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Abstract: Dynamic voltage restores (DVRs) are usually used to mitigate the effect of voltage sag
and guarantee sufficient power supply for sensitive loads. However, three-phase voltage cannot
be compensated to the desired balance voltage under unbalanced three-phase loads by traditional
DVRs with a three-phase, three-leg inverter. To address this problem, a three-phase, four-leg inverter-
based DVR is first introduced in this paper, and then the state space model in its continuous form
and discrete form are established, respectively. A two-step predictive method is proposed for
the prediction of the output voltage in each switching state by the established voltage prediction
model. Finite-control-set model predictive control (MPC) is developed to be used in the three-phase,
four-leg inverter-based DVR. Its dynamic response is effectively improved by the proposed MPC
method under various voltage sag conditions. The proposed DVR control strategy is validated via
MATLAB/Simulink-R2022b simulations, which demonstrate its effectiveness in voltage compensation
under various sag conditions.

Keywords: DVR; three-phase, four-leg inverter; SOGI; FCS-MPC

1. Introduction

Voltage sag is a typical power quality issue in modern power grids [1,2], and it can
significantly affect the stability of sensitive loads. Dynamic voltage restorers (DVRs) have
been widely implemented as an effective solution to mitigate voltage sags. However, in
three-phase, three-wire systems, there is no dedicated path for the zero-sequence compo-
nent of the grid current, resulting in voltage imbalances when unbalanced loads are present.
Thus, DVRs designed for unbalanced loads must be re-engineered to ensure high-quality
power delivery. Similar strategies for addressing power quality under uncertain grid
conditions and load fluctuations have been explored in multi-agent energy systems, where
flexibility and control robustness are achieved through advanced optimization techniques
such as chance-constrained programming (CCP) [3,4].

To address power quality issues caused by asymmetrical loads in the grid system, a
three-phase, four-leg inverter is proposed in [5] to generate a balanced grid voltage even
under unbalanced load conditions. A key feature of the three-phase, four-leg inverter is the
additional N-phase leg, which provides a dedicated path for zero-sequence currents. This
additional leg allows for the adjustment of the neutral potential, addressing the limitations
of traditional three-phase, three-leg inverters, where zero-sequence currents cannot be
compensated, leading to voltage imbalance. By providing a clear path for zero-sequence
currents, the three-phase, four-leg inverter ensures improved voltage balance and power
quality in systems with unbalanced loads. Recent studies have emphasized the importance
of advanced control strategies, such as adaptive control and virtual impedance methods,
to further improve voltage compensation in dynamic and weak grid environments [6,7].
Additionally, the use of techniques like second-order generalized integrators (SOGIs) has
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proven effective in filtering out disturbances and enhancing the control precision of grid-
tied inverters under both balanced and unbalanced conditions [8].

The control loop of a three-phase, four-leg inverter typically includes a current con-
trol loop, a voltage control loop, sequence component separation, and a phase-locked
loop (PLL). Control strategies can be implemented in either the dq frame or αβ frame.
Proportional–integral (PI) controllers are commonly used for regulating voltage and current
in the dq frame, while proportional resonant (PR) controllers are preferred for harmonic
compensation in the αβ frame, as shown in previous studies [9,10]. In conditions where
the system experiences unbalanced loads or grid voltages, it is crucial to separate the
positive- and negative-sequence components of both current and voltage. This ensures the
effective closed-loop control and synchronization of voltage to maintain system stability. To
achieve this, the double second-order generalized integrator (DSOGI) is widely employed
for orthogonal component reconstruction, allowing for the accurate calculation of positive-
and negative-sequence components from sampled signals, as demonstrated by [11]. This
method significantly improves the control system’s performance in dynamic grid condi-
tions, where voltage sags or distortions are common, as noted by [12] and further validated
by [13] in their respective studies.

Traditional control methods, such as those applied in three-phase, four-leg inverters
for uninterruptible power supplies (UPSs), have been widely used in various power
electronics applications. However, when these methods are adapted for use in dynamic
voltage restorers (DVRs), their effectiveness is often limited by the complexity of modern
grid conditions, which include unbalanced voltages and fluctuating loads. One of the
key challenges in DVR applications is achieving a rapid dynamic response to voltage
sags, a critical requirement to ensure voltage stability for sensitive loads [14]. Although
traditional double-loop control strategies—such as those incorporating negative-sequence
component suppression—have been optimized to improve dynamic response, they often
struggle to maintain performance under diverse operating conditions [15]. For example,
control parameters that are fine-tuned for specific conditions may become suboptimal in
the presence of varying load profiles or unbalanced grid voltages. Recent studies have
highlighted these limitations, indicating that fixed-parameter control schemes may not
provide sufficient flexibility in real-world applications. This has led to increased interest in
adaptive and non-linear control strategies, which can adjust in real time to maintain robust
performance across a wider range of scenarios [16,17].

Unlike traditional linear control methods, model predictive control (MPC) offers a su-
perior dynamic response without relying on pulse-width modulation (PWM), which makes
it particularly advantageous for inverter applications in dynamic and complex grid envi-
ronments. Recent studies have demonstrated the effectiveness of MPC in grid-connected
inverters, highlighting its ability to adapt to variable grid conditions and non-linearities
without the complexities associated with conventional PWM schemes [18,19]. MPC can
be broadly categorized into two types: finite-control-set (FCS) and continuous-control-set
(CCS) MPC. FCS-MPC allows for direct control over switching states, resulting in faster
dynamic response times, which are critical for effectively managing disturbances such as
voltage sags and unbalanced loads [20]. FCS-MPC, being independent of PWM, operates
with a variable switching frequency, making it suitable for applications less sensitive to
switching frequency, while CCS-MPC leverages PWM to generate smooth control inputs,
ideal for high-precision control demands [21]. CCS-MPC exhibits superior dynamic perfor-
mance, particularly in scenarios where system parameters and load conditions frequently
change, demonstrating higher fault tolerance. In contrast, FCS-MPC achieves lower total
harmonic distortion (THD) under steady-state conditions [22].

Sliding mode control (SMC) offers robust performance in the face of parameter vari-
ations and external disturbances by forcing system states onto a predefined sliding sur-
face [23]. While SMC excels in uncertain environments and is computationally simpler, it
suffers from chattering, which can degrade performance [24]. MPC, particularly FCS-MPC,
delivers precise control and flexibility in multi-variable systems but requires accurate mod-
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els and greater computational resources. Ultimately, the choice between MPC and SMC
hinges on specific application requirements: MPC is preferable for optimal performance
under accurate modeling conditions, while SMC is advantageous in situations requiring
simplicity and robustness against uncertainties [25].

FCS-MPC can regulate the voltage and current of the inverter without relying on a
PWM loop, offering a significantly faster dynamic response compared to traditional linear
controllers. In [26], FCS-MPC is applied to a three-phase, four-leg inverter to regulate
grid current, further enhancing dynamic performance. However, this control method is
primarily suited for L-filtered inverters. When applied to inverters with second-order filters,
such as LC filters, the prediction model for state variables often lacks precision, limiting
its effectiveness. To address this limitation, Ref. [27] proposed a model predictive voltage
control scheme for LC-filtered three-phase, four-leg inverters, achieving constant voltage
regulation without PWM. Despite this, the dynamic response remains constrained due
to the use of CCS-MPC, which, while effective for steady-state control, does not provide
the rapid dynamic response needed in scenarios like voltage sags or unbalanced loads. In
contrast, Ref. [20] proposed an FCS-MPC method for LC-filtered inverters, demonstrating
the fast and accurate regulation of three-phase voltages. However, its application to three-
phase, four-leg inverters has yet to be fully verified.

Unlike traditional grid-connected inverters or voltage source inverters designed for
passive loads, DVRs are connected in series with the system to compensate for load voltage,
necessitating a much faster dynamic response. In DVR applications, the voltage reference
must be calculated in real time within the controller. In [28], a DVR with an MPC-based
three-phase NPC inverter was introduced, and they proposed a two-step indirect voltage
prediction method to enhance control accuracy. Both symmetrical and asymmetrical voltage
drops were analyzed and effectively compensated, further illustrating the potential of MPC
in real-time voltage regulation for DVR applications.

The organization of this paper is as follows: Section 2 describes the topology of a
DVR with a three-phase, four-leg inverter. Section 3 introduces the basic control loop of a
DVR, focusing on sequence component separation and control strategies. In Section 4, the
prediction model for an LC filter is established, and MPC for a three-phase, four-leg inverter
is proposed to improve the dynamic response of a DVR. Section 5 presents the system’s
validation through MATLAB/Simulink simulations. Finally, conclusions are drawn in
Section 6.

2. Description of the System

In this section, the topology of the three-phase, four-leg inverter used in the DVR
system is presented. The fourth leg (N-phase) plays a critical role by providing a path for
zero-sequence currents, allowing the system to effectively compensate for voltage imbal-
ances in the presence of unbalanced loads. This makes the four-leg inverter superior to
traditional three-leg inverters, especially under asymmetric load conditions. The inverter
is connected in series with the power system, and its primary task is to maintain a bal-
anced voltage supply to sensitive loads by dynamically compensating for voltage sags
and fluctuations.

The topology of the three-phase, four-leg inverter is shown in Figure 1, and L is the
filter inductor. vx, ugx and ulx are the leg voltage, the grid voltage and the load voltage in
phase x(x = a, b, c). vn is the voltage of phase n. ux is the output voltage of the DVR in phase
x. ix and igx are the inductor current and output current of the DVR in phase x, respectively.
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Figure 1. The topology of the three-phase, four-leg DVR.

The mathematical model of the inverter is derived in both the abc and αβγ coordinate
systems. The abc frame is used for describing the three-phase voltages and currents in their
natural form, while the αβγ frame provides a decoupled representation that simplifies the
control of zero-sequence components.

According to Kirchhoff’s law, the following equation can be derived as follows:
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where vxn = vx − vn(x = a, b, c).
From the Clark transform, the following equation can be derived as follows: L d
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where the subscripts α, β, and γ represent the components of the αβ frame and the zero
sequence, respectively.

This transformation provides a clear decoupling of the voltage components, with
the αβ components representing the balanced part of the three-phase system, and the
γ component handling the zero-sequence voltage. These decoupled components are
particularly useful for model predictive control (MPC) as they allow for independent
control over the different aspects of the inverter’s output voltage.

The αβγ model is further employed in the development of the prediction model for
the inverter, facilitating real-time voltage and current regulation. In Section 4, we will
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demonstrate how this mathematical model is integrated into the MPC scheme to optimize
the inverter’s performance under varying grid conditions.

3. Control Loop Description
3.1. SOGI Structure

In order to separate the positive and negative components of the system, an SOGI is
applied in the control loop, and the SOGI structure is shown in Figure 2. In Figure 2, ω0 is
the fundamental frequency, and k is the damping ratio.
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The transfer function can be expressed as follows:

D(s) =
x′(s)
x(s)

=
kω0s

s2 + kω0s + ω2
0

(6)

Q(s) =
xquad(s)

x(s)
=

kω2
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s2 + kω0s + ω2
0

(7)

The outputs of the SOGI x’ and xquad are orthogonal in the fundamental frequency.

3.2. Decoupling of Positive and Negative Sequences

As shown in Figure 2, the SOGI is used for the orthogonal reconstruction of the grid
voltage in the αβ frame. Then, the positive and negative components in the αβ frame can
be expressed as follows: xp

α = 1
2 (x′α − xquad

β )

xn
α = 1

2 (x′α + xquad
β )

(8)

 xp
β = 1

2 (x′β + xquad
α )

xn
β = 1

2 (x′β − xquad
α )

(9)

According to (8), the positive and negative components can be separated by the
block diagram depicted in Figure 3. The vector relationship between the positive- and
negative-sequence voltage components can be expressed as shown in Figure 4.

By combining the SOGI with (8) and (9), the voltage vector in the αβ frame can be
decomposed into the positive-sequence voltage and the negative-sequence voltage, as
shown in Figure 5.



Energies 2024, 17, 5622 6 of 19

Energies 2024, 17, x FOR PEER REVIEW 6 of 20 
 

 

' quad

' quad

1 ( + )
2
1 ( )
2

p

n

x x x

x x x

β β α

β β α

 =

 = −


 (9)

According to (8), the positive and negative components can be separated by the block 
diagram depicted in Figure 3. The vector relationship between the positive- and negative-
sequence voltage components can be expressed as shown in Figure 4. 

 
Figure 3. Extraction of positive- and negative-sequence components. 

 
Figure 4. Voltage vector decoupling representation. 

'xα
'xβ

quadxα
quadxβ 0.5

0.5

0.5

0.5
pxα

nxα
nxβ

pxβ

pxα

pxβ

nxα

nxβ

xα

xβ

px

nx

_p quadx

_n quadx

_p quadxα

_n quadxα

_n quadxβ

_p quadxβ

x

Figure 3. Extraction of positive- and negative-sequence components.

Energies 2024, 17, x FOR PEER REVIEW 6 of 20 
 

 

' quad

' quad

1 ( + )
2
1 ( )
2

p

n

x x x

x x x

β β α

β β α

 =

 = −


 (9)

According to (8), the positive and negative components can be separated by the block 
diagram depicted in Figure 3. The vector relationship between the positive- and negative-
sequence voltage components can be expressed as shown in Figure 4. 

 
Figure 3. Extraction of positive- and negative-sequence components. 

 
Figure 4. Voltage vector decoupling representation. 

'xα
'xβ

quadxα
quadxβ 0.5

0.5

0.5

0.5
pxα

nxα
nxβ

pxβ

pxα

pxβ

nxα

nxβ

xα

xβ

px

nx

_p quadx

_n quadx

_p quadxα

_n quadxα

_n quadxβ

_p quadxβ

x

Figure 4. Voltage vector decoupling representation.

Energies 2024, 17, x FOR PEER REVIEW 7 of 20 
 

 

By combining the SOGI with (8) and (9), the voltage vector in the αβ frame can be 
decomposed into the positive-sequence voltage and the negative-sequence voltage, as 
shown in Figure 5. 

abc

αβ

SOGI

SOGI

abcx

xα

0ω

xβ

0ω

'xα

'xβ

quadxα

quadxβ

pxα

nxα
pxβ

nxβ

Eq.(8)
Eq.(9)

 
Figure 5. Block diagram of positive- and negative-sequence component separation. 

The separated positive-sequence voltage will be applied for the voltage synchroniza-
tion and double-loop control of the voltage and current. And the traditional control loop 
with a linear controller is illustrated in Figure 6. The superscripts p and n represent the 
positive- and negative-sequence components, respectively. The subscripts dq and dq_ref 
represent the components in dq frame, respectively. 

 
Figure 6. Block diagram of voltage control and current control of positive- and negative-sequence 
components. 

It can be seen that the voltage and current sequence components should be separated 
by a DSOGI, which is a second-order filter, and the dynamic response will become slow 
due to this filter. The traditional method limits the dynamic response of the DVR under 
unbalanced grid conditions. 

4. Model Predictive Control 
Compared to traditional double-loop control, model predictive control can be used 

for voltage control without a current control loop or PWM loop, and the dynamic response 
is thereby improved dramatically. In MPC, the voltage and current can be predicted for 
the next interval by the established predictive model, and then the optimal voltage vector 
should be selected for the next control interval. Therefore, the predictive model, cost func-
tion, and voltage vector analysis are the main components of MPC. 

4.1. Voltage Vector Analysis of Three-Phase, Four-Leg Inverter 
It is assumed that Sa, Sb, Sc, and Sn represent the switching states of legs a(Sa1,Sa2), 

b(Sb1,Sb2), c (Sc1,Sc2), and n (Sn1,Sn2), respectively. In this topology, the switches in each leg 
must operate in a complementary manner. Specifically, a state of “1” indicates that the 
upper switch is ON and the lower switch is OFF, while a state of “0” indicates that the 

PI(s)PI(s)_
n
dq refu

_
p
dq refi

n
dqi

PI(s)PI(s)

Voltage and current control

_
n
dq refu _

n
dq refi

n
dqi

e-jωt

ejωt

1
sL

1
sC

control plant

uαβ
uαβ

gi αβ

gv αβ

Current sequence separation

voltage sequence separation

n
dqu

p
dqu

Figure 5. Block diagram of positive- and negative-sequence component separation.



Energies 2024, 17, 5622 7 of 19

The separated positive-sequence voltage will be applied for the voltage synchroniza-
tion and double-loop control of the voltage and current. And the traditional control loop
with a linear controller is illustrated in Figure 6. The superscripts p and n represent the
positive- and negative-sequence components, respectively. The subscripts dq and dq_ref
represent the components in dq frame, respectively.
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It can be seen that the voltage and current sequence components should be separated
by a DSOGI, which is a second-order filter, and the dynamic response will become slow
due to this filter. The traditional method limits the dynamic response of the DVR under
unbalanced grid conditions.

4. Model Predictive Control

Compared to traditional double-loop control, model predictive control can be used for
voltage control without a current control loop or PWM loop, and the dynamic response
is thereby improved dramatically. In MPC, the voltage and current can be predicted for
the next interval by the established predictive model, and then the optimal voltage vector
should be selected for the next control interval. Therefore, the predictive model, cost
function, and voltage vector analysis are the main components of MPC.

4.1. Voltage Vector Analysis of Three-Phase, Four-Leg Inverter

It is assumed that Sa, Sb, Sc, and Sn represent the switching states of legs a(Sa1,Sa2),
b(Sb1,Sb2), c (Sc1,Sc2), and n (Sn1,Sn2), respectively. In this topology, the switches in each
leg must operate in a complementary manner. Specifically, a state of “1” indicates that the
upper switch is ON and the lower switch is OFF, while a state of “0” indicates that the
upper switch is OFF and the lower switch is ON. The four-leg, three-phase inverter has 16
possible switching configurations, which correspond to 16 voltage vectors.

The 16 switch configurations are (0,0,0,0), (0,0,1,0), (0,1,0,0), (0,1,1,0), (1,0,0,0), (1,0,0,1),
(1,0,1,0), (1,1,0,0), (1,1,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,1), (1,0,1,1), (1,1,0,1), and (1,1,1,1).
The 16 switching configurations are numbered sequentially to obtain the output voltages,
van, vbn and vcn, of the three-phase, four-leg inverter. The output voltages, vα, vβ and vγ, of
the inverter in the αβ frame for the different switching configurations are derived from the
Clark transformation, as shown in Table 1.

Table 1. Effect of the combination of the inverter switch and inverter voltage.

Num Sa Sb Sc Sn van vbn vcn vαn vβn vγ

0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 Udc −Udc/3 −Udc/

√
3 Udc/3

2 0 1 0 0 0 Udc 0 −Udc/3 Udc/
√

3 Udc/3
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Table 1. Cont.

Num Sa Sb Sc Sn van vbn vcn vαn vβn vγ

3 0 1 1 0 0 Udc Udc −2Udc/3 0 2Udc/3
4 1 0 0 0 Udc 0 0 2Udc/3 0 Udc/3
5 1 0 1 0 Udc 0 Udc Udc/3 −Udc/

√
3 2Udc/3

6 1 1 0 0 Udc Udc 0 Udc/3 Udc/
√

3 2Udc/3
7 1 1 1 0 Udc Udc Udc 0 0 Udc
8 0 0 0 1 −Udc −Udc −Udc 0 0 −Udc
9 0 0 1 1 −Udc −Udc 0 −Udc/3 −Udc/

√
3 −2Udc/3

10 0 1 0 1 −Udc 0 −Udc −Udc/3 Udc/
√

3 −2Udc/3
11 0 1 1 1 −Udc 0 0 −2Udc/3 0 −Udc/3
12 1 0 0 1 0 −Udc −Udc 2Udc/3 0 −2Udc/3
13 1 0 1 1 0 −Udc 0 Udc/3 −Udc/

√
3 −Udc/3

14 1 1 0 1 0 0 −Udc Udc/3 Udc/
√

3 −Udc/3
15 1 1 1 1 0 0 0 0 0 0

4.2. Discrete Model of Three-Phase, Four-Leg DVR

For simplicity, it is assumed that uαβ = uα + juβ and iαβ = iα + jiβ, uαβn = uαn + juβn.
This leads to the state space shown in Equation (10), where r is the parasitic resistor of the
filter inductors. 

·
iαβ
·

iγ
·

uαβ
·

uγ

 =


− r

L 0 − 1
L 0

0 − r
L+3Ln

0 − 1
L+3Ln

1
C 0 0 0
0 1

C 0 0




iαβ

iγ

uαβ

uγ



+


1
L 0 0 0
0 1

L+3Ln
0 0

0 0 − 1
C 0

0 0 0 − 1
C




vαβ

vγ

ilαβ

ilγ


(10)

Equation (10) can be simplified as follows:

.
x(t) = Ax(t) + Bu(t) (11)

where x(t) is the state variable of the system, and u(t) represents the voltage and current at
the output of the inverter. When applying a zero-order holding input to a continuous time
system in the form of the state space represented by Equation (11), a discrete state space
model can be derived, as shown in (12).

x(k + 1) = Gx(k) + Hu(k) (12)

where

x(k) =


iαβ(k)
iγ(k)

uαβ(k)
uγ(k)

, u(k) =


vαβ(k)
vγ(k)

igαβ(k)
igγ(k)

, G = eATs , H =
∫ Ts

0
eA(Ts−τ)Bdτ (13)

Furthermore, due to the time delay of the control interval, the two-step prediction
method is used to predict the voltage and current. The predictive value of x at (k + 2) can
be expressed as shown in (14) according to (12).

x(k + 2) = Gx(k + 1) + Hu(k + 1) (14)

where x(k + 1) can be calculated by (7), in which u(k) is a known value calculated by (8),
and vαβ(k) and vγ(k) are predicted at the (k − 1)th instance.
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Since the sampling frequency is much higher than the time constant of the inverter
filter, it is assumed that the load currents, igαβ and igγ, can be regarded as constants during
one control cycle, and v(k + 1) is the desired value. Therefore, u(k + 1) in (14) can be
expressed as follows:

u(k + 1) =


vαβ(k + 1)
vγ(k + 1)

igαβ(k + 1)
igγ(k + 1)

 =


vdes

αβ (k)
vdes

γ (k)
igαβ(k)
igγ(k)

 (15)

where Vdes
αβ (k) and Vdes

γ (k) are the desired voltage vectors predicted at the kth instance,
which are derived from all 16 voltage vectors at the kth instance. Therefore, by substituting
(15) and (12) into (14), the predictive voltage at the k + 2 instance for the 16 voltage vectors
listed in Table 1 can be calculated.

4.3. Estimation of the Reference

The Lagrange extrapolation method is a widely employed estimation approach in
model predictive control. It leverages polynomial functions constructed from known
control variables to estimate other unknown variables or the control variables for the
subsequent time step. This method enables the construction of an nnnth-order polynomial
based on sampled values, facilitating prediction for the next time step and achieving
anticipatory estimation. It is necessary to estimate the reference voltage at the k + 2 step,
and the Lagrange extrapolation method is used for estimation in this paper.

uref(k) is the reference value of the compensation voltage generated in real time by
the DVR detection unit at time k. After the decoupling of the SOGI, the positive-sequence
voltage vector expression is obtained as shown in (16).

u+
re f−αβ(k) = u+

re f−α(k) + ju+
re f−β(k) = A+ejθ+(k) (16)

The positive-sequence voltage reference to be compensated by the DVR at the k + 2
instance is

u+
re f−αβ(k + 2) = 6u+

re f−αβ(k)− 8u+
re f−αβ(k − 1) + 3u+

re f−αβ(k − 2) (17)

Similarly, the negative-sequence voltage reference to be compensated by the DVR at
the k + 2 instance can be obtained as follows:

u−
re f−αβ(k + 2) = 6u−

re f−αβ(k)− 8u−
re f−αβ(k − 1) + 3u−

re f−αβ(k − 2) (18)

Combining Equations (17) and (18) gives

ure f−αβ(k + 2) =
[
u+

re f−α(k + 2) + u−
re f−α(k + 2)

]
+ j

[
u+

re f−β(k + 2) + u−
re f−β(k + 2)

]
= u+

re f−αβ(k + 2) + u−
re f−αβ(k + 2) = ure f−α(k + 2) + jure f−β(k + 2)

(19)

The estimated zero-sequence voltage reference is

ure f−γ(k + 2) = 6ure f−γ(k)− 8ure f−γ(k − 1) + 3ure f−γ(k − 2) (20)

4.4. Establishment of Cost Function

The cost function of the system is established by the predicted voltage output and the
reference of the compensation voltage, and the cost function can be written as
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J =
[
ure f−α(k + 2)− upre−α(k + 2)

]2
+

[
ure f−β(k + 2)− upre−β(k + 2)

]2

+
[
ure f−γ(k + 2)− upre−γ(k + 2)

]2 (21)

It is defined that inext is the optimal switching configuration applied at the instance k + 1.{
Ji = minJ
inext = i

(22)

In summary, a control cycle first executes the optimal switching configuration at
that moment and then samples and makes predictions to obtain the optimal switching
configuration for the next control cycle, and a control cycle flowchart is shown in Figure 7.
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5. Simulation Results

This section presents the results from the MATLAB/Simulink simulations conducted
to validate the performance of the proposed finite-control-set model predictive control
(FCS-MPC) strategy for the three-phase, four-leg dynamic voltage restorer (DVR). The
simulations were configured with a DC power supply, a transformer, a three-phase, four-leg
inverter, and an inductive–capacitive filter under various load conditions.

5.1. Setup

The simulation setup in MATLAB/Simulink includes a DC voltage source of 600 V, an
AC voltage source of 220 V (50 Hz), and asymmetrical load configurations. The simulation
aimed to explore the DVR’s response under varying voltage sag depths, different load
types, and harmonic distortions. The parameters for the MATLAB/Simulink simulations
are detailed in Table 2.

Table 2. Parameters for simulations.

Parameter Values

DC voltage source 800 V
RMS value of rated AC voltage source 220 V

Frequency of AC voltage sources 50 Hz
Equivalent resistance of filter inductor 0.2 Ω

Filter inductors 1 mH
Filter inductance in N-phase 1 mH

Filter capacitors
Switching frequency
Transformation ratio

500 µF
5 × 10−5 s

1:1

5.2. Overview of Results

This section presents an overview of the MATLAB/Simulink simulation results, eval-
uating the performance of the proposed FCS-MPC strategy for the DVR under various
voltage disturbances and load conditions. The simulations cover symmetrical and asym-
metrical voltage sags, as well as harmonic disturbances with non-linear loads.

5.2.1. Symmetrical Voltage Sag

Symmetrical voltage sags of 30%, 60% and 90% were introduced in the simulation
between 0.3 and 0.4 s to evaluate the DVR’s response. During each sag event, the DVR was
configured to restore the load voltage and maintain stability across these varying levels of
disturbance, allowing for the assessment of the FCS-MPC strategy’s performance under
different sag conditions. As shown in Figures 8–10, symmetrical voltage sags of 30%, 60%,
and 90% were introduced in the simulation, respectively. Figure 8 illustrates the DVR’s
response to a 30% voltage sag, Figure 9 shows the response to a 60% voltage sag, and
Figure 10 depicts the response to a 90% voltage sag.

During the 30%, 60% and 90% symmetrical voltage sags, the DVR successfully restored
the load voltage to a value close to the rated levels, within 1 millisecond, demonstrating
rapid compensation and a stable response across all sag depths.

5.2.2. Asymmetrical Voltage Sag

An asymmetrical voltage sag was introduced with a 70% voltage drop in phase A, a
50% drop in phase B and an 80% drop in phase C. The DVR responded within 1 millisecond,
restoring the load voltage to levels close to the rated value with minimal overshoot and
oscillation. The simulation results for this scenario are shown in Figure 11.
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This result indicates the DVR’s capability to manage unbalanced load conditions.
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5.2.3. Voltage Sag Compensation for Non-Linear Loads

To evaluate voltage fluctuation compensation under non-linear load conditions, a
three-phase, rectifier-based non-linear load with a resistance of 20 Ω and an inductance
of 10 mH was used. Various levels of voltage sags were introduced into the grid, and the
DVR’s impact on the load-side voltage was analyzed. Voltage sags of 60% and 90% of the
rated grid voltage were introduced. The simulation results for the 60% voltage sag are
shown in Figure 12, and those for the 90% voltage sag are shown in Figure 13.
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Figure 13. Voltage recovery under non-linear load with rectifier-based configuration (90% voltage
sag). (a) Load Current. (b) Injected Voltage. (c) Load Voltage.

The simulation results show that the DVR quickly responds to the sag, restoring the
load voltage to values close to the rated levels.

5.2.4. Harmonic Mitigation Performance Analysis

This section evaluates the DVR’s harmonic mitigation performance under non-linear
loads with harmonic disturbances. Two scenarios are tested: in the first scenario, the third,
fifth, and seventh harmonics are introduced with amplitudes of 10%, 10% and 5% of the
fundamental voltage, respectively. In the second scenario, the harmonics are set to 15% for
the third, 10% for the fifth, and 5% for the seventh. These configurations allow for assessing
the DVR’s ability to suppress harmonics of varying magnitudes.

The DVR’s harmonic mitigation performance under scenario 1, with the third, fifth,
and seventh harmonics set to 10%, 10%, and 5% of the fundamental voltage, is shown in
Figure 14a–c.
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The DVR’s harmonic mitigation performance under scenario 2, with the third, fifth,
and seventh harmonics set to 15%, 10%, and 5% of the fundamental voltage, is shown in
Figure 15a–c.
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The harmonic spectrum and total harmonic distortion (THD) values before and after
compensation demonstrate the DVR’s effectiveness in reducing THD, thereby ensuring
stable power quality on the load side.

5.3. Discussion and Analysis

The MATLAB/Simulink simulation results validate the proposed FCS-MPC strategy’s
efficacy in managing various voltage sag scenarios. The DVR consistently demonstrated
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quick voltage recovery across symmetrical and asymmetrical conditions. Notably, the
system maintained stability even under non-linear load conditions, where traditional DVRs
might struggle.

The addition of harmonic distortions provided further insights into the DVR’s perfor-
mance. The combination of FCS-MPC and SOGI filtering proved effective in mitigating
harmonics, ensuring a clean voltage output.

6. Conclusions

This paper presents a model predictive control (MPC) method for a three-phase, four-
leg dynamic voltage restorer (DVR). The MATLAB/Simulink simulation results demon-
strate that the proposed finite-control-set MPC (FCS-MPC) method significantly enhances
the DVR’s dynamic response to various voltage disturbances. The simulation results under
different load and harmonic conditions confirm the robustness and effectiveness of the
control strategy, showing consistent and reliable performance across symmetrical and
asymmetrical voltage sags as well as harmonic distortion scenarios.

The MATLAB/Simulink simulation was conducted to verify the correctness of the
proposed MPC method:

(1) Compared to a traditional DVR with a three-phase, three-leg inverter, a DVR with a
three-phase, four-leg inverter can be used to compensate for the unbalanced voltage
and load effectively.

(2) The MPC method for a three-phase, four-leg inverter can enhance its dynamic response
without requiring a double control loop or PWM.

(3) The control parameter is easily designed in the MPC method. Positive and negative
control loops are not necessary in MPC.
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