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Abstract: To address the issue of uncertainty in the occurrence time of voltage sags in power grids,
which affects power quality, a voltage state prediction method based on LSTM neural networks is
proposed for predicting voltage states. For the problem of quickly and accurately compensating for
voltage sags, a DVR system based on a new approach law of sliding mode variable structure control
is proposed, which significantly reduces chattering, improves response speed, and enhances the
robustness of the system. The stability of the system is proven based on Lyapunov stability theory.
Simulation experiments are conducted to analyze the voltage state prediction effect based on the
LSTM neural network and the compensation effect of the novel reaching law of sliding mode variable
structure control under different levels of voltage sag, validating the effectiveness and correctness of
the proposed solution.

Keywords: DVR (dynamic voltage restorer); voltage sag; LSTM neural network; sliding mode control;
novel reaching law

1. Introduction

With the advancement of technology and the development of society, there is an
increasing demand for electrical energy across various sectors, accompanied by a higher
expectation for the quality of electrical power from consumers [1,2]. Electrical power quality
encompasses phenomena such as surges, flickers, harmonics, and voltage sags (also known
as voltage dips), among which voltage sags occur the most frequently [3–5]. Dynamic
voltage restorers (DVRs) have the capability to compensate for both the magnitude and
phase of voltage sags, making them the most economically effective power equipment
for addressing voltage sag issues [6–9]. Furthermore, with the increasing utilization of
large-scale grid-connected wind power generation, the low-voltage ride-through capability
of wind power generation has received more attention, and DVRs, as voltage compensation
devices, have found widespread application in this field as well [10,11].

Currently, research on dynamic voltage restorers (DVRs) primarily focuses on volt-
age detection algorithms, topology structures, control algorithms, and so forth [12–16].
The compensation performance of DVR systems mainly depends on their control sys-
tems [17,18]. Among the various control strategies studied, prevalent ones include feed-
forward control, feedback control, dual feedforward combined with feedback control,
H-infinity control [19–22], fuzzy control, artificial neural network control, and other meth-
ods [23,24]. Each of these control methods has its own advantages and disadvantages
concerning steady-state error, dynamic response, robustness, adaptability to changes in
control and hardware, and practicality.

In [1], a detailed overview of power quality analysis and control technologies for
the smart grid is provided, emphasizing the potential of new technologies in addressing
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power quality challenges. It is shown in [2] that the use of custom power devices can
significantly reduce voltage sags and momentary interruptions, thereby improving overall
power quality. Similarly, the implementation of a dynamic voltage restorer (DVR) in an
off-grid hybrid renewable energy system enhances both power quality and system stability,
as demonstrated in [3]. The role of custom power devices in mitigating power quality issues
within distributed generation systems is explored in [4], highlighting their importance in
improving system reliability and stability. Moreover, the application of a battery-based DVR
in grid-integrated PV systems has been shown to effectively reduce voltage fluctuations
and harmonics, improving voltage quality, as discussed in [5].

In the context of wind turbine systems, [6] presents the design of parallel powertrains,
which are shown to enhance system availability and reliability, particularly in high-demand
environments. The zero active power tracking technique, explored in [7], significantly en-
hances the performance of DVRs by improving their voltage sag compensation capabilities.
Further, the integration of an isolated H-bridge DC-DC converter into a transformerless
DVR system, as outlined in [8], results in substantial improvements in power quality
by mitigating voltage disturbances. A comprehensive review of DVR topologies, power
converters, and control methods is provided in [9], summarizing their applications and
contributions to enhancing power quality.

The fault ride-through capability of grid-connected PV systems can be improved using
DVRs, as demonstrated in [10], where system stability under fault conditions is significantly
enhanced. Similarly, in [11], the integration of battery and superconducting magnetic
energy storage (SMES) with DVRs substantially improves the voltage sag performance
of grid-connected hybrid PV–wind power systems. A conventional three-wire DVR is
shown in [12] to effectively attenuate zero-sequence voltage, further improving power
quality. In [13], the power quality of grid-connected photovoltaic systems under partial
shading conditions is addressed using a Trans-z-source inverter. A linearly decoupled
control method for DVRs without energy storage is proposed in [14], which improves
power quality while simplifying the control system design.

Reviews of DVR technology, such as the one in [15], trace its development and ap-
plications, suggesting future research directions for enhancing power quality. The high-
frequency link cycloconverter-based DVR proposed in [16] is effective in mitigating voltage
sags and improving power quality. The fault ride-through capability of grid-connected
systems using a Third-Harmonic Injection Pulse Width Modulation (THIPWM)-fired Five-
Level Diode Clamped Multilevel Inverter (DCMLI)-based Doubly Fed Induction Generator
(DFIG) is enhanced through the use of DVRs, as explored in [17]. In [18], a robust control de-
sign using quantitative feedback theory is proposed for multi-functional DVRs, improving
both power quality and system robustness.

Further advancements in DVR control systems are discussed in [19], where high-
performance stationary-frame controllers are compared, revealing significant enhance-
ments in voltage recovery capabilities. Similarly, the use of flying capacitor multilevel
converters operated by repetitive control in DVR applications, as discussed in [20], leads to
notable improvements in voltage quality. The integration of fuzzy neural and neuro-fuzzy
controllers in DVR systems, as explored in [21,22], results in significant improvements in
power quality, particularly when dealing with nonlinear loads.

Sliding mode control is introduced in [23] for its effectiveness in improving the ro-
bustness and disturbance rejection capabilities of electromechanical systems. In [24], a
three-phase DVR utilizing sliding mode control and an adaptive notch filter is shown to
protect sensitive loads and enhance power quality. Furthermore, the study in [25] proposes
time-varying and constant switching frequency-based sliding mode control methods for
transformerless DVRs employing half-bridge voltage source inverters (VSIs), significantly
improving voltage control performance.

The model predictive control of packed U cells in transformerless single-phase DVRs,
as presented in [26], proves effective in compensating for voltage sags. A series-side three-
phase decoupling unified power quality controller is proposed in [27], which significantly
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reduces voltage and current fluctuations, thus improving power quality. A data-driven
approach for predicting voltage sag residual voltage, detailed in [28], shows high accuracy
and feasibility using real grid data from East China. Additionally, a method for identify-
ing voltage sag causes, utilizing bidirectional Long Short-Term Memory (LSTM) and the
attention mechanism, is presented in [29], focusing on accurate cause identification.

Real-time methods for predicting voltage sag probability are explored in [28], where
high prediction accuracy is achieved using new voltage sag characteristics and actual
measurement data. In [30], sliding mode control technology is applied to improve the
accuracy of rotor speed and position estimation in high-performance permanent magnet
synchronous motor (PMSM) applications, enhancing system robustness and adaptability.
Finally, in [31], an improved non-singular fast terminal sliding mode controller combined
with a sliding mode disturbance observer is used for load disturbance compensation,
significantly improving dynamic response and disturbance rejection capabilities while
reducing chattering.

Rapidly identifying voltage sags and providing timely compensation is of significant
importance. LSTM (Long Short-Term Memory) networks, with their memory characteristics,
are better suited to learning the features of time series data. This enhances the model’s
ability to process temporal data and improves recognition accuracy. The sliding mode
control (SMC) strategy is recognized as an effective nonlinear control strategy, characterized
by rapid response, insensitivity to parameter variations and disturbances, and simplicity
in physical implementation [21]. However, traditional SMC control strategies suffer from
serious chattering phenomena. Although the SMC method proposed in [22] exhibits good
performance, replacing the sign function with a hysteresis function cannot completely
eliminate chattering, which consequently leads to a time-varying switching frequency.
Another method proposed in [23] is based on the variable boundary layer approach, but
the selection of the boundary layer is not based on equation analysis. However, inaccurate
boundary layer selection may result in steady-state errors [25].

In response to the aforementioned issues, this paper proposes a dynamic voltage
restorer based on LSTM neural networks for voltage prediction and novel sliding mode
variable structure control. Additionally, a novel reaching law is designed, which signifi-
cantly enhances the system’s response speed and reduces chattering.

2. Topology Structure and Operating Principle of DVR System

The DVR mainly consists of a voltage detection module, energy storage device, inverter
unit, control section, filter, series transformer, etc. [9]. The system structure is shown in
Figure 1.

The operational principle of the dynamic voltage restorer (DVR) involves the energy
provision from the energy storage unit. The control section utilizes the detected char-
acteristics of voltage sags to compute the required compensatory voltage difference. It
then generates control signals to trigger the conduction of the inverter, thereby producing
corresponding compensatory voltage. This voltage is appropriately filtered through an LC
filtering circuit to remove high-order harmonics generated by the inverter section, forming
compensatory voltage that meets the requirements. Subsequently, this compensatory volt-
age is serially connected to the distribution network via a secondary loop with a boosting
transformer. This process enables the overlay of the voltage on the distribution network
side with the compensatory voltage, ensuring that the load receives qualified voltage and
guaranteeing the reliability of load power consumption.

When no voltage sag is detected, the switching device of the dynamic voltage restorer
(DVR) remains open. During this time, the DVR operates in bypass standby mode. The
detection module continuously monitors the amplitude and phase variations in the voltage
at the power supply side of the distribution network. Upon detecting a voltage sag in
the distribution network, the bypass switch is swiftly closed, initiating the compensation
process of the DVR. At this point, the DVR is serially connected to the distribution network,
and the control unit calculates the required compensatory voltage signal based on the
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detection signal. It then drives the inverter to generate compensatory waveforms, ensuring
stable voltage at the load side and avoiding equipment shutdowns caused by voltage sags.
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Figure 1. Structural diagram of DVR system. 
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The following equations can clearly express the working principle of the DVR, where
the grid voltage is denoted as us, the voltage at the load side of the system is denoted as
uload, and the compensating voltage is denoted as udvr. When the grid voltage drops by
∆u, if there is no DVR, the load voltage is as follows:

uload = us − ∆u (1)

When the DVR is connected to the system, the load voltage is

uload = us − ∆u + udvr, (2)

Setting the compensating voltage udvr = ∆u allows for voltage compensation to
be achieved.

3. Mathematical Model of DVR

The main circuit of the DVR employs a fully controlled SPWM (Sinusoidal Pulse Width
Modulation) inverter configuration. Each phase is connected to the grid via an isolation
transformer in series. The basic circuit structure of the three-phase, three-wire DVR is
depicted in Figure 2.

In this figure, usA, usB, and usC represent the grid-side voltages; uiA, uiB, uiC denote the
voltages output by the voltage source inverter; ucA, ucB, and ucC signify the compensating
voltages after passing through the LC output filter of the voltage source inverter; iLA, iLB,
and iLC and iCA and iCB represent the inductor currents and capacitor currents, respectively;
and L f and C f denote the filtering inductance and filtering capacitance. According to the
defined voltage and current directions in Figure 2, and by converting leakage impedance
and losses to the secondary side of the transformer, neglecting excitation current and
system inductance, the system mathematical model of the DVR can be established based
on Kirchhoff’s law: {

L f
diLk(t)

dt = uik(t)− uCk(t)− iLk(t)R
C f

duCk(t)
dt = iLk(t)− iCk(t)

, (3)
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In Equation (1), k = 1, 2, 3 represents the three phases.
Considering the lack of independence among the three-phase variables in a symmetri-

cal three-phase system, which is not conducive to the design of control systems, Equation (1)
is transformed into the classical Park transformation to convert it into the synchronous
rotating d-q coordinate system. The mathematical model is as follows [29]:

duCd
dt = ωucq +

1
C f

iLd − 1
C f

iCd
duCq

dt = −ωucd + 1
C f

iLq − 1
C f

iCq
diLd
dt = ωiLq +

1
L f

uid − 1
L f

uCd − 1
L f

iLdR
diLq
dt = −ωiLd +

1
L f

uiq − 1
L f

uCq − 1
L f

iLqR

, (4)

uCd and uCq are the d-q axis components of the compensating voltage after passing
through the LC output filter of the voltage source inverter. uid and uiq are the d-q axis
components of the voltage output by the voltage source inverter. iLd, iLq, iCd, and iCq are
the d-q axis components of the inductor currents and capacitor currents, respectively. ω is
the angular velocity of the grid voltage.

4. Voltage Sag Prediction Based on LSTM Neural Network Model

LSTM (Long Short-Term Memory) is a specialized type of recurrent neural network
(RNN) designed to capture long-term dependencies in sequential data, making it partic-
ularly well suited for tasks such as time series analysis. Unlike traditional RNNs, which
often struggle to retain important information over longer sequences due to issues like
vanishing gradients, LSTM introduces a gating mechanism that enables it to selectively
retain, update, or discard information as needed. This mechanism includes three types of
gates: the forget gate, input gate, and output gate. These gates allow LSTM to control the
flow of information, ensuring that critical historical data are retained while irrelevant or
redundant information is discarded.

The forget gate decides which parts of the previous memory to retain, while the
input gate determines what new information should be stored. The output gate controls
the amount of information that will be passed on as the current output. By regulating
the interaction between these gates, LSTM models can adapt quickly to changing trends
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and maintain long-term dependencies, even in the presence of significant fluctuations in
the data.

This makes LSTM particularly effective in tasks like predicting voltage trends in power
grids, where sudden changes and long-term patterns are both crucial. Through multiple
iterations and by minimizing errors during training, LSTM models can provide highly
accurate predictions based on time-varying data. Figure 3 shows the flowchart of the LSTM
prediction neural network designed in this paper for forecasting voltage sag.
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In this study, based on the voltage sag data of the 10 kV A-phase voltage that occurred
in a certain region of mainland China on 25 May 2024, at 14:36, we constructed and trained a
Long Short-Term Memory (LSTM) network model to predict the voltage state. The detailed
logic and methodology of this process are as follows:

First, during the data preprocessing stage, the voltage data were collected, cleaned,
and normalized. This step is crucial before training the model, ensuring the stability and
efficiency of the data during the training process. We extracted the time and voltage
columns from the dataset and normalized the voltage data to a specific range.

Next, we created the time series data by structuring the normalized voltage data into
input and output sequences. This step involved pairing each data point in the voltage
series with its subsequent data point, forming the time series data necessary for training
the LSTM network.

In the model construction phase, we designed an LSTM network architecture consist-
ing of an input layer, an LSTM layer, and a fully connected layer. The input layer receives
the normalized voltage data, the LSTM layer captures the long-term dependencies in the
time series data, and the fully connected layer generates the final prediction results.

For model compilation, we selected the Adam optimizer and the Mean Squared
Error (MSE) loss function. The Adam optimizer is an adaptive learning rate optimization
algorithm suitable for handling sparse gradients, while the MSE loss function measures the
error between the predicted values and the actual values.

During the model training phase, we trained the LSTM network using the training
dataset. By setting parameters such as the maximum number of epochs, gradient threshold,
and learning rate, we gradually optimized the model parameters to minimize the loss
function. We employed a learning rate schedule that reduces the learning rate periodically
to ensure better convergence towards the optimal solution in the later stages of training.

After training the model, we used it to make predictions. In the prediction phase, the
time series data were input into the model to generate the corresponding predicted voltage
values. To facilitate comparison, we denormalized the prediction results, restoring them to
the original range of the voltage data.

Finally, we plotted a comparison between the actual and predicted voltage values to
visually demonstrate the model’s prediction performance. The comparison plot shows
that the LSTM model can accurately fit the voltage data, validating its effectiveness in time
series data prediction.
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Through the aforementioned steps, we successfully constructed and validated an
LSTM-based voltage data prediction model, providing an effective method for analyzing
and predicting time series data.

In this study, a Long Short-Term Memory (LSTM) network model was constructed
and trained to achieve high-precision predictions of voltage data. The evaluation metrics
show that the Mean Absolute Error (MAE) is 0.1030, and the coefficient of determination
(R2) is 0.9956. These results indicate that the model has a low prediction error and a very
high degree of fit.

As shown in Figure 4, the predicted curve closely matches the actual curve, further val-
idating the model’s effectiveness and stability. This demonstrates that the LSTM model can
accurately predict voltage data and fully meets the prediction requirements. In summary,
the constructed LSTM model performs exceptionally well in time series data prediction,
indicating its broad application potential.

Energies 2024, 17, x FOR PEER REVIEW 7 of 19 
 

 

series with its subsequent data point, forming the time series data necessary for training 
the LSTM network. 

In the model construction phase, we designed an LSTM network architecture con-
sisting of an input layer, an LSTM layer, and a fully connected layer. The input layer re-
ceives the normalized voltage data, the LSTM layer captures the long-term dependencies 
in the time series data, and the fully connected layer generates the final prediction results. 

For model compilation, we selected the Adam optimizer and the Mean Squared Error 
(MSE) loss function. The Adam optimizer is an adaptive learning rate optimization algo-
rithm suitable for handling sparse gradients, while the MSE loss function measures the 
error between the predicted values and the actual values. 

During the model training phase, we trained the LSTM network using the training 
dataset. By setting parameters such as the maximum number of epochs, gradient thresh-
old, and learning rate, we gradually optimized the model parameters to minimize the loss 
function. We employed a learning rate schedule that reduces the learning rate periodically 
to ensure better convergence towards the optimal solution in the later stages of training. 

After training the model, we used it to make predictions. In the prediction phase, the 
time series data were input into the model to generate the corresponding predicted volt-
age values. To facilitate comparison, we denormalized the prediction results, restoring 
them to the original range of the voltage data. 

Finally, we plotted a comparison between the actual and predicted voltage values to 
visually demonstrate the model’s prediction performance. The comparison plot shows 
that the LSTM model can accurately fit the voltage data, validating its effectiveness in time 
series data prediction. 

Through the aforementioned steps, we successfully constructed and validated an 
LSTM-based voltage data prediction model, providing an effective method for analyzing 
and predicting time series data. 

In this study, a Long Short-Term Memory (LSTM) network model was constructed 
and trained to achieve high-precision predictions of voltage data. The evaluation metrics 
show that the Mean Absolute Error (MAE) is 0.1030, and the coefficient of determination 
(R2) is 0.9956. These results indicate that the model has a low prediction error and a very 
high degree of fit. 

As shown in Figure 4, the predicted curve closely matches the actual curve, further 
validating the model’s effectiveness and stability. This demonstrates that the LSTM model 
can accurately predict voltage data and fully meets the prediction requirements. In sum-
mary, the constructed LSTM model performs exceptionally well in time series data pre-
diction, indicating its broad application potential. 

 
Figure 4. Prediction of voltage sags based on LSTM neural network. 

Figure 4. Prediction of voltage sags based on LSTM neural network.

5. DQ Voltage Sag Detection Algorithm Based on Three-Phase Instantaneous Reactive
Power Theory

By applying the instantaneous reactive power theory to a three-phase system, the
three-phase voltage can be transformed as follows.

[
ud
uq

]
= C

ua
ub
uc

, (5)

C is the transformation matrix, specifically expressed as follows.

C =

√
2
3

[
sin(ωt) sin(ωt − 2

3 π) sin(ωt + 2
3 π)

−cos(ωt) −cos(ωt − 2
3 π) −cos(ωt + 2

3 π)

]
, (6)

Since the voltage in the distribution network can be understood as the superposition
of the fundamental voltage and harmonic voltages at various frequencies, the three-phase
voltages a, b, and c can be expressed as follows:

ua =
√

2U sin(ωt + θ) +
n
∑

i=2

√
2Uisin(iωt + θi

)
ub =

√
2Usin(ωt + θ − 2

3
π) +

n
∑

i=2

√
2Uisin(iωt + θi −

2
3

π)

uc =
√

2Usin(ωt + θ +
2
3

π) +
n
∑

i=2

√
2Uisin(iωt + θi +

2
3

π)

, (7)
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U is the root mean square (RMS) value of the fundamental voltage, and Ui is the RMS
value of the harmonic voltage.

After transforming Equations (3–19), the following equation is obtained:
ud = Usinθ +

n
∑

i=2
Uisin(iωt + θi)

uq = Ucosθ +
n
∑

i=2
Uicos(iωt + θi)

, (8)

The amplitude and phase information of the fundamental component can be obtained
from ud and uq in the above equation. First, after applying a low-pass filter to filter out
the higher harmonic components, ud and uq are obtained, with values Usinθ and Ucosθ,
respectively. Therefore,

u =
√

ud
2 + uq

2, (9)

θ = arctan
uq

ud
, (10)

u is the RMS value of the voltage sag, and θ is the phase angle.
After being transformed using the C matrix, the three-phase AC current and voltage

vectors are converted into DC vectors. The transformation principle is illustrated in Figure 5
as follows:
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Firstly, ud and uq are obtained by sampling the grid-side voltage, followed by Clarke
and Park transformations. The harmonic components are filtered out using a low-pass
filter (LPF) to obtain the DC components ud and uq. By applying the inverse coordinate
transformation, the three-phase fundamental voltage can be derived. Then, by subtracting
the reference voltages Uar, Ubr, and Ucr, the compensation voltage required by the DVR
can be obtained.

5.1. Voltage Sag Simulation Experiment and Analysis

From 0 to 0.1 s, no voltage sag occurs, and the voltage peak value is 311 V. From
0.1 to 0.2 s, the grid voltage drops by 20%, and from 0.2 to 0.3 s, the grid voltage returns
to normal.

When the grid voltage sags by 20%, the grid voltage peak value is uip = 220 ×
√

2
× 0.8 ≈ 248.901V, and the compensation voltage is ucp = uNp − uip = 220 ×

√
2 − 248.901

= 62.23V. The simulated experimental waveform is shown in Figure 6.
As seen in Figure 6, the comparison between the expected compensation voltage of

62.23 V and the detected output value of 62.2 V shows a difference of 0.03 V, which is
0.048% of the expected value. The dq transformation voltage sag detection method, based
on instantaneous reactive power theory, effectively detects voltage sags and provides the
correct compensation voltage, offering an accurate compensation voltage reference value.
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5.2. Voltage Swell Simulation Experiment and Analysis

From 0 to 0.1 s, no voltage swell occurs, and the peak value is 311 V. From 0.1 to
0.2 s, the grid voltage swells by 20%, and from 0.2 to 0.3 s, the grid voltage returns to its
normal value.

When the grid voltage swells by 20%, the peak grid voltage is uip = 220 ×
√

2 × 1.2
≈ 373.34V, and the compensation voltage is ucp = uNp − uip = 220 ×

√
2 − 373.34

= − 62.21V. The three-phase compensation voltage is shown in Figure 7.
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As seen in Figure 7, when a 20% voltage swell occurs, the expected compensation
voltage is 62.21 V, while the detected output value is 62.22 V, resulting in a difference of
0.01 V, which is 0.016% of the expected value. The dq transformation voltage detection
method, based on instantaneous reactive power theory, can effectively detect voltage swell
and provide the correct compensation voltage, offering an accurate compensation voltage
reference value.

6. Analysis of DVR Control System Design

This paper addresses the challenges posed by traditional PI controllers in optimizing
controller parameters and system performance for inherently nonlinear, multivariable, and
strongly coupled DVR systems, especially in the presence of significant nonlinear load
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disturbances. To overcome these challenges, sliding mode control is introduced into the
voltage outer loop, and a novel reaching law is designed to expedite system response time
and reduce oscillations.

Consider the following controlled object:

••
x (t) = − f (x, t) + bu(t), (11)

where f (x, t) and b are both known, and b > 0.
The sliding mode function is given by the following:

s(t) = ce(t) +
•
e(t), (12)

where c > 0 and satisfies the Hurwitz condition.
The tracking error is as follows:

e(t) = xd(t)− x(t)
•
e(t) =

•
xd(t)−

•
x(t), (13)

where
•

xd(t) represents the ideal position signal.
Then,

•
s(t) = c

•
e(t) +

••
e (t) = c

( •
xd(t)−

•
x(t)

)
+

(••
x d(t)−

••
x (t)

)
= c

( •
xd(t)−

•
x(t)

)
+

(••
x d(t) + f (x, t)− bu(t)

) (14)

An exponential reaching law
•
s1, a constant velocity reaching law

•
s2, and an improved

new reaching law
•
s3 are used as follows:

•
s1 = −εsgns1 − ks1 ε > 0, k > 0, (15)

•
s2 = −εsgns1 ε > 0, (16)

•
s3 = −ε|s3|αsgn(|s3|−1)sgn(s3)− ks3|s3|αsgn(|s3|−1)

ε > 0, k > 0, 0 < α < 1.
(17)

The novel approach law adapts to system state changes by altering the shape of the
sliding mode surface, thereby reducing chattering. The exponential approaching term
ensures that the system state converges to the sliding mode surface within a finite time,
improving rapidity. The absolute value and sign function terms effectively suppress
disturbances and uncertainties in the system, enhancing robustness.

Therefore, the classical sliding mode convergence law is

u1(t) =
1
b

(
εsgns1 + ks1 + c

(•
xd −

•
x
)
+

••
x d + f (x, t)

)
. (18)

The sliding mode controller based on the uniform convergence law is as follows:

u2(t) =
1
b

(
εsgns2 + ks2 + c

(•
xd −

•
x
)
+

••
x d + f (x, t)

)
. (19)

The sliding mode controller based on the novel exponential convergence law proposed
in this paper is

u3(t) =
1
b
(ε|s3|αsgn(|s3|−1)sgn(s3) + ks3|s3|αsgn(|s3|−1) ↓ +c(

•
xd −

•
x) +

••
x d + f (x, t)). (20)

Taking the command signal as xd(t)= sin(t), with the initial state of the controlled
object as [−0.15 0.15], the controllers given by Equations (18–20) are employed, where
c = 15, ε = 5, k = 10, α = 0.2, respectively. The simulation results are shown in Figure 8.
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6.1. Dynamic Voltage Restorer Control System

The DVR output voltage error is defined as follows:

u2(t) =
1
b

(
εsgns2 + ks2 + c

(•
xd −

•
x
)
+

••
x d + f (x, t)

)
, (21)

where ud
∗ and uq

∗ are the reference values of compensation voltage in the d-q coordinate
system, and ucd and ucq are the actual output values of compensation voltage from the DVR.

Then, the dynamic equation of the output voltage error is given by the following:{•
ed = −ωucq − 1

C iLd +
1
C iCd

•
eq = ωucd − 1

C iLq +
1
C iCq

, (22)

We take the sliding surface as the proportional–integral form of the output voltage
error, i.e., the integral sliding surface:{

sd = ed + kd
∫

eddt − ed(0)
sq = eq + kq

∫
eqdt − eq(0)

, (23)

The purpose of adding the constant terms ed(0) and eq(0) is to ensure that the sliding
surface also satisfies the sliding condition under the initial conditions of the system so that
the sliding surface is only in the sliding phase and does not yet reach the reaching phase,
thereby improving the system’s response speed and ensuring robustness.
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Then, the expression for the derivative of the sliding surface is as follows:
•
sd = −ωucq − 1

C f
iLd +

1
C f

iCd + kded
•
sq = ωucd − 1

C f
iLq +

1
C f

iCq + kqeq
, (24)

The convergence law is as follows:{ •
sd = −εd|sd|αdsgn(|sd |−1) sgn(sd)− kdsd|sd|αdsgn(|sd |−1)

•
sq = −εq

∣∣sq
∣∣αqsgn(|sq |−1) sgn(sq

)
− kqsq

∣∣sq
∣∣αqsgn(|sq |−1) , (25)

Combining Equations (24) and (25), the inner loop current reference value can be
obtained as follows:iLd

∗ = C f (−ωucq +
1

C f
iCd + kded + εd|sd|αdsgn(|sd |−1)sgn(sd) + kdsd|sd|αdsgn(|sd |−1))

iLq
∗ = C f (ωucd +

1
C f

iCq + kqeq + εq
∣∣sq

∣∣αqsgn(|sq |−1)sgn(sq) + kqsq
∣∣sq

∣∣αqsgn(|sq |−1)
)

, (26)

Once the reference values for the inner loop currents are obtained, the dual-loop
control of the DVR system can be constructed. The voltage outer loop adopts sliding mode
control, while the current inner loop adopts PI control. A control block diagram of the
system is shown in Figure 9:
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6.2. Stability Proof

Define the Lyapunov function as follows:

V =
1
2

sd
2 +

1
2

sq
2. (27)

Then,
•
V = sd

•
sd + sq

•
sd, (28)

•
V = −sdεd|sd|αdsgn(|sd |−1)sgn(sd)− kdsd

2|sd|αdsgn(|sd |−1)−
sqεq

∣∣sq
∣∣αqsgn(|sq |−1)sgn(sq)− kqsq

2
∣∣sq

∣∣αqsgn(|sq |−1).
(29)

Because ε > 0, εd > 0, εq > 0;
•
sd·sgn(Sd) > 0; sq·sgn(sq) > 0. Because all parameters

are positive,
•
V < 0. (30)

Thus, it is proven that the designed controller is stable in the sense of Lyapunov.
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7. Simulation Experiment Study
7.1. System Modeling

To further validate the effectiveness and feasibility of the proposed DVR based on
sliding mode control, simulation modeling is conducted in the Matlab Simulink system. In
the simulation model, the grid voltage is set to 380 V with a frequency of 50 Hz, and the
DVR series transformer turn ratio is 1. The parameters of the LC filter are set as follows:
inductance L f = 0.52 mH; resistance R f = 0.025 Ω; and capacitance C f = 120 µF.

7.2. Voltage Sag Compensation Analysis

In the simulation, initially, the grid voltage remains normal from 0 to 0.06 s, with
a peak phase voltage of 311 V, and the DVR is in bypass mode without participating in
voltage compensation. From 0.06 to 0.16 s, a symmetrc three-phase voltage sag occurs,
causing the grid voltage to drop to 80%. At this point, the DVR enters compensation mode,
and at 0.16 s, the grid voltage returns to normal, and the DVR exits compensation mode.
The proposed method (SMC1) is compared with traditional PI control, classical sliding
mode control based on the convergence law, and sliding mode control with the uniform
convergence law (SMC3). The waveforms of the grid voltage, compensation voltage, and
load voltage are shown in Figure 10.
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Figure 10. Voltage waveform of DVR with sliding mode control based on novel exponential con-
vergence law: (a) grid voltage; (b) compensation voltage of novel convergence law (SMC1); (c) load
voltage of DVR based on novel convergence law; (d) amplified compensation during voltage sag of
phase A.
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Taking phase A voltage as an example, when the voltage drops to 80%, the load
voltage of the DVR under different control methods is shown in Figure 11:
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Figure 11. Comparison of tracking control performance with different convergence laws.

Based on PI control, the DVR can restore the load voltage to normal within 0.001 s,
but oscillations are present with an overshoot of 6.7%. The adjustment speed is slow, and
there is a large steady-state error. On the other hand, sliding mode control immediately
outputs the limited value of the controller at the beginning, resulting in the maximum
output without overshoot and a faster dynamic response. The DVR based on SMC2 control
can restore the load voltage to normal within 0.0004 s, while the DVR based on SMC3
control can achieve the same within 0.001 s. The DVR based on the novel convergence
law of SMC1 control can restore the load voltage to normal within 0.0003 s, indicating
better rapidity.

Figures 12 and 13 respectively represent the waveform of the load voltage d-axis
component and the root mean square (RMS) value of the load voltage during voltage sag.
From Figure 9, it can be observed that the load voltage d-axis component of the DVR based
on the novel convergence law can quickly recover to normal during voltage sag. As shown
in Figure 10, for the DVR based on PI control, the RMS value of the load voltage undergoes
significant changes during voltage transients, whereas for the DVR based on the novel
exponential convergence law, the RMS value of the load voltage remains relatively constant.
The Fourier harmonic analysis results of the compensated load voltage under different
controllers are shown in Figure 12:
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Figure 13. RMS value of load voltage.

From Figure 14, the total harmonic distortion (THD) of the compensated load voltage
for the DVR with the novel exponential convergence law controller is 0.80%. For the DVR
with the classical reaching law controller, the THD of the load voltage during voltage sag
is 2.14%. For the DVR with the uniform convergence law controller, the THD of the load
voltage is 2.60%. Finally, for the DVR with the PI controller, the THD of the load voltage
is 2.45%.
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Figure 14. FFT analysis of load voltage for DVR: (a) FFT analysis of load voltage for DVR based on 
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From Table 1, it can be observed that the response time of SMC1 control based on the
novel method is 1.333 times faster than that of SMC2 control and 3.333 times faster than
that of SMC3 control and PI control.
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Table 1. Table of comparative results.

Results Overshoot
(%)

Total Harmonic
Distortion (%) Response Time (s) Root Mean Square Curve

of Load Voltage

Novel SMC1 0 0.8 0.0003 Smooth
Classical convergence law SMC2 0 2.14 0.0004 Relatively smooth
Uniform convergence law SMC3 0 2.60 0.001 Moderately smooth

PI 6.7 2.45 0.001 Not smooth

8. Conclusions

LSTM is a type of neural network, and like any other neural network, it requires a
large number of data points for proper training. To further improve prediction accuracy,
increasing the data volume is necessary. Despite this, LSTM is highly effective in handling
long-term and short-term dependencies in time series data, such as power grid voltage.
It adapts well to sudden trend changes, has a low prediction error, and exhibits high
fitting accuracy. This makes it particularly suitable for predicting fluctuating voltage trends
and meeting the requirements for power grid voltage forecasting, thereby minimizing the
impact of sudden voltage drops on industrial production.

Additionally, the novel reaching law dynamically adjusts the shape of the sliding
surface based on changes in the system state, reducing chattering. The exponential ap-
proach term ensures that the system state converges to the sliding surface within a finite
time, enhancing the response speed. The absolute value and sign function terms effectively
suppress disturbances and uncertainties in the system, improving robustness. The dynamic
voltage restorer based on the novel reaching law of sliding mode variable structure control
accelerates the system response speed, reduces oscillations, and demonstrates strong ro-
bustness. It can adapt to various levels of voltage sags and surges, efficiently compensating
for the load-side voltage to the desired setpoint.

However, while LSTM and sliding mode control offer significant advantages, they
also have limitations. LSTM models struggle to train effectively on small datasets, and the
reaching law in sliding mode control may not fully suppress all disturbances under extreme
conditions. Therefore, despite their strengths in many applications, it is important to
consider factors such as data volume, system complexity, and environmental disturbances
when applying these methods in real-world scenarios.
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