact on the roof, understanding the significance of
solar energy is paramount. Solar radiation, emitted by the sun encompasses a broad spectral
range. This range is divided into three categories: ultraviolet (λ < 400 nm), accounting for
6%; visible (400 < λ < 700 nm), representing 48%; and infrared (λ > 700 nm), comprising
46% [22]. Notably, visible and infrared radiation contribute significantly to solar reflectance.
While solar radiation serves as a substantial heat source, its interaction with the roof
warrants careful examination to understand the thermal performance effectively. Irradiation
stands as a fundamental mode of heat transfer, intricately tied to the roof’s interaction
with solar energy. Within this process, electromagnetic waves from the sun radiate onto
the roof’s surface. Subsequently, the roof reflects a portion of this solar radiation into
the sky while some is absorbed by the roof, this portion stored is emitted as infrared
radiation [23]. Convection, another critical mechanism, unfolds as heat transfer occurs
through the movement of air. Around the roof’s surface, this mode facilitates the exchange
of heat between the roof surface and the external air, it is dependent on surrounding air
temperature and wind speed, driven by the temperature gradient between the external
air and the surface [24]. While conduction operates as heat transfer transpires through the
roof’s material itself. In this process, thermal energy propagates through the solid structure
of the roof, moving from areas of higher temperature to regions of lower temperature.
This mechanism governs the transmission of heat through the roof’s layers, influencing its
overall thermal behavior. Figure 1 presents an overview of these mechanisms.
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Figure 1. Representation of the different terms in the thermal balance of a roof.

The CoolRoof is recognized for its solar reflectance and infrared emissivity. Solar
reflectance indicates the proportion of incident solar energy that a surface reflects, ranging
from 0 for darker surfaces to 1 for cooler surfaces, while thermal emissivity, ranging from
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0 to 1, measures the capacity of a warm or hot material to release heat through infrared
radiation. These two parameters allow us to assess the surface’s ability to avoid absorbing
solar heat using the solar reflectance index (SRI) [25]. The SRI scale ranges from 0 to 100.
Standard white has an SRI value of 100, with reflectance and emittance values of 0.80 and
0.90, respectively. In contrast, standard black has an SRI value of 0, with reflectance and
emittance values also at 0.05 and 0.90, respectively [26]. The SRI is calculated according to
ASTM standard E1980-01 [27] through (1):

SRI = 100 · (Tsb − Tse)

(Tsb − Tsw)
(1)

The thermal balance equation of the roof is utilized to examine how both solar re-
flectance and infrared emissivity influence heat transfer modes.

Tse − Ti
Ri_se

= (1 − r).I −
[
σε
(

T4
se − T4

sky

)
+ hc.(TSe − To)

]
(2)

Equation (2) represents the energy balance for the roof. This equation illustrates
the relationship between indoor and outdoor conditions, roof characteristics, and most
importantly, the role of the external layer of the roof. This layer contains both values, such
as the solar reflectance (r) and the thermal emittance (ε) [28].

While external properties like temperature and radiation cannot be modified, the qual-
ity of the materials employed in the roof and its external layer can be controlled. For a Cool-
Roof, this layer typically boasts higher solar reflectance and thermal emittance compared
to a traditional roof. Consequently, this contributes to a cooler surface temperature [23].

According to Akbari et al. [29], decreasing the emissivity of the external roof layer during
summer days leads to higher surface temperatures and increased cooling energy consumption.
When comparing CoolRoofs to dark roofs, it becomes evident that CoolRoofs, due to their
light color and reflective nature, effectively reduce energy costs by minimizing heat absorp-
tion. In contrast, dark roofs absorb more heat, leading to higher energy consumption for
cooling. This difference results in CoolRoofs maintaining lower surface temperatures and
contributing to reduced cooling energy usage. Additionally CoolRoofs offer environmental
benefits such as lower CO2 emissions, and help mitigate the urban heat island effect by
lowering temperatures in urban areas. Thus, CoolRoofs not only enhance energy efficiency
but also promote thermal stability, reduce urban heat island effects, and provide significant
environmental advantages.

2.2. Case Study

This study, explores the utilization of environmentally friendly building materials
for the CoolRoof coating, ensuring improvements in energy performance while reducing
CO2 emissions, as indicated by Figure 2. To achieve the study goal, several steps will
be undertaken. First, the CoolRoof coating will be experimentally applied to a building.
Next, the temperature of the building will be assessed both before and after the application
of the CoolRoof coating. Following this, degree-hours of deviation will be calculated to
evaluate thermal comfort. Moreover, heat loss will be quantified with and without altering
the thermal resistance of the roof. Finally, CO2 emissions associated with the building’s
operation will be computed.

The effectiveness of an innovative coating for CoolRoof installations was investigated
in an experimental study to estimate the potential gains in thermal stability, energy effi-
ciency, and environmental performance. This coating is examined for industrial buildings,
especially cold rooms, to ensure significant reduction in energy consumption. Cold rooms
require consistent low temperatures year-round; thus, the CoolRoof coating will help
achieve this goal.
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The research was focus on the application of CoolRoof on 3770 m2 of roofing in a
cold room, which is 71.9 m long and 50.07 m wide as shown in Figure 3, with an indoor
temperature to maintain of +4 ◦C for chilled rooms and −18 ◦C for freezer rooms. The
components of each element of the cold room are represented in Table 2.

Table 2. Material composition and thermal properties of cold room roof.

Element Material Thickness [m] Thermal Conductivity
[W/mK]

Roof

CoolRoof coating 0.01 0.23

Bituminous membrane 0.03 0.17

Plenum 0.02 1.06

Sandwich panel 0.06 0.04
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This research explores a novel CoolRoof coating that incorporates materials from two
distinct categories, the basecoat and the topcoat as illustrated in Figure 4. The basecoat
ensures the coating’s thermo-reflective properties and adhesion to the substrate using
oyster shell powder material, and the topcoat ensures that the thermo-reflective properties
are maintained over time through the anti-UV and anti-fouling protective layer using
polyvinylidene fluoride polymer. This CoolRoof coating exhibits exceptional thermo-
reflective properties, reflecting a remarkable 90% of solar radiation, which means that only
10% is absorbed and 90% of absorbed radiation is re-emitted in the far infrared range,
resulting in an SRI of 113.
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The application of CoolRoof depends on the surface texture: for highly rough or
porous surfaces, it requires two basecoats and one topcoat with higher material quantities;
for moderately rough surfaces, fewer materials are needed. For this study, a bituminous
membrane and sandwich panel were used, necessitating the application of 2 coats of
300 g/m2 basecoat followed by 1 coat of 150 g/m2 topcoat.

Bretz and Akbari [30] discovered in their examination of various coatings with different
albedo levels (high albedo) that the performance degradation of the coating’s albedo
occurred within the initial year of application. Furthermore, within the initial two-month
period, one roof experienced a 70% decline in albedo, constituting the entirety of the albedo
drop for the first year. On the other hand, this research emphasizes the durability of the
material used, particularly in the topcoat, which is designed to be highly resilient. The
lifetime of the CoolRoof coating is projected to maintain its performance over a span of
20 years. Notably, the degradation process takes approximately 14 years for the solar
reflectance to decrease from 0.8 to 0.75. Additionally, it offers durable resistance to various
factors including UV radiation, mold and fungi, chemical agents, and soiling.

The cold room is located in Signes, France, when studying the performance of Cool-
Roof in this location, it is crucial to consider the Outdoor air temperature variations, as
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illustrated in Figure 5 in July experiences the highest temperatures, reaching 35.1 ◦C. Con-
versely, January records the lowest temperatures, dipping to −1.3 ◦C. These high tempera-
tures in summer necessitate high energy consumption for cooling to maintain low indoor
temperatures for the cold room. During the summer months, not only does the temperature
rise significantly, but there is also an increase in solar irradiance as shown in Figure 6, which
serves as a significant source of heat, reaching a maximum of 1033 W/m2/h.
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For the experimental part, the analysis includes real data from 25 September 2023 to
27 July 2024. Additionally, 8 temperature sensors are deployed on the site of the building to
measure the ambient and surface temperatures on both side of the roof inside and outside
temperatures. The measurement points are illustrated in Figure 7, and measurements are
taken in both painted and unpainted areas each covering 50% of the surface.
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An Internet of Things (IoT) network is deployed to take these measurements at differ-
ent points in the building and transfer them. This network is illustrated in Figure 8. The
sensors communicate their measurements via a LoraWAN network (radio communication
protocol) to a Gateway located in the building. This Gateway retransmits the measurements
to a server via 3G communication. The measurements are stored on this server.
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Figure 8. Typical IoT network for measurement.

3. Results and Discussion

This section presents the results of a study investigating the effectiveness of CoolRoofs
in reducing thermal load, decreasing surface temperature, improving energy efficiency, and
reducing CO2 gas emissions, through measuring ambient, external and internal surface
temperatures over 10 months. Additionally, the impact of CoolRoofs on thermal stability,
energy consumption, and environmental factors was evaluated.

3.1. Thermal Performance and Thermal Stability

The temperature was evaluated through two configurations: a reference configuration
without coating and the configuration with CoolRoof. The external surface temperature
was measured from 25 September 2023 to 27 July 2024. As shown in Figure 9, it can be
seen that temperature differences between a roof without CoolRoof coating and a roof with
CoolRoof coating can reach a maximum of 50 ◦C, for an average of 10 ◦C during the day.
As for the indoor temperature, as displayed in Figure 10, temperature differences can reach
a maximum of 14.8 ◦C, with an average of 7.9 ◦C during the day.
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Figure 9. Measured external surface temperature variation in the roof.
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Figure 10. Measured indoor ambient temperature variations in the roof.

Comparing the two configurations, integrating the CoolRoof coating significantly
reduces both indoor and external surface temperatures, leading to lower temperature gains,
as illustrated in Figure 11. A more in-depth analysis of the graph reveals that the gains are
more significant in winter than in summer. This is due to the low thermal resistance of the
wall and floor, which means that the roof becomes an effective cooling vector due to its
reduced thermal diffusivity.

Energies 2024, 17, x FOR PEER REVIEW 10 of 15 
 

 

Figure 9. Measured external surface temperature variation in the roof. 

 
Figure 10. Measured indoor ambient temperature variations in the roof. 

Comparing the two configurations, integrating the CoolRoof coating significantly re-
duces both indoor and external surface temperatures, leading to lower temperature gains, 
as illustrated in Figure 11. A more in-depth analysis of the graph reveals that the gains are 
more significant in winter than in summer. This is due to the low thermal resistance of the 
wall and floor, which means that the roof becomes an effective cooling vector due to its 
reduced thermal diffusivity. 

 
Figure 11. Indoor ambient temperature differences of the roof. 

In a cold room, products are stored at specific temperature conditions. Therefore, it 
is necessary to calculate degree-hours of deviation through accumulating the temperature 
differences between the outdoor temperature and a predefined storage temperature over 
a given period. This calculation allows for an assessment of the severity of temperature 
deviations and their impact on refrigeration demand. In this case, the target temperature 
is +4 °C for chilled rooms and −18 °C for freezer rooms. 

Figure 12 highlights the significant gains in degree-hours of deviation achieved 
through the implementation of the CoolRoof solution. This improvement translates into a 
20% and 32% reduction in degree-hours of deviation for freezer rooms and chilled rooms, 
respectively. 

0

5

10

15

20

25

30

35
25

/0
9

18
/1

0
27

/1
0

04
/1

1
12

/1
1

20
/1

1
28

/1
1

06
/1

2
15

/1
2

23
/1

2
31

/1
2

08
/0

1
16

/0
1

24
/0

1
01

/0
2

09
/0

2
17

/0
2

26
/0

2
05

/0
3

13
/0

3
21

/0
3

29
/0

3
06

/0
4

14
/0

4
23

/0
4

01
/0

5
09

/0
5

17
/0

5
25

/0
5

03
/0

6
11

/0
6

19
/0

6
27

/0
6

05
/0

7
13

/0
7

21
/0

7

Te
m

pe
ra

tu
re

 [°
C]

Date

Indoor ambient temperature unpainted roof Indoor ambient temperature painted roof

2

4

6

8

10

12

14

16

25
/0

9
19

/1
0

27
/1

0
04

/1
1

13
/1

1
21

/1
1

30
/1

1
08

/1
2

17
/1

2
25

/1
2

02
/0

1
11

/0
1

19
/0

1
28

/0
1

05
/0

2
13

/0
2

22
/0

2
01

/0
3

09
/0

3
18

/0
3

26
/0

3
04

/0
4

12
/0

4
20

/0
4

29
/0

4
07

/0
5

15
/0

5
24

/0
5

02
/0

6
10

/0
6

18
/0

6
27

/0
6

05
/0

7
13

/0
7

22
/0

7

Te
m

pe
ra

tu
re

 [°
C]

Date

Figure 11. Indoor ambient temperature differences of the roof.

In a cold room, products are stored at specific temperature conditions. Therefore, it is
necessary to calculate degree-hours of deviation through accumulating the temperature
differences between the outdoor temperature and a predefined storage temperature over
a given period. This calculation allows for an assessment of the severity of temperature
deviations and their impact on refrigeration demand. In this case, the target temperature is
+4 ◦C for chilled rooms and −18 ◦C for freezer rooms.

Figure 12 highlights the significant gains in degree-hours of deviation achieved
through the implementation of the CoolRoof solution. This improvement translates into
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a 20% and 32% reduction in degree-hours of deviation for freezer rooms and chilled
rooms, respectively.
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Figure 12. Annual degree-hours of deviation gains: (a) degree-hours of deviation (TC = +4 ◦C);
(b) degree-hours of deviation (TC = −18 ◦C).

3.2. Energy and Environmental Performance

The application of the CoolRoof solution has a positive impact on energy and envi-
ronment. From the perspective of energy efficiency, the use of this solution reduces the
demand for refrigeration, thereby improving the energy efficiency of cold rooms. From
an environmental standpoint, lower energy consumption leads to a reduction in green-
house gas emissions, contributing to the reduction in the carbon footprint of facilities. This
holistic approach reinforces the positive impact of the CoolRoof solution on all facets of
building performance.

Applying the CoolRoof coating to the roof has a significant impact on thermal loads in
the cold room. The CoolRoof solution achieves a notable reduction in thermal loads through
the roof over the course of a year, as depicted in Figure 13. This reduction amounts to 56%,
representing a decrease from 100.8 kWh/m2/year to 43.9 kWh/m2/year for configurations
without and with CoolRoof, respectively.
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Figure 13. Predicted thermal loads without and with CoolRoof in kWh.

To generalize the results of energy savings, this study was analyzed across differ-
ent roof thermal resistances. Figure 14 illustrate the variability of energy saved in ac-
cordance with roof thermal resistance. This representation highlights the considerable
amplitude of the electricity consumption saved, ranging according to scenario number
from 1 (uninsulated roof) to 5 (very well insulated roof). Increasing the thermal resistance
leads to a decrease in energy saved. These gains in electrical energy consumption can reach
20.32 kWh/m2/year.
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Figure 14. Electrical consumption reduced based on roof thermal resistance.

Figure 15 illustrates the variability of CO2 emissions reduction over 20 years according
to the thermal resistance of the roof. This representation highlights the considerable range
of CO2 emissions reduction, varying the thermal resistance between 1 (uninsulated roof)
and 5 (very well-insulated roof). In view of the temperature differences recorded by the
sensors, it would seem that the roof has a lower thermal resistance, thus reflecting a
potential reduction in the carbon footprint, rather than a higher resistance. This reduction
can reach 27.31 kg CO2/m2 over a period of 20 years.
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search could explore the examination of this solution in other climate zones as well to 
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Figure 15. CO2 emissions reduced over 20 years based on roof thermal resistance.

4. Conclusions

During summer, the top floor, which is more exposed to external conditions through
both the walls and roof, experiences increased heat transfer. Therefore, the CoolRoof
coating is a conventional approach to reduce cooling energy consumption by lowering
the temperature inside the building, through reducing the absorption of heat. This study
expands on previous research by addressing key aspects of CoolRoof systems, which have
typically focused on integrating materials like PCMs, thermochromic coatings, and recycled
materials. It highlights the challenges in evaluating CoolRoof performance, such as coating
resilience and its impact on outdoor thermal comfort, particularly at the urban scale. This
study emphasizes the CoolRoof’s high solar reflectance and thermal emittance, its role
in regulating temperatures, reducing CO2 emissions, mitigating the urban heat island
effect, and improving energy efficiency. It also focuses on the durability of the coating
materials, which extend the roof’s lifespan. This study utilized a combination of chemical
and ecological materials, specifically oyster shell powder and polyvinylidene fluoride
polymer, to achieve both the thermo-reflective properties and durability of the coating.
Conducted in Signes, France, the research examined how the local climate influences the
performance of these materials. To assess their effectiveness throughout the year, this study
was carried out in a cold room, enabling a thorough evaluation of performance during both
summer and winter months. The results demonstrated a significant difference in indoor
temperatures between roofs with the coating and those without, with an average of 7.9 ◦C
and a maximum of 14.8 ◦C, highlighting the positive impact of this solution on the thermal
management of CoolRoofs. The results also show significant electricity savings, which can
reach 20.32 kWh/m2/year. In-depth analysis of the data highlights the environmental ben-
efits, with a potential reduction in the carbon footprint of 27.31 kg CO2/m2 over 20 years.
The application of CoolRoof coating emerged as an effective solution for improving the
energy and environmental performance of cold rooms, paving the way for more sustainable
and profitable management of these critical spaces. Further research could explore the
examination of this solution in other climate zones as well to optimize performance and
cost-effectiveness.
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Nomenclature

ϕcond Conducted heat flux
ϕabsor Absorbed solar heat flux
ϕrad Radiative heat flux
ϕconv Convective heat flux
Tsi Internal surface temperature
Tse External surface temperature
Ti Indoor temperature
Tsky Sky temperature
TC Consign temperature
To Ambient temperature
Tsb the temperature of the reference black surface
Tsw the temperature of the reference white surface
ε Emissivity
σ Stefan–Boltzmann constant
I Solar irradiance
r Reflectivity
hc Convective heat transfer coefficient
Ri_se Thermal resistance between the interior and the surface
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