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Abstract

:

The integration of electric vehicles (EVs) into the power grid poses significant challenges and opportunities for energy management systems. This is especially concerning for parking lots or private building condominiums in which refurbishing is not possible or is costly. This paper presents a real-time monitoring approach to EV charging dynamics with battery storage support over a 24 h period. By simulating EV demand, state of charge (SOC), and charging and discharging events, we provide insights into the operational strategies for energy storage systems to ensure maximum charging simultaneity factor through internal power enhancement. The study uses a time-series analysis of EV demand, contrasting it with the battery’s SOC, to dynamically adjust charging and discharging actions within the constraints of the upstream infrastructure capacity. The model incorporates parameters such as maximum power capacity, energy storage capacity, and charging efficiencies, to reflect realistic conditions. Results indicate that real-time SOC monitoring, coupled with adaptive charging strategies, can mitigate peak demands and enhance the system’s responsiveness to fluctuating loads. This paper emphasizes the critical role of real-time data analysis in the effective management of energy resources in existing parking lots and lays the groundwork for developing intelligent grid-supportive frameworks in the context of growing EV adoption.
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1. Introduction


The revision of the CO2 emission standards for cars and vans is one of the ‘Fit for 55’ proposals [1,2,3] presented by the Commission in July 2021. This initiative aims to align the EU’s climate, energy, land use, transport, and taxation policies to reduce net greenhouse gas emissions by at least 55% by 2030 compared to 1990 levels. The electrification of transportation is mostly dependent on electric vehicles (EVs), with an emphasis on battery energy management technologies to maximize battery life cycles. The field of EV technologies has attracted a lot of attention lately, especially with regard to its urban applications. According to ACEA and the EEA, EV penetration could reach 40 million vehicles by 2030 [4,5]. The already seen continuous introduction of private electric vehicles in urban areas is posing challenges to existing electrified areas and building condominiums. Electric vehicle users that live in buildings, energy communities, or use commercial spaces for charging today already face the constraint of charging their vehicles simultaneously with their neighbors, given the limitations of their condominium’s contracted power [6,7,8].



Despite technical developments, there is a significant gap in successfully increasing power supply in areas with low energy, such as parking lots near electric vehicle charging stations. However, the broad adoption of electric vehicles (EVs) is significantly hampered by this difficulty, which is made worse by limitations in upstream of old infrastructure. To address this issue, this study proposes a novel way to increase the power capacity in a parking lot that is connected to a hub for electric car charging stations. This power outlet can manage heavy demand during periods when many cars are charging, thanks to the addition of an energy storage system (ESS).



Moreover, our goal is to demonstrate the control algorithm and its viability of increasing power capacity for a short duration, suited to the specific needs of the parking lot node, allowing for increased power demands without requiring costly infrastructure upgrades. Through the integration of a refined control system, our approach meticulously assesses the load dynamics of both the charging stations and the energy storage system (ESS). This advanced system provides vital insights to precisely adjust the power limits of each EV charger, ensuring optimal energy distribution and minimizing the need for substantial infrastructure investments. Therefore, the proposed approach aims to demonstrate the potential of ESS in revolutionizing energy storage and distribution frameworks, notably in promoting the widespread adoption and usability of electric cars.



In this study, we introduce a novel approach to address the implementation of effective and predictable rule-based charging strategies for electric vehicles within smart grid systems. The main contributions of this study are listed below:




	
Introducing a rule-based control approach for energy storage system (ESS) management, enhancing efficiency by dynamically adjusting operations based on real-time electricity prices and EV demand criteria.



	
Presenting a cost-efficiency analysis model that computes total electricity expenses based on fluctuating electricity prices, demand profiles, and charging efficiency. This model provides insights into the financial implications of different charging strategies under dynamic price conditions.



	
Demonstrating how to use simulated interactions between grid power availability, battery storage capacities, and EV demand in order to maximize load control and storage efficiency. The objective of this study is to improve grid stability and decrease dependence on energy supply during peak hours by utilizing comprehensive simulation and analytic techniques.



	
Proposing an extensive data presentation and visualization framework that offers detailed hourly analytics and visual representations of SOC changes, charging events, and grid interactions. This paper supports energy managers and system designers in optimizing energy resources and planning infrastructure effectively.









2. Related Works


To develop charging techniques for EVs, several studies have been conducted recently [9,10,11,12,13,14]. The state of charge (SOC) of a battery affects its estimated lifespan by assisting in the identification of accessible energy. Mathematical modeling is employed for estimating battery capacity and performance, allowing the battery to be overcharged or discharged beyond its limit while maintaining the SOC of the battery.



The literature discusses various approaches for managing charging sessions and enhancing node capacity. Depending on the charging and parking time of the users, different options have emerged in the literature to solve this problem. Authors in [15] propose an approach to minimize the difference between the desired and final state of charge (SOC) by the end of the charging period by adjusting the charging power for each vehicle in real time. A non-linear optimization problem is formulated, taking into account the initial and final SOC, available charging time, and total available power. The results, compared to a baseline, show that the proposed solution outperforms the commonly used non-optimized method, particularly in high-demand scenarios, achieving a 9.3% reduction in curtailed range compared to the non-optimized methodology. Such approaches, however, have the burden of extra costs of software and hardware and the need for direct users’ inputs, which might face resistance and proper battery management to store energy for charging electric vehicles.



In recent years, Binod et al. [9] presented a reservation-based EV charging strategy and a smart charging system for efficient slot management, theoretically reducing waiting times and managing station congestion to improve EV network efficiency using a multi-objective simulated annealing (MOSA) approach. Chung et al. [16] mainly introduced plug-in electric vehicles (PEVs) with an ideal charging plan to reduce battery degradation during prolonged idling. It reduces capacity loss compared to conventional charging techniques by introducing an optimization framework that takes the battery life stage and ambient temperature into account. Similarly, Hussain et al. [17] used an optimization approach (CCOA) to reduce the cost of home EV charging while simulating EV charging situations in a MATLAB environment. Their contributions include contributions to a heuristic algorithm, comparing it with traditional charging methods, and modeling charging scenarios to show cost savings and grid load control.



Moreover, Carvalhosa et al. [15] presented a novel approach for charging electric automobiles in residential complexes. The proposed approach reduces the discrepancy between the desired and final state of charge (SOC) at the conclusion of the charging session by modifying the charging power for each car in real time. When compared to the non-optimized methods, this strategy reduces the range value by 9.3%. Later on, Yang et al. [18] used charging data from the California State University Long Beach campus and solar power generation data from the California Solar Initiative, which are gathered at 15-min intervals from a nearby airport. The simulation of solar energy profiles and EV charging station operations is made possible by these datasets. The goal of the article is to resolve operational uncertainties and optimize long-term revenues by improving the design of a PV and BESS-assisted EV charging station. To efficiently optimize station design, this framework combines empirical rule-based methods and model predictive control (MPC) with a novel application of response surface methodology (RSM).



In another work, Guan et al. [19] utilized synthetically generated data specific to the IEEE-33 node system to simulate typical distribution and EV charging scenarios. They propose a safe reinforcement learning (RL) framework to optimize EV charging operations, integrating rule-based shields for grid safety. Their primary contribution lies in devising a rule-based shielded RL approach that incorporates physical constraints, ensuring safety alongside operational efficiency. Similarly, Balasingam et al. [10] explored a comprehensive overview of battery management systems (BMSs) for electric vehicles (EVs) and renewable energy storage systems. They discuss key topics including battery modeling, state of charge (SOC) and state of health (SOH) estimation methods, and battery technology advancements, highlighting major challenges, developments, and practical applications in the field. Primarily, Gao et al. [11] presented an enhanced electrochemical–thermal model for integration into a BMS for EVs. Their model improves prediction accuracy by incorporating temperature-dependent parameters and simplifying complex electrochemical reactions for real-time BMS application. The dataset likely includes experimental data from laboratory tests and real-world EV driving scenarios, covering temperature variations and charging/discharging cycles to simulate real-world conditions.



Deepika et al. [12] employed MATLAB/Simulink; simulations to estimate the SOC for batteries at an EV charging station. They propose a BMS to prevent overcharging and deep discharging by monitoring internal battery processes and environmental conditions. Their key contribution is a mathematical model using the Coulomb counting method to estimate SOC during charging and discharging, while the BMS integrates solar and grid power for optimal battery life cycle and charging station efficiency. In another study, Waseem et al. [13] discussed battery technology for electric cars, including battery categories, EV-specific BMS features, and potential future developments. They discuss the evolution of battery technologies, highlighting the benefits and drawbacks of pre-lithium, lithium-based, and post-lithium technologies. Later, Kumar et al. [14] addressed battery-related issues for electric vehicle applications, including state estimates, charging, battery modeling, and BMSs. They provided insights into the difficulties and developments in battery technology by thoroughly analyzing several battery models, including thermal, electrothermal, and electric models.



Furthermore, Akruth et al. [20] conducted a literature review of the BMS in EVs that are integrated with fire prevention devices. They focus on the functions that the BMS plays in fault diagnosis, thermal management, state-of-charge monitoring, and fire suppression in reducing the danger of fire. Their main output is a thorough analysis of BMS technologies that improve fire safety and maximize lithium-ion battery performance in EVs, combining approaches to reduce possible risks. When using a Hybrid Battery Thermal Management System (HBTMS) for electric vehicle applications, Patel et al. [21] explored the thermal behavior of high-specific-energy Nickel–Cobalt–Manganese (NCM)-21700 lithium-ion battery cells. To handle thermal issues during charge and discharge cycles, they evaluated the efficacy of combining Phase Change Material (PCM) with air cooling. The primary contributions include a study that uses HBTMS to optimize the thermal management of NCM-21700 cells, provides recommended cell and fin spacing configurations, and investigates the use of PCM for efficient heat dissipation.



Alongside this, Amit et al. [22] investigated hybrid electric vehicle (HEV) control systems with an emphasis on enhancing battery management and energy economy. The research investigates numerous combinations, such as fuel cell–battery and battery–ultracapacitor, and various hybrid configurations are assessed through the application of parametric and cross-comparison techniques. In order to maximize HEV performance, the study offers a thorough analysis and categorization of control algorithms used in various hybrid energy storage system (HESS) configurations. These comparisons are made based on factors such as dynamics, battery life, energy efficiency, and emissions. In the next year, Ahsan et al. [23] conducted a literature review, relying on diverse sources in the field, to investigate technologies and techniques for optimizing lithium-ion battery and supercapacitor-based hybrid energy storage systems (LIB-SC HESSs) for electric vehicles. The review discusses component sizing, power energy management strategies, power electronics converter designs, and system-level improvements for increased efficiency and performance.



Recently, Yavuz et al. [24] reviewed SOC prediction technologies (2019–2023) indexed in Science Citation Index (SCI) journals in the WoS database, focusing on optimizing battery performance in applications like electric vehicles and renewable energy systems. They highlighted the integration of AI and ML, evaluating theoretical models, algorithms, and applications, as well as the effectiveness of long short-term memory (LSTM) networks and support vector machines. More recently, Moradi et al. [25] used data from a genuine distribution grid segment that was intended for installation in Italy as part of the HYPERRIDE project. It introduces an energy management system for AC/DC hybrid microgrids that uses hourly power flow analysis and a two-level hierarchical control platform. This hierarchical control technique combines grid-connected and islanded modes, optimizing Distributed Generations’ (DGs’) reference power via tertiary control and using primary control with a current control mode to avoid secondary controllers. The key contribution is the invention of a new approach to energy management and power flow analysis, which improves load distribution efficiency and voltage/frequency restoration by solving power flow equations with a unified Newton–Raphson method.



Rule-based framework refers to a systematic method of decision-making in which a predetermined set of rules determines actions. These rules are established based on expertise, domain knowledge, or regulatory requirements, and they define specific conditions and corresponding actions. Rule-based frameworks find applications across various domains, including expert systems, business processes, natural language processing, compliance systems, and decision support [26,27,28,29,30]. They offer transparency by relying on explicit rules, allowing for a clear understanding of the decision-making process. However, they may lack the adaptability of machine learning approaches.



The capabilities of energy storage systems (ESSs) have been greatly enhanced in the modern era by developments in rule-based frameworks, particularly with regard to node capacity, battery management, and electric vehicle (EV) charging procedures [31,32,33]. These frameworks improve the operational efficiency of energy storage and distribution networks by using preset rules and algorithms to make choices in real time. Nowadays, ESSs are major players in the integration of renewable energy sources into the grid and represent the pinnacle of efficiency and innovation in the field of sustainable energy management [34,35]. Electromechanical, chemical, thermal, and electrical systems that store energy for future use are called energy storage systems or ESSs. Not only does this flexibility assist the balance of renewable energy generation, but it also promotes energy efficiency and system stability.




3. Methodology


To handle increased demand and lessen the load on the grid, this study simulates a cluster of electric vehicle (EV) charging stations combined with an energy storage system (ESS), enhancing the charging simultaneity factor. The primary intent of employing simulation data is to explore the limits of the control algorithm over a 24 h period. This approach allows for demonstrating all possible operational scenarios of the battery including optimal charging, discharging, and cases where the demand surpasses the limits of the installation or slack limits, which are critical for understanding system resilience and operational efficiency.



In this study, we use a simulated dataset that consists of the hourly EV charging demand over a 24 h period (shown in Table 1). The values represent the power required by EVs parked at the station at different times, highlighting peak and off-peak usage patterns. The dynamic pricing of energy is also shown in the table, which indicates that hourly prices in this dataset are used to identify the best time to charge the ESS so that it has a full state of charge (SOC) at the beginning of the day. While higher rates could lead to load-shifting or energy-selling tactics, lower prices encourage charging the storage system. Taking into consideration energy losses during power conversion, the efficiency for charging and discharging activities is subject to an efficiency rate of   90 %  . The SOC management of the ESS is a vital parameter, commencing at   20 %   full capacity and managing to prevent overcharging and deep discharging, which can compromise battery life. The operating range is specified as   20 %   to   95 %   of ESS capacity. Utilizing data on EV demand and power prices, an algorithm based on rules makes decisions and evaluates the ESS hourly to maximize its performance.



To set a baseline for the system, the SOC is initialized at the start of the simulation, and no charging or discharging happens for the first hour. The system chooses to charge the battery when the SOC is below the maximum threshold and during periods of low-cost electricity prices (if the price is among the lowest of the monitored hours). The quantity of power charged takes into account the maximum SOC, the charging rate limit, and the amount of energy needed. Meanwhile, the system discharges enough energy to satisfy the deficit when EV demand exceeds available grid power and the SOC is above the minimal threshold, making sure that demand is satisfied without going over the discharging rate restriction. During mid-day hours, changes are implemented according to the current SOC and continuous EV demand. The system may choose to maintain the SOC in order to get ready for periods of peak demand if the SOC is at an upper limit and demand is expected to rise. The simulation logs the following information every hour for a duration of twenty-four hours: The power going into the ESS is referred to as charge (kW), and the electricity coming out of it is referred to as discharge (kW). The EV demand (kW) displays the power needed by EVs, while the SOC (kWh) shows how much energy is still in the ESS. If charging or discharging events occur, or if the battery can sustain grid demand, it is recorded in the operational events log. A pandas DataFrame is used to structure and categorize the simulation’s collected data for analysis and visualization.



Note that the SOC adjustment makes sure that the battery stays within safe, predetermined limits after charging or draining [36,37]. In order to preserve battery health and guarantee system dependability, this step is essential. The system continually monitors SOC and power availability in real time, looping back to reevaluate SOC and provide flexibility and reactivity to shifting EV and grid circumstances. The dynamic method for controlling EV battery charging shown in this flowchart maximizes operational efficiency by taking advantage of cheap electricity hours and maintaining grid stability during periods of high demand. The technology constantly adjusts to current circumstances, guaranteeing that the battery’s state of charge stays within safe operating bounds. Moreover, the effectiveness of an integrated ESS in the context of an EV charging station can be assessed using the methodology’s comprehensive framework. The study aims to illustrate the potential advantages of dynamic energy storage management, such as cost savings, increased grid stability, and higher energy consumption, by modeling real-world scenarios.



3.1. Mathematical Formulation of the Battery Charging and Discharging Control Strategy


We propose an algorithmic solution guided by the following mathematical expressions and decision-making logic since maintaining an energy storage system (ESS) alongside electric vehicle (EV) charging demands is challenging. To gain a better understanding of the effects of strategic ESS management, we can plot important metrics like SOC, charging and discharging activities, and their correlation with energy pricing and EV demand using matplotlib. Additionally, this visual depiction helps to validate how well the control measures that have been put in place work. The overall cost of power is calculated by adding together all of the expenses related to recharging the energy storage system and then deducting efficiency losses. The capacity of the ESS to handle EV demand without creating power outages is how grid dependability is measured. On the other hand, the ESS’s usage patterns and reaction to changes in demand and price signals are used to assess operational efficiency.



Figure 1 depicts an automated system for charging and discharging EV batteries in response to changing energy costs, grid demand, and battery state of charge (SOC). The procedure begins with initial operations and extends to continuous real-time monitoring to alter the charging method as needed. However, the system starts by initializing all variables and conditions required for functioning. This configuration comprises setting SOC limits, price criteria, and time intervals. At each iteration of the continuous evaluation loop, the system calculates available power and evaluates the current battery SOC, taking into account the EV’s power consumption as well as the power available from the grid at that time.



The battery charges at a reduced cost during low-price hours (0 to 6 h), provided that the price of power is at its lowest and the state of charge (SOC) is below the top limit; if not, the SOC remains unchanged. In order to satisfy expected needs, the system makes sure the battery achieves at least 95% SOC during the critical hour (7th hour). If the SOC is already sufficient, it is maintained. The system bases its judgments on SOC levels and power availability during non-critical hours. The battery charges if electricity is available and the state of charge is lower than the maximum. The battery drains to assist the grid if the EV’s power consumption is over the maximum power threshold and the SOC is higher than the minimum. If neither need is satisfied, the SOC remains stable, as no charging or discharging occurs.




3.2. Problem Formulation


The scenario under investigation involves a parking lot adjacent to a hub of electric vehicle (EV) charging stations. By integrating an energy storage system (ESS) to manage excess demand during peak charging times, we demonstrated an increase in the node power of the electric network at the parking lot. The site faces significant challenges due to limited power capacity from the upstream electrical network, which often results in constraints during peak usage times. To address this issue and enhance the resilience of the local grid infrastructure, an energy storage system (ESS) has been deployed at this critical grid node. The primary aim of installing the ESS is to provide additional power capacity to cope with instances of high demand, particularly when the number of EVs charging simultaneously surpasses the existing power supply limits. The actual goal is to supplement the node’s power supply by strategically placing a local ESS, ensuring effective demand control without overburdening the grid. This configuration is intended to ensure operational stability and prevent potential power outages, which might affect EV charging availability and other vital grid services.




3.3. Algorithm Description


The operation of the ESS is guided by the following steps, iteratively applied for each hour t:




	
Compute the available power from the grid:


   P available   ( t )  =  P max  −  d t   



(1)







	
For early hours (  1 ≤ t ≤ 6  ), conditionally charge the battery if the price is low and capacity allows:


  If  SOC  [ t − 1 ]  <  SOC max   and   p t  ≤  min  i = 1  6  P  [ i ]  :  



(2)






  Charge  [ t ]  = min (  P  B charge   ,  P available   ( t )  ,     SOC max  − SOC  [ t − 1 ]    η charge    )  



(3)






  SOC  [ t ]  = SOC  [ t − 1 ]  + Charge  [ t ]  ·  η charge   



(4)






  C o s t + = C h a r g e  [ t ]  ·  p t  /  η  c h a r g e    



(5)







	
Specifically, at hour 7, aim to charge the battery up to 95% of its capacity, if not already:


  If  SOC  [ t − 1 ]  < 0.95 ·  C  E S S   :  



(6)






  C h a r g e  [ t ]  =    0.95 ·  C  E S S   − SOC  [ t − 1 ]    η  c h a r g e      



(7)






  SOC  [ t ]  = 0.95 ·  C  E S S    



(8)







	
Update the SOC, respecting its bounds, for all remaining hours (  8 ≤ t ≤ 24  ):


  SOC  [ t ]  = min (  SOC  m a x   , max  (  SOC  m i n   , SOC  [ t ]  )  )  



(9)












This formulation optimizes the ESS operation by aligning charging actions with periods of low electricity prices and adequate grid capacity while ensuring the EV demand is met and the battery operates within its specified constraints.





4. Discussion


The implications of our rule-based approach for improving node capacity, battery management, and EV charging in energy storage systems (ESSs) are discussed in this section. Our results highlight how rule-based approaches may effectively manage peak loads, maximize energy efficiency, and optimize grid stability.



4.1. Review of Findings


Through the use of advanced algorithms that rely on current electricity pricing and data on electric vehicle demand, the framework has the ability to enhance operational results and reduce dependence on traditional grid resources. In the face of changing energy needs and environmental problems, these innovations improve grid resilience and contribute to sustainable energy solutions. Figure 2 presents a comprehensive hourly overview of the operations and interactions between the energy storage system (ESS), electric vehicle (EV) demand, and associated power management activities within a controlled parking lot environment. This line and bar chart illustrates the interaction between EV demand, state of charge (SOC), and charging/discharging activities throughout a 24 h period.



The graph shows the state of charge (SOC) in kWh with a dashed line representing stored energy levels, EV demand in kW with a line graph, and hourly vehicle charging numbers with a bar graph. It also has lines that show charging and discharging activity in kW, showing when the battery is supplying power to satisfy demand variations or charging throughout the course of a 24 h period. The blue line with markers on this line and bar graph seems to indicate the following EV demand (kW), which shows how the energy demand from electric vehicles changes throughout the day. The energy held in the battery system is shown by the red dashed line, which indicates the SOC (state of charge in kWh). This line indicates that when EV demand is high, the battery drains. It moves inversely to EV demand. The green and orange lines, correspondingly, signify charging and discharging (kW) and battery state, respectively. The number of cars charging per hour is displayed by the Cars Charging histogram bars, which are probably in the background.



According to Figure 3, the battery system is utilized to balance demand by discharging during times of high demand and charging during times of low demand, which may result in cheaper energy prices. This bar graph illustrates particular hours and the interaction between EV demand (kW), which displays the energy consumption from EVs, and charging and discharging (kW), which indicates the energy transfer rate and timing to and from the battery storage. It also shows SOC (state of charge in kWh), which is a graph that shows the battery’s level of charge over time. The quantity of automobiles charged per hour is indicated by the term automobiles charging. The max power capacity of the battery or charging system is represented by the dashed red line, which stands for 90 kW max power capacity. The graphs show how an energy storage system can maintain the infrastructure for charging electric vehicles while adapting to changes in demand over time.



With a dashed line signifying maximum power capacity and bars reflecting factors like EV demand, charging and discharging power, SOC (state of charge), and the number of cars charging, this bar chart offers an illustration of the dynamics of EV charging at various times of the day. Important charging events occurred during hours 2, 5, 11, 12, 15, and 22, when the energy storage system took advantage of favorable circumstances, including reduced electricity costs or available power excess, to enhance its state of charge (SOC). On the other hand, significant discharging events take place at times of high demand, namely around hours 9, 13, 20, and 21, which strengthen the power supply and assist in maintaining the system. These findings highlight the dynamics of charging and discharging. State of charge (SOC) management shows how the charging and discharging processes cause the SOC to vary. It starts at 20 kWh, peaks many times at 95 kWh (the highest value permitted by the study’s limitations), and then drops to a minimum of 59.39 kWh during times of heavy demand. This unpredictability emphasizes how important the ESS is to preserving grid stability and acting as a buffer against changes in EV demand.



According to EV demand and capacity Support, the demand for EVs peaks around hour 9, when 121 kW is needed. This coincides with a major ESS discharging event that supports the grid. When EV charging needs to surpass the base power capacity supplied by the grid, the ESS’s ability to satisfy demand is crucial, demonstrating the system’s efficacy in mitigating power outages. Discharging occurrences at specified hours suggest that battery assistance is critical during high-demand periods, as demonstrated by battery assistance and grid interaction. By reducing the possibility of overloading the grid infrastructure, this support maintains operational dependability even in the face of fluctuating EV charging loads. Also, activity correlation to charging events demonstrates how carefully charging events are scheduled, perhaps as a result of reduced power costs or the necessity of getting the ESS ready for expectedly high demand. This demonstrates proactive energy management techniques.



Impact on grid management demonstrates how essential an ESS is to controlling energy use in EV charging stations. The technology reduces operating expenses and improves energy efficiency while also helping the local grid sustain power supply through excellent charge and discharge cycle balancing. The ESS’s capacity to adapt to demand variations by increasing power during peak hours and reducing energy consumption during off-peak periods serves as an example of a crucial demand response and smart grid management method. In this context, the integration of an energy storage system (ESS) yields noteworthy advantages for grid stability, cost-effectiveness, and sustainable energy consumption. These benefits are consistent with the overarching goals of enhancing infrastructure resilience and advancing eco-friendly energy alternatives.




4.2. Evaluations


The findings of this study clearly show that the integration of an energy storage system (ESS) significantly enhances the capacity of EV charging stations, ensuring the fulfillment of all demand while optimizing cost efficiency. The simulation results indicate that the ESS is effectively utilized to charge during low-cost hours and discharge to support EV demand during peak hours. This dynamic management of the ESS not only meets the energy requirements but also contributes to grid stability by providing additional power capacity during high-demand periods. The system demonstrated the ability to charge and discharge efficiently, maintaining the state of charge (SOC) within safe operational limits and leveraging low electricity prices to maximize cost savings.



One explanation for the success of this approach is the rule-based algorithm that dynamically adjusts charging and discharging based on real-time electricity prices and EV demand. This method ensures that the ESS is charged when electricity prices are low and discharged during high-demand periods, thus providing both economic and operational benefits. This approach aligns with existing literature that emphasizes the importance of adaptive and intelligent control systems in managing energy storage for EV charging infrastructures. Studies by Yang et al. [18] and Guan et al. [19] similarly highlight the benefits of integrating predictive control and reinforcement learning to optimize charging operations, thus supporting the effectiveness of the rule-based method used in this study.



The implications of these findings are substantial for the development of EV infrastructure. By implementing an ESS with a rule-based control strategy, it is possible to enhance the operational efficiency of EV charging stations, reduce the need for costly infrastructure upgrades, and support the broader adoption of electric vehicles. This approach provides a scalable solution that can be tailored to various settings, from residential complexes to commercial charging hubs, ensuring that power capacity can be managed effectively without extensive grid modifications.




4.3. Performance Comparison with Existing Methods


As detailed in Table 2, our proposed rule-based control system exhibits superior performance compared to existing methods across multiple critical criteria. Our method aims to optimize the use of energy storage systems (ESSs) to manage demand and grid load effectively. By employing a rule-based control system that makes real-time adjustments based on hourly data, we achieve a charge/discharge efficiency of 90%, ensuring minimal energy losses during operation. This efficiency is notably higher than other methods, which either do not specify efficiency metrics or lack specific efficiency data, making it challenging to assess their performance accurately.



A rule-based control algorithm is preferred to an optimization in this case, since for real-time activation, the algorithm used does not require time to run any optimization function and find decision variables and, hence, does not have to endure any deviations from the inputs often inherent to an optimization strategy used. This enhances our system’s ability to make immediate adjustments, which is crucial for managing dynamic conditions and maintaining system stability.



In terms of state of charge (SOC) management and battery health consideration, our algorithm maintains the ESS SOC between 20% and 95%, preventing overcharging and deep discharging. This proactive SOC management preserves battery longevity, setting our method apart from others where SOC management is not directly specified or only indirectly addressed. By preventing damaging charge levels, our approach places a high emphasis on battery health, unlike some existing methods that may not prioritize battery longevity to the same extent.



Our method also leads to significant energy cost savings by charging the ESS during periods with the lowest electricity rates. This strategy not only reduces operational costs but also lessens the load on the grid during peak demand times. While some methods aim to reduce costs through various means, they often do not provide specific percentages or directly compare to the substantial savings achieved by our approach.



Regarding response time and grid impact, our system’s ability to make real-time adjustments based on hourly data allows it to effectively manage peak demand and reduce the risk of overloading the grid infrastructure. This immediate response capability offers a crucial advantage over reservation-based systems or those that may not adapt quickly to sudden changes in demand. By efficiently managing peak demand, our method directly addresses grid impact, a benefit not as prominently featured in other methods.



In terms of technology required and user input, our approach requires only basic control systems within a simulated data environment. This makes it more accessible and easier to implement compared to methods that necessitate advanced hardware or sophisticated battery management systems. The minimal user input required further enhances the practicality of our method, as it operates autonomously based on predefined rules. This reduces the potential for human error and increases convenience for users, unlike some methods that require direct user input for optimal results.



In summary, our proposed method offers a comprehensive solution that balances efficiency, cost savings, battery health preservation, and grid impact mitigation. Its ease of implementation and minimal user input requirements make it practical for real-world applications. Compared to existing methods, our approach demonstrates superior performance across multiple critical criteria, establishing it as the most effective method among those evaluated.




4.4. Limitations and Recommendations


While the simulation results demonstrated the effectiveness of the proposed rule-based control algorithm, this study was limited by its reliance on a simulated dataset and predefined electricity price scenarios. These simulations may not fully capture the variability, unpredictability, and complexities of real-world conditions, such as fluctuating EV arrival rates, diverse charging behaviors, and dynamic grid constraints. We acknowledge that actual data from specific times and locations would enhance the universality and applicability of our findings.



An actual implementation might face challenges such as unexpected EV demand spikes, grid outages, varying efficiency rates due to environmental factors, and communication delays. Therefore, future research should focus on collecting and incorporating real-world data to validate and refine the proposed control strategy. Integrating more dynamic and comprehensive datasets will allow for the development of more generalized models.



Moreover, while the rule-based approach proved effective in the simulation, incorporating advanced control strategies, such as machine learning or predictive analytics, could further enhance the optimization of ESS operations. These techniques could enable more accurate predictions of EV demand and electricity prices, allowing for more proactive and efficient energy management.





5. Conclusions


In this study, we presented a rule-based control algorithm for managing a battery energy storage system (ESS) to support an electric vehicle (EV) charging infrastructure. The algorithm dynamically adjusts the charging and discharging of the ESS based on real-time electricity prices and EV demand, aiming to maximize operational efficiency, reduce costs, and enhance grid stability. Through simulations over a 24 h period, our results demonstrated that the ESS effectively meets all EV charging demands while optimizing the use of low-cost electricity periods for charging. The battery provided a total of 1000 kWh, reaching a maximum discharging power of 50 kW, and significantly increased the node’s power capacity during 10 h of peak demand. The key contributions of this study include the following:




	
Development of a Robust Control Strategy: We developed a rule-based control algorithm that is simple to implement yet effective in managing ESS operations alongside EV charging demands.



	
Enhancement of Grid Stability: The integration of the ESS alleviated grid constraints by providing additional power during peak demand periods, thereby enhancing the reliability of the EV charging infrastructure.



	
Operational Cost Reduction: By strategically charging the ESS during low-cost electricity periods, the overall operational costs were reduced, demonstrating economic benefits.



	
Framework for Future Adaptation: The comprehensive methodology and mathematical formulation provide a foundation that can be adapted to various settings, supporting scalability and customization according to specific operational requirements.








5.1. Future Research Directions


Our future studies to further enhance the proposed control strategy will focus on validating it with real-world data from specific locations and time frames to enhance its universality and applicability. Incorporating actual data will help refine the model and ensure that it effectively captures the variability and unpredictability of real-world conditions. Additionally, integrating advanced control strategies, such as machine learning techniques, can enable more accurate predictions of EV demand and electricity price fluctuations, further optimizing ESS operations. Exploring the interaction between the ESS and renewable energy sources like solar or wind power can enhance sustainability and efficiency, providing a more holistic approach to energy management. Investigating the optimal sizing of the ESS is also crucial to balance cost-effectiveness with desired performance metrics, ensuring that the system can handle peak demands without overinvestment. Finally, conducting on-field implementations and real-world trials will test the robustness of the control algorithm under diverse operating conditions and provide valuable insights into practical challenges, facilitating the refinement and practical adoption of the proposed system.




5.2. Policy Implications and Recommendations


The integration of energy storage systems (ESSs) with electric vehicle (EV) charging infrastructures offers significant opportunities for enhancing grid stability, reducing operational costs, and promoting sustainable energy consumption. Policymakers and stakeholders should consider several strategic actions to capitalize on these benefits:



Governments and regulatory bodies should incentivize the adoption of ESS in EV charging stations through tax credits, subsidies, or low-interest financing to offset the initial capital costs. Additionally, modernizing grid infrastructure is crucial to support the increased demand from EV charging. This includes upgrading grid capacity and implementing smart grid technologies to enhance the responsiveness and reliability of the energy supply.



Investment in research and development is also vital, focusing on advanced control algorithms, energy management systems, and the integration of renewable energies, which can drive innovation in the EV charging sector. Adopting dynamic electricity pricing models would encourage off-peak charging and use of ESS to balance demand, while establishing industry standards for ESS and EV charging infrastructure ensures interoperability and compatibility across different systems.



Finally, policies should support the integration of renewable energy sources with ESS and EV charging stations to enhance sustainability, offering incentives for installing renewable energy generation at charging sites to reduce grid reliance and lower carbon emissions.



By adopting these recommendations, governments and stakeholders can foster the development and adoption of electric vehicles and energy storage systems, contributing to a more sustainable and resilient energy future.
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Abbreviations




	    D  E V   =  [  d 1  ,  d 2  , … ,  d 24  ]    
	EV demand profile over a 24 h period.



	   P = [  p 1  ,  p 2  , … ,  p 24  ]   
	Electricity prices corresponding to each hour.



	   T = 24   
	Total number of time slots (hours) in the considered period.



	   P  m a x    
	Maximum power available from the grid.



	   P  E V    
	Power demand of an EV.



	  P  B  c h a r g e    ,   P  B  d i s c h a r g e    
	Power limits for charging and discharging the battery.



	   C  E S S    
	Total energy storage capacity.



	  η  c h a r g e   ,   η  d i s c h a r g e   
	Efficiency of charging and discharging.



	  SOC initial  ,   SOC min  ,   SOC max  
	Initial, minimum, and maximum states of charge of the battery.
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Figure 1. EV charging and battery management flow chart. 
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Figure 2. 24-h Battery and EV charging dynamics with vehicle counts. 
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Figure 3. Battery and EV charging dynamics for selected periods. 
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Table 1. Hourly charge, discharge, SOC, EV demand, and related events.
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	Hour
	Charge (kW)
	Discharge (kW)
	SOC (kWh)
	EV Demand (kW)
	Cars Charging
	Battery Support
	Charging Event
	Discharging Event





	0
	0.00
	0.00
	20.00
	11
	1
	No
	No
	No



	1
	0.00
	0.00
	20.00
	11
	1
	No
	No
	No



	2
	50.00
	0.00
	65.00
	22
	2
	No
	Yes
	No



	3
	0.00
	0.00
	65.00
	22
	2
	No
	No
	No



	4
	0.00
	0.00
	65.00
	11
	1
	No
	No
	No



	5
	33.33
	0.00
	95.00
	22
	2
	No
	Yes
	No



	6
	0.00
	0.00
	95.00
	44
	4
	No
	No
	No



	7
	0.00
	0.00
	95.00
	66
	6
	No
	No
	No



	8
	0.00
	0.00
	95.00
	88
	8
	No
	No
	No



	9
	0.00
	31.00
	60.55
	121
	11
	Yes
	No
	Yes



	10
	0.00
	0.00
	60.55
	90
	8
	No
	No
	No



	11
	21.60
	0.00
	79.99
	66
	6
	No
	Yes
	No



	12
	1.80
	0.00
	81.61
	88
	8
	No
	Yes
	No



	13
	0.00
	20.00
	59.39
	110
	10
	Yes
	No
	Yes



	14
	0.00
	0.00
	59.39
	90
	8
	No
	No
	No



	15
	45.00
	0.00
	95.00
	22
	2
	No
	Yes
	No



	16
	0.00
	0.00
	95.00
	22
	2
	No
	No
	No



	17
	0.00
	0.00
	95.00
	44
	4
	No
	No
	No



	18
	0.00
	0.00
	95.00
	55
	5
	No
	No
	No



	19
	0.00
	0.00
	95.00
	66
	6
	No
	No
	No



	20
	0.00
	20.00
	72.77
	110
	10
	Yes
	No
	Yes



	21
	0.00
	9.00
	62.77
	99
	9
	Yes
	No
	Yes



	22
	45.00
	0.00
	95.00
	22
	2
	No
	Yes
	No



	23
	0.00
	0.00
	95.00
	0
	0
	No
	No
	No










 





Table 2. Comparison with existing methods.
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	Criteria
	Our Methods
	Carvalhosa, S., et al., 2023 [15]
	Vaidya, B., et al., 2020 [9]
	Chung, C., et al., 2020 [16]
	Guan, Y., et al., 2024 [19]





	Objective
	Optimize ESS use to manage demand and grid load
	Minimize current allocation to meet user SOC demand
	Efficient slot management for EV charging
	Reduce battery degradation
	Optimize EV charging operations



	Approach
	Rule-based control system
	Real-time adjustment of charging power
	Reservation-based strategy with MOSA
	Optimal charging plan considering battery life stage
	Safe RL framework with rule-based shields



	Efficiency (%)
	90% charge/discharge efficiency
	Charging losses considered
	High, inferred from reduced waiting times and optimized slot management
	Not specified
	Improved efficiency through optimal policy finding



	SOC Management
	20–95% capacity, prevents over/undercharging
	Real-time current adjustments to match demand
	Managed through detailed SOC monitoring and scheduling
	Optimizes charging to extend battery life
	Manages SOC within targets through controlled charging strategies



	Energy Cost Savings (%)
	Significant savings by charging at lowest rates
	Savings by reducing curtailed range
	Significant, enabled by optimized scheduling and grid load management
	Not specified
	Potential savings through optimized TOU price response and demand management



	Response Time
	Real-time adjustments based on hourly data
	Immediate adjustments to charging power
	Based on reservation system
	Adjusts based on battery life stage needs
	Immediate based on safety constraints



	Grid Impact
	Lessens load, manages peak demand efficiently
	Minimizes grid strain during high demand
	Manages station congestion
	Reduces stress on battery and grid
	Ensures grid safety with RL shields



	Battery Health Consideration
	High, prevents damaging charge levels
	High, focuses on low current charging
	Indirectly addressed through optimized charging management
	High, optimizes for battery longevity
	Maintains battery health by managing charging strategies to avoid overcharging and undercharging



	Technology Required
	Basic control systems, simulated data environment
	Advanced hardware/software for real-time control
	Advanced reservation systems
	Sophisticated battery management systems
	Advanced RL algorithms with safety shields



	User Input Required
	Minimal, automated based on predefined rules
	Requires direct user input for optimal results
	Minimal, automated within system
	Minimal, automated adjustments
	Minimal, primarily automated
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