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Abstract: This paper aims to help data center administrators choose thermal simulation tools, which
manage thermal conduction from power for energy savings. When evaluating and suggesting data
center thermal simulators for users, questions such as “What are the simulator’s differences? Are they
easy to use? Which is the best choice?” are frequently asked. To answer these questions, this paper
reviews the thermal simulation works for data centers in the last ten years. After that, it proposes
the versatility and dexterity metrics for these simulators and discovers that it is difficult to choose
them despite their similar design purpose and functions. Empowered by the survey, we claim that
the widespread practice simulators still need more enhancement in data center scenarios. We back
up our claim by comparing typical simulators and propose improvements to thermal simulators for
future studies.

Keywords: electric energy; simulator; green data centers; energy conversion; energy management

1. Introduction

With the age of big data and global informationization, data centers have become an
indispensable infrastructure for modern society [1]. The growing online services, such as
cloud computing, mobile applications, and big data storage and processing, rely on the
support of such infrastructure. As shown in [2], the incoming load to data centers doubled
from 2015 to 2020. Therefore, large data center operators and vendors have to invest more
in computing resources. Increasing computational power and density imply a greater
cooling cost. For example, the cooling infrastructure is responsible for about 30–40 percent
of the total system’s power consumption [3]. A data center produces a large amount of heat
due to its high energy consumption. Thermal imbalance and hotspots would occur in a data
center without proper thermal management, further reducing computing efficiency and
hardware stability and even damaging hardware and breaking down the data center [4].

The state-of-art studies on thermal management generally consider the following
terms: cooling strategies, hotspot elimination, thermal air management, thermal-aware
workload scheduling, resource allocation, and virtual machine consolidation. In these
studies, experiments that prove the optimization effects can hardly run on a real-world
data center because establishing hardware, software, and energy supply is complicated and
costly. Therefore, most studies prefer simulated data centers rather than real-world data
centers; namely, experiments are performed on a thermal simulator. Figure 1 shows the
thermal management studies and their methods, objects, models, and relationships with
a data center simulator. According to our statistics, 75% of related works have adopted
simulators in their experiments in the past ten years. Although simulators of these studies
follow the essential simulation method, their design purposes, functionality, and usability
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vary. For example, simulators are designed for static optimization on data center design
only or support rich-featured input workloads. Unfortunately, few studies survey these
simulators and analyze their differences. As a result, the evaluation and selection of thermal
simulators in data centers has become a challenge.

Figure 1. Experimental studies on thermal management with simulator against real-world datacenter.
The objective of studies is to balance the heat distribution and/or save energy through static or
dynamic methods. The adjustable objects and corresponding models are at the top of the figure. All
the models and methods can be executed in a simulator with context and runtime simulation.

This paper comprehensively investigates state-of-the-art simulators. These simulators
have similar targets but distinguish functions. Moreover, some simulators are easy to learn,
access, deploy, and extend. The usability of these simulators also varies. We conclude with
two general metrics to evaluate these simulators: versatility and dexterity. The versatility
is that simulators could provide rich functions for various and complex experimental
contexts. The dexterity is about usability: simulators could be simple, intuitive, efficient,
and easy to use. The survey results show that Fluent [5] is the most popular data center
thermal simulator, suitable for many scenarios. The other simulators, such as CloudSim [6]
and MatLab [7], also show their advances in other scenarios. For example, Fluent is
not the best choice in the scenarios of dynamic thermal management considering larger-
scale distributed workloads, while CloudSim also requires improvement. To this end,
we propose improvements for the thermal simulator in terms of both versatility and
dexterity for widespread simulators, such as Fluent, in given scenarios. We back up our
proposition with uniform controlling metrics and comparisons on typical simulators. The
key contributions of our research are as follows:

• The analysis of state-of-the-art simulators brings a comprehensive view of the research
topic. Researchers who study thermal management in data centers could quickly
understand experimental environments and methods through our work.

• The suggestion for better simulators based on the proposed versatility and dexterity
metrics complements the common scene of simulator selection.
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• The summaries on thermal simulators are from two dimensions: how does a simulator
model context, heating, and cooling, and how easy is it to learn, deploy, execute, and
extend a simulator? They bring new experiences to the thermal management study.

The remainder of the paper is organized as follows: Section 2 introduces our research
method, including research questions and literature collection. The following three sections
answer the three research questions: Sections 3 and 4 analyze the versatility and dexterity
of state-of-the-art thermal simulators. Section 5 compares typical simulators and proposes
suggestions for selection. Section 6 gives the outlook of thermal simulators. The last section
concludes the paper.

2. Our Methods
2.1. Research Questions

RQ1: Do state-of-the-art simulators have the same functions as thermal simulators for
green data centers? What are these functions designed for?

RQ2: How easy is it to apply these simulators in thermal management research for green
data centers?

RQ3: Are the widely accepted simulators, such as Fluent, enough for thermal simulation
of data centers? Are there more expectations?

2.2. Search Methods

We conduct a preliminary search about data centers and thermal management using
DBLP.org (https://dblp.uni-trier.de, accessed on 26 October 2023) and IEEE Explore. In
IEEE Explore, the query conditions are “data center AND simulation AND (thermal OR
heat OR cooling OR hotspot)”. In DBLP.org, the search keywords are “thermal data center”
since it can only search titles. Moreover, we focus on English-written peer-reviewed papers
published in journals and proceedings of conferences after 2014. Meanwhile, papers about
building, construction, architecture, and civil engineering may not adopt the software
simulation and solution, or papers whose quality of service, energy, security, and other
optimization techniques address thermal management issues only in an incidental manner
are also excluded. Then, we obtain 86 candidates, examine the experimental environment
of the candidates, and select 54 papers that engaged data center simulations as survey
targets. Among the exclusions, some papers are without experiments, and 12 papers
perform experiments in real-world data centers.

2.3. Inclusive Objectives

This subsection summarizes the research objectives of the 54 related studies because
these objectives are requirements for the simulators. The popular simulators are countable,
and the experiments on these simulators are also for one goal, namely, the green data center
simulation; however, the objectives of these experimental simulations vary according to
the research objective of each work. The objectives have four aspects: goal, opportunity,
object, and method:

• The goal means the primary research objective, such as balancing the heat distribution,
saving the energy of data centers, both of the former two, and performance optimization.

• The opportunity means when the optimization occurs. It could be the static opti-
mization in the data center design stages, such as the building, capacities, power
supplement, and cooling configuration. It also involves dynamic optimization in the
data center runtime, such as workload placement and VM (virtual machine) migration.

• The object means the concepts or components the optimization aims at, such as servers,
workload, cooling facilities, and thermal environment.

• The method means the optimization method adopted in a study, such as hardware
acceleration, thermal-oriented method, heuristic and meta-heuristic algorithms, and
AI (artificial intelligence) empowered method.

https://dblp.uni-trier.de
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Table 1 lists the references for inclusive objectives. The percentages of cooling facilities,
thermal environment, workload, and servers are 38%, 23.9%, 23.9%, and 14.1%, respectively.
Because cooling facilities directly change the temperature of data centers, it accounts for the
most significant proportion of the four objects. Thermal environment control is an indirect
method of adjusting the temperature of data centers. Furthermore, servers are the source of
heat, so the studies on the servers’ working state (runtime) and thermal state (context) are
new directions. For example, workload-oriented dynamic optimization for balancing heat
distribution on data center runtime with heuristics and AI empower methods.

Table 1. Summarizing on objectives of reviewed papers.

Title 1 Title 2 References

Goals

Thermal balance (13) [4,5,8–18]
Energy Saving (26) [6,19–41]

Performance optimization (8) [4,26,42–47]
Both thermal and energy (3) [48–50]

Opportunities Static optimization on data center design (12) [8–10,14,15,21,25,30,31,34,41]
Dynamic optimization on data center runtime (22) [6,11–13,15–17,19–21,23,26–29,33,35,36,39,42,48,49]

Objects

Servers (7) [6,12,17,21,35,36,39]
Workload (12) [4,6,13,21,24,25,28–30,49]

Cooling facilities (19) [4–6,11,14,16,23,26,27,30,31,33,34,38,40,41,43,48,50]
Thermal environment (12) [5,8–10,15,18–21,32,42,44]

Methods

Hardware (7) [5,11,14,23,34,41,46]
Planning (13) [4,8,9,21,27,31,32,43,44,48,50]
Heuristic (7) [5,6,13,17,19,25,29]

AI empower (9) [15,16,18,20,24,33,36,38,40]

2.4. Inclusive Simulators

Table 2 lists the mentioned simulators in the selected 54 papers. These papers mainly
employ five typical simulators: Fluent, CloudSim, MatLab, 6SigmaDC, and self-developed.
The other simulators mentioned in Table 2, such as Energyplus [39] and Openfoam, have
only a few references. Furthermore, the “self-developed” is not a single simulator but a
collection of simulators that are developed for non-general purposes in some papers. It
only applies to the corresponding studies. However, some of them have common features.
Therefore, the rest of the paper groups the featured ones as the “self-developed simulator”
for comparison, discusses versatility and dexterity, performs comparative analysis, and
answers the research questions based on the five typical simulators.

Table 2. References for related works.

Simulator (Count) References

Fluent (19) [5,8–15,19–24,42,43,48,51]

MatLab (11) [7,16,21,25–30,50]

Self-developed (5) [37,38,45–47]

6SigmaDC (5) [31–34,44]

CloudSim (5) [4,6,17,18,35]

Energyplus (2) [39,40]

Anysis icepak (2) [4,41]

Tile flow (2) [52,53]

TRNSYS (1) [54]
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Fluent is the most popular one, accounting for about 40% of all simulation experiments.
Next, MatLab, self-developed, CloudSim, and 6SigmaDC take about 20%, 10%, 8.5%,
and 8.5%, respectively. Since Fluent is a professional thermal simulator, it is the most
common in data center thermal simulation. MatLab is a classic mathematical simulator. It is
widely used in all kinds of simulation experiments, such as data center thermal simulation.
CloudSim and 6SigmaDC are simulators specially designed for data center simulation.
They take as large a proportion as the self-developed simulator.

Figure 2 shows the time distribution of references for the five simulators. The trend of
applying these simulators is pronounced as follows: Fluent is always popular. Fluent was
the only choice for the first three years until MatLab integrated the data center thermal mod-
els in 2015. With the development of large-scale distributed systems and cluster systems,
CloudSim also integrated with thermal models and has become a popular simulator since
2015, but it is still not comparable with Fluent and MatLab. As a commercial simulator,
6SigmaDC only appeared from 2017 to 2020. However, researchers have tended to develop
their own in the last three years. Thus, self-developed simulators spread widely.

0
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eq
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Fluent MatLab
CloudSim 6SigmaDC
Self-develop

Figure 2. Time distribution of references for the five simulators. We normalized the referring
frequency of a simulator in a year only according to the simulator itself. The frequency is zero if there
is no reference in the year; it is 1 if the reference number of this year is the minimum among these
years; and it is n if the reference number of this year is n times the minimum one.

3. Versatility

This section studies the versatility of thermal simulators for data centers. The versa-
tility means that simulators could provide rich functions for various and complex experi-
mental contexts. It is also closely related to the objectives mentioned in Section 2.3. First,
simulators follow the same models as shown in Figure 1:

• The data center context is the static configuration of a data center, such as the building,
the environment, and the servers. It is determined in the design stage.

• The cooling facilities, known as the configuration of cooling equipment, are part of
the context.

• The data center runtime represents the dynamic state when a data center runs for
workloads. How to deal with workloads, such as generation, scheduling, placement,
and execution, dominates the data center runtime.

• The power model defines how the data center’s power changes with its runtime, such
as the power input and energy consumption models.

• The thermal model defines how the data center’s thermal environment changes with
its runtime, such as thermal distribution, transfer, and exchange.

This section studies versatility from the above five aspects. It calls them the five
dimensions and discusses them in the following five subsections. For a subsection, first, it
surveys the common and different functions of the simulations. The commonalities mean
most studies adopt these features, and the differences mean the opposite. Differences are
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the key to distinguishing and evaluating the simulators. Therefore, it defines the functional
“indicators” abstracted from the differences in the corresponding “definition”. Then, a
“reference table” summarizes the references for each indicator, and a “heatmap” shows
quantified values of indicators distributed in studies. The quantified value of a simulator’s
indicator is the proportion of the studies that adopted the indicator. Finally, it discusses
the findings on the dimension according to the reference table and the heatmap and shows
them in the corresponding “remark”. For example, the advantages and disadvantages of
different simulators on these indicators. After reviewing all dimensions, the last subsection
answers the RQ1.

3.1. Data Center Context

When modeling the data center context, the geographical attributes, building struc-
tures, and environments impact the simulation effect. However, such an impact does not
change with the runtime. Ninety percent of studies do not mention the data center context,
and ten percent of studies mentioned part of them, such as the latitude and longitude [55],
covered area [56], temperature [57], and humidity. Notice that the cooling configuration is
also a context and highlighted in the next dimension. Furthermore, 95/96 studies mention
one critical configuration: the data center scale.

The scale of the data center dominates the data center runtime and thermal environ-
ment, which are the two main objectives of current studies. Most of the studies consider
homogeneous data centers, and only a few studies define the data center bandwidth. The
server specification is mandatory. It includes scale, cores, memory, and storage. A few
works defined the specification in terms of known cases, such as the publicly available
technical report [58], data center infrastructure of IBM and HP, Eco4Cloud, PlanetLab traces,
and PUE value [59]. Furthermore, most works defined the performance specification by
servers’ capacities, namely, how fast the servers handled workloads. Despite the various
server specifications, the diversity is enumerable, and the difference is insignificant. In other
words, the different specifications of a single server can not greatly change the runtime and
environment; however, the number of servers in a data center can. In this way, the server
scale is a typical attribute of the data center scale.

Servers configured to the experiments in the studies are more or less. Meanwhile, no
simulator has a fixed-scale data center, leading to a considerable overlap in the number
of servers. For example, Tang et al. simulate a single server data center. In contrast,
Fang et al. [21] simulate the clusters with several thousands of servers. The data center
scale also expands from small to large. For example, Alkharabsheh et al. adopted Fluent to
simulate data centers ranging from 10 servers to 1000 servers. Shi et al. [32] also perform
the simulation on 6SigmaDC, ranging from 100 to 1000 servers. Studies focused on the
data center runtime prefer larger scales because they give space for optimization, such as
heuristic-based or AI-empowered workload management. However, it brings challenges to
the thermal simulation model. On the contrary, studies focused on the data center thermal
prefer small scales because it is easy to calculate and simulate the detailed changes in the
thermal environment.

As a result, the number of servers is the typical difference in the data center context,
and it is a good representation of the data center scale.

Definition 1 (Data Center Context Indicator). The static context indicators show the data
center scale in the number of servers. Three indicators are small-scale, middle-scale, and large-scale.
The orders of numbers represent that the number of servers in the simulated data center is up to one
hundred, less than a thousand, and more than a thousand, respectively.

Remark 1 (Simulation Scale). CloudSim is best suited to simulate large-scale data centers.
Table 3 shows the references of three static context indicators on five simulators. Figure 3 shows
the heatmap of three data center context indicators on five simulators. Fluent, the most popular
simulator, supports all scales; however, experiments with smaller scale data centers are more likely
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to choose Fluent than ones with a more significant scale. 6SigmaDC has only a few applications
with all scales. CloudSim is designed for cloud system simulation, so it is mainly for simulating a
large number of servers. In contrast, MatLab and self-developed simulators are used to simulate
middle- and small-scale data centers, possibly because the efforts to develop a more extensive scale
are enormous.

Table 3. References of three static context indicators on five simulators.

Small Scale Middle Scale Large Scale

Fluent [5,8–11,13,23,48,51] [10,20,24,49] [12,21]

CloudSim None [18] [4,6,17,35]

MatLab [28,50] [7,25,27,30] None

6SigmaDC [44] [32,34] [31,32]

Self-developed [37,38] None None

Self-developed

MATLAB
FLUENT

6SigmaDC

CloudSim

Small

Middle

Large

Sc
al

e

0.43 0.31 0.39 0.17 0

0 0.54 0.36 0.33 0.14

0 0 0.11 0.5 0.86

0.0

0.2
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0.8
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Figure 3. Heatmap of the data center context indicators on five simulators, ordered by the ability to
simulate large data centers.

3.2. Cooling Facilities

Cooling simulation is the mandatory function of thermal simulators for the green
data center. Users configure the type and amount of cooling facilities according to their
experimental purposes. In these papers, data centers have three kinds of cooling equipment
to be simulated: fans, CRAC, and CRAH (Computer Room Air Handler).

CRAC is the most common cooling facility widely used in all kinds of traditional data
centers. It works like a conventional home air conditioner, passing air through cooling
coils filled with refrigerant. CRAH is a novel cooling facility for large data centers in recent
years [27]. The device draws warm air from the computer room through chilled water
coils. Heat is transferred from the air to the water and back to the cooler. Due to the
difference in principle, CRAH is more effective than CRAC; its usage is more flexible, but
its arrangement is more complex. The fan does not directly lower the ambient temperature
compared with CRAC and CRAH. Since the heat value is the product of density, flow rate,
specific heat capacity, and temperature, the fan increases the airflow rate by enhancing the
heat elimination ability and reduces the temperature in data centers [7].

A green data center employs one or all of them as the cooling equipment. For example,
Sakanova et al. [19] and Jafarizadeh et al. [8] adopt fans and CRAH simultaneously, thus
obtaining excellent performance in the data center simulation through Fluent. Alkharab-
sheh et al. adopt fans and CRAC together through Fluent. Mousavi et al. [27] combine
CRAC and CRAH through MatLab.

In the simulation of data centers with fans, the heat transmission process, such as
air velocity and heat transfer efficiency in the air, must be considered. In the thermal
simulation of CRAC and CRAH, the layout of cold and hot channels and the refrigeration
efficiency of the equipment should be fully considered. As a result, the type of cooling
equipment, such as air-flowing fans, air-compression CRAC, and liquid-flowing CRAH,
are the typical differences in modeling cooling facilities.
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Definition 2 (Cooling Indicator). The cooling indicators show the techniques and equipment for
cooling the green data center. The three indicators are air compression, liquid circulation, and air
circulation. As their names, the first represents CRACs. The second and the third represent any
CRAHs and fans in simulation, respectively.

Remark 2 (Cooling Facilities Simulation). MatLab has the best cooling simulation abilities,
while Cloudsim has the worst one. Table 4 shows references of three cooling indicators on five
simulators. Figure 4 shows the heatmap of three cooling indicators on five simulators. All simulators
have the most extensive application for fundamental air compression. Although simulators can
simulate heat in data centers, the popular thermal simulator Fluent and the classical mathematical
simulator MatLab obviously have better versatility in simulating cooling facilities. However, they
are more suitable for simulating small and medium-sized data centers. Large-scale data centers and
intensified cooling facilities will be the trends, and liquid circulation is more suitable for large data
centers because of its high cooling efficiency. CloudSim is the best for large data center simulation;
however, it does not support liquid-circulation. From the simulation perspective, liquid circulation
and air compression have no more differences than the heat transformation coefficients. Therefore,
extending CloudSim’s cooling facilities for liquid circulation in future works is feasible.

Table 4. References of three cooling indicators on five simulators.

Air com. Liquid cir. Air cir.

Fluent [5,10,12,20,21,23,48,49,51] [8,19] [8,11,19,24]

CloudSim [4,6,17,18] None None

MatLab [7,27,30,50] [27,28] [26]

6SigmaDC [31–34,44] None None

Self-developed [37,47] [47] None

CloudSim
Self-developed
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FLUENT
MATLAB
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Figure 4. Heatmap of three cooling indicators on five simulators, ordered by the comprehensive
ability of cooling simulation.

3.3. Data Center Runtime

The data center runtime mainly includes the working states of the server, the commu-
nication equipment, and the peripherals. The runtime of communication equipment and
peripherals affects neither the thermal simulation goals, such as energy consumption and
heat balance, nor the control objectives, such as servers and cooling facilities. The runtime
of servers includes resource utilization, energy efficiency, and heat generation. The latter
two depend on the server’s hardware features. Therefore, resource utilization, which relies
on the amount of workload executed on it, dynamically affects the server and data center
runtime. As a result, the workload runtime determines the data center runtime. Simulation
on workload runtime has two sides: workload generation and workload placement. The
simulation for the data center has three considerations when generating workload:

• The workload scale should match the data center scale. A workload that is too excess
or scarce will invalidate the simulation objectives. For example, Van Damme et al. [30]
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adopted the small-scale workload measured in the laboratory when simulating the
data center with small-scale servers. To simulate the cloud data center, Ali et al. [6]
chose the access data of Amazon as the workload.

• The workload has homogeneous or heterogeneous tasks. Most simulations choose
the heterogeneous one [7] to be more practical. However, Internet data centers may
deal with various types of workloads on the Internet, such as content access, database
query, transaction processing, and searching. They are fine-grained workloads and
approximately treated as homogeneous. In contrast, heavy, long-term, and enumer-
able workloads served by HPC (High Performance Computing) data centers could
be heterogeneous.

• The workload is generated through distributions or from trace files. The former is
like Uniform Distribution, Poisson Distribution, Exponential Distinction, and Zipf
distribution. The publicly available traces are like Google traces in [60], Amazon traces
in [17], PlanetLab traces in [7], Real Parallel Workloads in [37], FaceBook trace in [61],
and so on.

The workload placement directly affects the runtime of the data center thermal simu-
lation. The placement approaches vary according to the research goals. A large number
of data center thermal simulation studies, such as [4,31,51], place workload on servers
randomly. A few studies choose the server straightforwardly, such as following the ar-
rival sequence freely, called FCFS (First Come First Service) [7]. However, simulators also
provide sophisticated workload placement simulations because the placement is critical
to the servers’ working state and further determines the amount of heat they generate.
Alkharabsheh et al. and Shao et al. [5] dynamically place the workload according to server
temperature, known as thermal-aware placement. Such placement can effectively reduce
the number of hotspots.

In recent years, many studies have employed VMs (virtual machines) to assign work-
load, such as [21]. In data centers, VMs can dynamically allocate computing resources
and automatically adjust resource allocation based on requirements to achieve load bal-
ancing. Thus, the simulator should support workloads running on VMs. For example,
VanGilder et al. [9] schedule tasks for VMs based on their arrival status. Gao et al. [12] take
a more advanced approach to VMs. VMs are runtime environments for incoming tasks and
servers’ workloads. The VM live migration provides more flexible resource management,
as does thermal management. As a result, the ways to map the workload to the servers,
such as simple, thermal-aware, and VM-supported manners, are the typical differences in
modeling dynamic context.

Definition 3 (Data Center Runtime Indicator). The dynamic context indicators show how to
map the workload to the servers in a data center simulation. The three indicators are FIFO (First In
First Out), temperature, and VM-supported. As their names, the first refers to the mapping rule as
simple as random or FIFO; the second means mapping to the servers with lower temperatures; and
the third is the mapping to the VMs on servers.

Remark 3 (Runtime Simulation). CloudSim has the best dynamic simulation ability in the
runtime, while Fluent has the worst one. Table 5 shows the references of three runtime indicators on
five simulators. Figure 5 shows the heatmap of three dynamic context indicators on five simulators.
All simulators achieve the simple workload placement approach, which means that all simulators
focus on the data center dynamic context indicators. Due to the limitations of CloudSim for thermal
simulation, it does not have the thermal-aware workload placement. Compared with thermal-aware,
applying the VM-based workload placement method is more promising. CloudSim has the highest
usage in VM-supported because the VM is a fundamental function for a large-scale cloud data center.
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Table 5. References of three runtime indicators on five simulators.

FIFO Temperature VM

Fluent [8,10,15,48,51] None [9,12,21]

CloudSim [4,6] None [6,35]

MatLab [25,28] [7,27,30,50] None

6SigmaDC [31,34] [33] None

CloudSim
Self-developed

MATLAB
6SigmaDC

FLUENT

FIFO

T

VMs

Ru
nt

im
e

0.29 0.14 0.31 0.33 0.35

0.4 0.14 0.46 0.33 0

0.29 0.3 0 0 0.11

0.0
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0.3

0.4

0.5

Figure 5. Heatmap of three dynamic context indicators on five simulators, ordered by the compre-
hensiveness of control method in runtime.

3.4. Power Model

The power model is the necessary function of thermal simulators for the green data
center. All power models have four groups based on the characteristics of the proposed
power and energy consumption models:

• The most simple power model is adding the power consumption of all parts in the
data center together [25]. This model is suitable for simultaneous control of multiple
facilities in data centers, such as servers and cooling facilities, where the power of
each part should be considered independently.

• In data centers, the servers do not always remain in the active state, as servers also
switch to idle mode. Therefore, the server power model has two parts: idle and active
power [26]. This model could be applied to the simulation where the research object is
the server, the computing power of the data center should be accurately calculated,
and the power of other devices could be derived from the server power.

• The regression models capture the fixed or idle power consumption and the dy-
namic power consumption with changing activity across the functional units of the
servers [26]. An approximate power model is drawn by fitting the dynamic operation
characteristic curve of the server. The power model reflects the changing trend and
conforms to a specific form, which is suitable for the scenarios where the research
object is the data center environment.

• The utilization-based power model means the power-consuming and maximum power
are in the proportion of resource utilization. Since CPU is the most power-consuming
component in a data center, the utilization-based power models leverage CPU utiliza-
tion as their metric in modeling the server power consumption [6].

As a result, the ways to calculate the power, such as accumulation, max-and-min,
regression, and utilization, are the typical differences in the power model.

Definition 4 (Power Indicator). The power indicators show the modeling of power consumption,
according to the four groups above. The four indicators are accumulation, active-idle, regression,
and utilization, respectively. As their names suggest, accumulation means adding the power of every
component, active-idle means considering the maximum and minimum power of servers, regression
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means drawing power functions through experimental data, and utilization means representing
power as a resource utilization function.

Remark 4 (Power Model Simulation). CloudSim has the best power model simulation ability,
while Fluent has the worst one. Table 6 shows the references of four power model indicators on five
simulators. Figure 6 shows the heatmap of four power indicators on five simulators. Fluent is very
weak for data center power simulation; nearly 80% of applications do not mention the power model.
6SigmaDC provides a built-in accumulation model, and some studies extend it to utilization models.
However, there are only a few power-related studies with Fluent and 6SigmaDC. CloudSim provides
a flexible power component that supports all power models, from simple to complex ones, so that the
power models are well addressed in CloudSim. The open-source and rich programming features also
contribute to the versatility of power models. The same as MatLab, in which the active-idle model is
widely adopted for its simplicity. Most self-developed simulators do not involve power models, but if
they do, both four models can easily be implemented by programming.

Table 6. References of four power model indicators on five simulators.

Accumulate Active-Idle Regress Utilize

Fluent [5,43,49] [13,20,21] None [23]

CloudSim [6,17] [4] [18] [6,35]

MatLab [25] [21,26–30] None [30,50]

6SigmaDC [34] None None [31]

Self-developed [37,45] None [47] [38]
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Figure 6. Heatmap of four power indicators on five simulators, ordered by the comprehensiveness of
power model.

3.5. Thermal Model

Thermal simulation for green data centers mainly provides a closed cycle in which heat
flows from servers to servers or back to cooling facilities through the data center’s aisles.
The thermal model contains the thermal generation model and the thermal propagation
model. The thermal generation models have three types:

• The thermal model directly transforms the server’s power into its heat according
to a specific function, as discussed in [4,31]. It is the most fundamental one in heat
simulation. The simulation details are available in [25].

• An RC (Resistance-Capacitance) thermal model considers the relationship between
heat transfer to the ambient environment and the RC circuit’s electrical phenomenon.
The model was adopted by Ilager et al. [6] to estimate the CPU temperature, and
Pierson et al. [38] utilized the model, taking into account both spatial and temporal
temperature behaviors.
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• An empirical model predicts the heat generation of data centers based on historical
data or thermal behavior, such as [40]. The prediction is not only for simulation but
also for improving the performance of data centers and balancing the heat distribution.
The thermal propagation models also have three types.

• The aerodynamic formula [30] is an effective model for calculating thermal propaga-
tion with reasonable accuracy. For example, Damme et al. [30] choose an effective
heat model for real-time controlling the data center temperature. Zhao et al. [50]
adopt the fast feedback conditioning model to enhance data center performance.
Simon et al. [33] argue that the aerodynamic model performs better than the directly
transformed model.

• Fluid dynamics, or CFD (Computational Fluid Dynamics), is an efficient and accu-
rate technology for modeling how heat is transferred and exchanged thermally [48].
Studies not only use but also improve the CFD model in the simulators. For example,
Tian et al. [10] improved the CFD model to make the solution faster, which reduces
the complexity of the solution process on the model. Alimohammadi et al. [11] trim
the CFD model to fit data center thermal simulation.

• Applying machine learning to the thermal propagation model is a new emerging
technology. A learning-based model can dynamically change with the data center. For
example, Mirhosein-iNejad et al. [38] proposed a holistic thermal model, namely the
adoptive learning-based model (ALTM), which can predicate the temperature of the
critical thermal zones using DC operational variables as inputs and outputs.

As a result, users choose different thermal generation models depending on the study’s
objective. However, different heat generation models do not affect the thermal simulation of
data centers. The ways to similar the thermal propagation model, such as thermodynamics,
CFD, and machine learning, are the typical differences in modeling thermal context.

Definition 5 (Thermal Indicator). The thermal indicators show the underlying theories and
models of simulation on thermal transferring and exchange. The three indicators are thermodynamics,
fluid dynamics, and learning-based. As their names, they refer to the corresponding thermal
propagation model mentioned above.

Remark 5 (Thermal Model Simulation). Fluent has the best thermal model simulation ability,
while CloudSim has the worst one. Table 7 shows the references of three thermal model indicators
on five simulators. Figure 7 shows the heatmap of three thermal indicators on five simulators. The
Fluent, MatLab, and 6SigmaDC cover all the thermal indicators. CFD is a heavy model. It is costly
to develop and execute a CFD simulation. Fluent and 6SigmaDC, as commercial software, are born
for thermal simulation, especially in support of CFD. MatLab is a programming environment with
plenty of components supporting various thermal models. CFD is too heavy for CloudSim and
self-developed simulators. Besides, thermal propagation in a large-scale data center, simulated by
CloudSim, is too large for CFD mode to be solved. As for the new and promising model, learning-
based is the most frequently applied in CloudSim. At last, thermodynamics is very lightweight and
fundamental and should be supported by all simulators.

Table 7. References of three thermal model indicators on five simulators.

Thermodynamics Fluid-Dynamics Learning-Based

Fluent [9] [8,10,12,15,21,48,51] [15,20,24]

CloudSim None None [18,36]

MatLab [27,30,50] [21] [16]

6SigmaDC [33] [32,44] [33]

Self-developed [46] None [38]
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Figure 7. Heatmap of three thermal indicators on five simulators, ordered by the comprehensiveness
of thermal model.

3.6. Answers to RQ1

Yes. In general, state-of-the-art simulators have the same core and abstract functions
as thermal simulators for green data centers. The survey shows that all simulator functions
of data centers fall within the four dimensions: modeling static context and dynamic
runtime, as well as simulating heating and cooling. However, not every simulator supports
all indicators of each dimension. According to the remarks of each section, both Fluent
and MatLab are well-implemented when simulating small and middle-scale data centers,
but CloudSim can operate when simulating large-scale data centers. Fluent does best in
simulating cooling facilities and the coverage of thermal models, while CloudSim has
the weakest ability. However, CloudSim has the most robust simulation ability when
simulating data center systems, such as runtime and power models, while all the others
have shortcomings. Obviously, Fluent performs well in terms of versatility; MatLab
and CloudSim are slightly less impressive; and self-developed versatility is very uneven.
Section 5 shows a quantitative comparison between them.

4. Dexterity

This section studies the dexterity of thermal simulators in data centers. Dexterity is
the ability to perform a complex action quickly and skillfully with the hands. We liken
the “action” to data center simulation and “hands” to simulators. The dexterity could be
measured through the feeling of “how easily a researcher uses a simulator”. Such feelings
emerge in a long-term evaluation process that includes learning the simulator from the
beginning, developing it while building the simulation environment, executing various
experimental conditions while simulating the data center, customizing different tests with
various components or databases, and visualizing the final results. Sometimes researchers
use cheaper or low-resource software due to budget or hardware limitations. It is also
considered in this section.

Therefore, this section studies dexterity from the above five aspects. It calls them the
five dimensions: easy to learn, easy to develop, easy to execute, easy to customize, and easy
to visualize. And then, the following five subsections discuss each of them, respectively.
For a subsection, first it surveys the observations about the dexterity of typical simulators.
Second, because distinct observations for each simulator are the key to distinguishing
and evaluating the simulators, it abstracts these observations and defines the indicators.
Third, it qualitatively analyzes the five typical simulators on these indicators, for example,
whether a simulator supports the indicator, and then shows the results in a comparative
table. Finally, it discusses the findings (remarks) on the dimension according to the table.
For example, the advantages and disadvantages of different simulators on these indicators.
After reviewing all dimensions, the last subsection answers the RQ2.

4.1. Easy to Learn

When learning to use a new simulator, the first question a researcher faces is whether
the simulator is open-sourced. Some users may directly reject closed-source simulators.
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A closed-source simulator does not allow updating algorithms. Thus, developers have
to blindly trust the implementation because they cannot access the source code. In con-
trast, open source helps ease the development and verification process. Open-sourced
and self-developed simulators have an open implementation that lets developers freely
control the case-building process. Moreover, an open-sourced simulator helps gain more
knowledge of the algorithms, know how they work in different scenarios, and encourage
further improvements.

Secondly, the resources that introduce how to use the simulator also significantly
impact the ease of learning a simulator. Moreover, the programming language required
for the simulator is a significant challenge for users. The most widely used programming
languages today are Python, C++, and Java. Python has a wide range of prospects, which is
the best way to get started. It is very suitable for scripting. Both C++ and Java are suitable
for large-scale operations. Surveys show that 80 percent of programming professionals
prefer Java [62]. This means that C++ and Java are better at simulating data centers.

Definition 6 (Learning Indicator). The learning indicators show how easy it is to learn to use a
simulator. The three indicators are openness, programming, and resource. As their names, the first
is whether the simulator is open-sourced. The second represents the programming language as the
interface between programmers and a simulator. The second represents the availability of learning
resources, training courses, and documentation that may influence the learning process, such as a
well-documented solution alongside plenty of online resources and tutorials.

Remark 6 (Easy to Learn). CloudSim is the easiest to learn. Table 8 shows the comparison of
three learning indicators on five simulators. Although thermal simulators are built and developed to
simulate the data center, the ways to reach the goals differ from one simulator to the others due to their
diverse nature. For example, Fluent is an application that uses C/C++. Moreover, as commercial
software, Fluent has enough online learning resources and training courses to reduce the learning
effort. MatLab, as a mathematical simulator, prefers to model every part of the data center and reflect
the performance through solving functions. 6SigmaDC is designed to simulate data centers using
C/C++. However, it is commercial, closed-source software, and lacks learning resources. On the
contrary, CloudSim is an open-source data center simulator with Java programming language and
full of shared experiences. Some self-developed simulators aim for toolkits or standalone models with
Python programming language. They have very few documents except the related papers, making
them harder to learn.

Table 8. Comparison of three learning indicators on five simulators.

Openness Program Resource

Fluent Closed C/C++ Plenty of online resources and training courses

CloudSim Open Java Full documentation and shared experiences

MatLab Closed C/C++ Online resources and full documentation

6SigmaDC Closed C/C++ Less

Self-developed Open Java/Python No sources

4.2. Easy to Develop

Developing the simulation case is the initial purpose and core task of each simulator.
Users all prefer an easy case-building process through a simulator. Fluent is for any
Computational Fluid Dynamics (CFD) system, including data centers. 6SigmaDC is a
commercial tool specially designed to simulate thermal data centers, but it is not popular
and mainly focuses on static room-scale and hardware-scale simulation. CloudSim is
the special simulator for data center runtime but lacks the thermal model. MatLab is for
running mathematical models, but users should develop the models themselves. In other
words, CloudSim supports running servers and dynamic systems but not CFD. Fluent
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supports CFD but does not run as servers. MatLab manually models both the CFD and
running servers. Therefore, a simulator has unique features that distinguish it from the
others, and measuring the developing dexterity is also related to the simulation task itself.
Some tasks might be easier to develop on a specific simulator than others. As a result, those
criteria indicate developing dexterity.

Definition 7 (Developing Indicator). The developing indicators show how dexterous a simulator
is to build a simulation case. The three indicators are main-focus, runtime-case, and system. As
their names, the first represents the case mainly supported by a simulator. The second shows how
complex a simulation case could be modeled. The third means what kind of software a simulator
looks like.

Remark 7 (Easy to Develop). CloudSim is the easiest to develop, like self-developed. Table 9
shows the comparison of three developing indicators on five simulators. Commercial Fluent and
6SigmaDC are designed for CFD computation, but the former focuses on the general case and the
latter on the data center infrastructure. However, none support the detailed simulation of data center
runtime state, such as workload placement and VM migration. Developers would put more effort
into it. In contrast, open-sourced CloudSim is designed to simulate data center runtime but lacks
full support for simulating the thermal environment. Self-developed simulators support both the
runtime and the thermal case of a data center. However, they cannot be as detailed as the commercial
ones. MatLab is a commercial IDE (Integrated Development Environment). It is more open than
others because it provides many functions, libraries, and components. Building a detailed case for
both runtime and the thermal case of a data center is feasible but time-consuming.

Table 9. Comparison of three developing indicators on five simulators.

Main Focus Runtime Case System

Fluent General CFD Simple Application

CloudSim Data Center Runtime Detailed Toolkit and Framework

MatLab General Moderate IDE

6SigmaDC CFD and Hardware Simple Application

Self-developed Thermal model and Data
Center Runtime Detailed Toolkit and Framework

4.3. Easy to Execute

Experimental studies mainly mention the hardware environment, which is the required
resource for running the simulation [7]. These resources represent the execution dexterity,
namely, how easily the simulation case is executed. More resource requirements mean
more “difficulty” in executing the case, especially when requiring GPUs. Besides, resources
could be hardware, software, and platforms. We call it“integration” if a simulator needs
third-party software or frameworks to execute cases. Finally, operating the system as a
“platform resource” is another concern for execution dexterity. As a result, the above three
are indicators of execution dexterity.

Definition 8 (Execution Indicator). The execution indicators show the environment and the com-
munication methods required to execute the simulation case in the runtime. The three indicators are
hardware, integrated software, and operating system. As their names, the first means the hardware
context. The second represents the integrated third-party software, such as components, frameworks,
packages, environments, and databases. The third refers to the required operating system.

Remark 8 (Easy to Execute). CloudSim is the second place only to MatLab in execution indicators.
Table 10 shows the comparison of three execution indicators on five simulators. Fluent and 6Sig-
maDC, as commercial simulators, require heavy resources to compute the CFD, which is even better
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on GPUs. Although Fluent does not need any integration, it is considered to be the most difficult
for execution since it requires vast computing resources. In contrast, CloudSim is very lightweight
on computing resources, but it requires package integration, such as those in [4,6]. MatLab has a
decent execution dexterity similar to CloudSim. Self-developed simulators have various resource
requirements except for the hardware. Most of them can run on commercial computers or servers,
and the execution dexterity for the developers is minor.

Table 10. Comparison of three execution indicators on five simulators.

Hardware Integrated Software Operating System

Fluent Heavy, GPU Not Needed Windows and Linux

CloudSim Light, no GPU Needed All

MatLab Light, no GPU Not Needed All

6SigmaDC Heavy, GPU Not Needed Windows

Self-developed Light, no GPU Needed All

4.4. Easy to Customize

Customizing a simulator is the ability to be flexible and changeable in its functions.
Customization enables users to perform more complex simulations according to their de-
mands. Users may have the requirement of customization from the following three aspects:

• Function extension is the ability of the simulator to add extra functions and features by
the use of external packages or programming languages, such as experiments in [45];

• Adaptability is the ability of the simulator to accept changes in runtime environments
conveniently. For example, it can reload or refine the modified case without stopping
running, such as experiments in.

• Meshing is the ability of the simulator, such as Fluent, to properly define the physical
shape of the object through the meshing process. The process breaks down continuous
geometry or geometric space into thousands of shapes [48].

As a result, the above three are indicators of customization dexterity.

Definition 9 (Customization Indicator). The customization indicators show how easy to cus-
tomize a simulator according to the user’s requirements. The three indicators are extensibility,
adaptability, and meshing. As their names, the first represents the capability of introducing new
functions. The second represents the capability of adapting to a changeable runtime environment.
The third means the capability of breaking down continuous geometry or geometric space of the
simulated object into thousands of shapes.

Remark 9 (Easy to Customize). CloudSim and MatLab are both the easiest to customize. Table 11
shows the comparison of three customization indicators on five simulators. In terms of extensibility,
Fluent supports extension through UFD (User Defined Function), which enables the user to enhance
the simulation functions. For example, Jafarizadeh et al. [8] reduce the server heat load to 100 W
when its average server inlet temperature exceeds 40 °C. CloudSim supports the extension capability
better than Fluent because it is an open-source framework. It naturally does not contain thermal
simulation. However, users have extended various thermal models [6]. For example, Ali et al. [6]
extend the delay overheads associated with server power mode to simulate the thermal management of
a data center. MatLab has better extensibility because it provides the programming environment for
customized models. Self-developed simulators are designed for particular purposes, but extensibility
may not be one of them. 6SigmaDC’s extensibility is unknown because we failed to find the
documents about it. In terms of adaptability, Fluent and CloudSim need to stop the running
simulation and accept changes. In contrast, running cases in MatLab and several self-developed
simulators can be modified online. The primary importance of meshing in CFD lies in solving
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the governing partial differential equations in the allocated cell. Thus, Fluent and 6SigmaDC are
famous for meshing, and MatLab also supports it through plugins, but the other two fail.

Table 11. Comparison of three customization indicators on five simulators.

Extensibility Adaptability Meshing

Fluent Good Good Best

CloudSim Best Better Normal

MatLab Better Best Normal

6SigmaDC Unknown Normal Good

Self-developed Normal Normal None

4.5. Easy to Visualize

Visualizing the results is an essential part of the simulation process. Typical thermal
simulators have proper visualization capability, but their underlying techniques may
differ. The dexterity of visualization relates to the adopted techniques, such as remote
visualization, 3D visualization, animated visualization, and rendering. All simulators can
show the results in 2-D or 3-D static visuals; however, the animations are better for showing
the changes dynamically, and rendering technology gives more impressive visualization.
As a result, these techniques are indicators of visualization dexterity.

Definition 10 (Visualization Indicator). The visualization indicators show how easy it is to
visualize the simulation results using the simulator. The three indicators are remote, animation, and
rendering. As their names suggest, the first is a simulator’s ability to connect to a remote server and
visualize the output. The second is the ability of a simulator to create animation and show the results
dynamically. The third is the ability to render the graphics through the OpenGL API. OpenGL is a
cross-platform application programming interface (API) for rendering 2D and 3D vector graphics.
The API is typically used to interact with a GPU to achieve hardware-accelerated rendering.

Remark 10 (Easy to Visualize). Fluent is the easiest to visualize. Table 12 shows the comparison
of three visualization indicators on five simulators. Fluent supports animation and OpenGL
visualization. As a commercial solution, it provides the user with a remote visualization option
where the user can take advantage of powerful servers. In contrast, another simulator, 6SigmaDC,
also a commercial one, does not support sophisticated visualization, probably because it is only for
data center simulation. Such simulation may not require complicated animation and rendering.
Self-developed simulators could technologically support the three indicators by taking full advantage
of programming languages, such as Python; however, few of them put effort into visualization.
The developers typically offer visualization in static graphs by integrating third-party components.
CloudSim with Java has the same situation as the self-developed. As a programming environment
and language, MatLab provides more support in animation and rendering because such support
may also benefit other applications.

Table 12. Comparison of three visualization indicators on five simulators.

Remote Animation Rendering

Fluent Supported Supported Supported

CloudSim Not Supported Not Supported Not Supported

MatLab Not Supported Supported Supported

6SigmaDC Supported Not Supported Not Supported

Self-developed Not Supported Not Supported Not Supported
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4.6. Answers to RQ2

The above five subsections describe “how easy to apply these simulators in thermal
management research for green data centers”. Tables 8–12 show that the simulators cover
the most critical features of usability. These simulators are generally easy to handle, even
if they have different ways to support these indicators, or a few are not yet supported.
CloudSim, a popular open-source platform, has strong usability in all dimensions. Thus, it
has the most abundant learning resources. CloudSim reaches the simulation goals more
easily than other simulators. MatLab is the most straightforward for users to operate. It is
the easiest simulator to execute. Fluent, a famous commercial software, performs well on
customization and visualization. It can show rich simulation visualization, but it has poor
usability on the other three dimensions. The dexterity of self-developed and 6SigmaDC
are the worst. In dexterity, CloudSim, MatLab, and Fluent all perform best in different
dimensions. It is difficult to compare which is the most dexterous. Therefore, Section 5
shows a quantitative comparison between them.

5. Comparison

This section compares the versatility and dexterity of data center simulators. This
paper considers both objective and subjective factors. It cannot be concluded by a simple
test. Therefore, we choose the comprehensive analysis method to compare the simulator
performance. On the one hand, it calculates the versatility matrix of a simulator on the five
versatility dimensions in Tables 3–7, Section 3. The indicators of a dimension are aggregated
to a value through PCA (Principal Component Analysis). It is the most widely used data
dimensionality reduction algorithm. Table 13 summarizes the versatility matrix, whose
elements quantitatively evaluate the versatility dimensions of a simulator.

Table 13. Versatility matrix on five simulators.

Context Cooling Runtime Power Thermal

Fluent 0.633 0.636 0.528 0.166 0.734

CloudSim 0.585 0.41 0.713 0.564 0.428

MatLab 0.487 0.703 0.637 0.337 0.728

6SigmaDC 0.626 0.52 0.533 0.22 0.687

Self 0.35 0.43 0.673 0.38 0.53

On the other hand, this section calculates the dexterity matrix of a simulator on
the five dexterity dimensions in Tables 8–12, Section 4. The indicators of a dimension
are aggregated to a value through FCE (Fuzzy Comprehensive Evaluation). It is widely
used in multi-attribute decision-making problems. It comprehensively evaluates multiple
factors and chooses the best solution. The five indexes are defined through the expert
evaluation method. For each dexterity indicator, experts rank simulators according to their
performance in three sub-indicators, with a five-point Likert scale, and then normalize to
the [0, 1] range. The experts give the weights of five dimensions as [0.24, 0.12, 0.28, 0.16,
0.2]. Table 14 summarizes the dexterity matrix whose elements quantitatively evaluate the
dexterity dimensions of a simulator.
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Table 14. Dexterity matrix on five simulators.

Learn Deploy Execute Customize Visualize

Fluent 0.4 0.2 0.4 1 1

CloudSim 1 0.6 0.8 0.8 0.6

MatLab 0.8 0.4 1 0.6 0.8

6SigmaDC 0.2 0.8 0.2 0.4 0.4

Self 0.6 1 0.6 0.2 0.2

5.1. Results

Two radar charts in Figure 8 compare the versatility and dexterity matrices of five sim-
ulators, where red, blue, yellow, green, and dot-lined represent Fluent, CloudSim, MatLab,
6SigmaDC, and self-developed. The self-developed simulator, marked as an unfilled dot, is
not a particular simulator but a combination of many experimental simulators.

Remark 11 (Versatility Comparison). MatLab is the most balanced simulator; however, it shows
no best on each indicator. Fluent is the best at cooling and thermal models. It also provides fine-
grained context modeling to implement detailed and precise thermal simulation; however, it is not
designed for data centers only, so it shows the weaknesses in data center runtime, such as workload
and power model. 6SigmaDC is similar to Fluent but designed for data centers only; however, its
main focus is still CFD and fails to show advances in runtime modeling. The 6SigmaDC’s polygon
is like a shrink one of Fluent’s and the smallest in the radar charts because 6SigmaDC is not popular
in research. Self-developed is a “choice” made by the communities because these simulators focus on
the functions that are frequently required but not well addressed by the other four simulators. Its
advances show the expectation, and its weakness shows the unconcerned. CloudSim’s polygon is the
closest to self-developed’s. It shows the advances in the workload and power model, the moderate
in the data center context, and the weakness in the cooling and thermal model. Compared with
the self-developed, CloudSim may need an enhancement on thermal and cooling models, but not
necessarily to be as remarkable as Fluent and 6SigmaDC.

Context
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Figure 8. Radar chart of the versatility and dexterity on five simulators.

Remark 12 (Dexterity Comparison). MatLab is also not the best but the most balanced simulator
in dexterity, thanks to its IDE feature and programming interface. Fluent is not a dexterous
simulator. Thanks to the sophisticated CFD calculation and rendering, it has the best customization
and visualization. However, the other three indicators are poor. Compared with Fluent, 6SigmaDC
is easy to develop simulation cases because it is designed for data center simulation only; except for
this indicator, it is even more difficult to use because it is not popular in research. Self-developed
is the worst one in dexterity. Dexterity cannot be guaranteed accordingly when combining many
practical simulators makes it versatile. CloudSim is the best in dexterity. It also adopts programming
interfaces compared with MatLab. However, CloudSim is designed for data centers similar only,
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and MatLab is a general IDE. These are reasons why CloudSim’s polygon is like the enlargement
of MatLab’s.

5.2. Answers to RQ3

The answer to the first question in RQ3 is negative. Take Fluent as an example; it is
not very applicable for the thermal simulation of green data centers because it aims for
thermal functions rather than the datacenter functions. The discussion in Sections 3 and 4
backs our opinion well. Fluent performs the best in the CFD and thermal simulation. When
employing Fluent for thermal simulation in data centers, operators must model the physical
layouts of the data center and import the geometry file into Fluent for preprocessing,
meshing, and running simulation. The complex pre- and post-processing software makes
Fluent neither a simple simulator to grasp nor very convenient for a larger-scale simulation
and dynamic thermal environment simulation of data centers. In the green datacenter
simulation, studies may prefer a full-fledged simulator for dynamic datacenter runtime,
such as servers, virtual machines, workload, and scheduling, as well as a moderate, even
holistic thermal simulation. MatLab and CloudSim have almost the same versatility as
Fluent but much better dexterity. They could be the alternative. They are expected a group
of enhancements to reach the proper versatility with maximum dexterity. The next section
draws five expected enhancements of current simulators and explains the second question
in RQ3 as the outlook.

6. Outlooks

The ideal data center thermal simulator should be fully functional and easy to apply.
This section proposes five outlooks for the simulators in the future.

6.1. Resources Highlighted Simulation

The trend of thermal studies on data centers switches from the statistical context design
to the dynamic runtime adjustment. Studies on context design can avoid defective thermal
design in data centers. However, they cannot optimize according to the dynamic data center
runtime, such as the workload, resource usage, and power. If users change the resource
usage distribution of servers, the thermal distribution is also altered accordingly. A data
center simulator should fully highlight resource management functions to support such a
trend. Resource management is a vital issue in data center studies, and particular simulators,
such as CloudSim, SimGrid [63], and iFogSim [64], have preliminarily integrated the issue.

6.2. Thermal Light-Weighted Simulation

The thermal simulation is required to reflect the thermal context of each part of data
centers, how it changes with the runtime, and what the optimization effect is. Thermal
distribution is not necessarily modeled and simulated in a fine granularity on time and
space. For example, users cannot expect a resource scheduler to significantly affect thermal
distribution immediately because both runtime and thermal conditions are not stabilized.
Complex CFD calculations with powerful computing resources are usually required to
simulate detailed and real-time thermal dynamics states, bringing huge costs on dexterity
and hardware investment. However, the simulation results may not practically benefit
the studies. Therefore, the ideal simulator would prefer a lightweight thermal simulation
with coarse granularity on both time and space, easy modeling and execution, and less
hardware requirement.

6.3. AI-Integrated Simulation

Artificial intelligence (AI) has already altered the world and raised significant progress
for society, the economy, and governance. In many fields, AI empowers people, commu-
nities, machines, and computers to work together and make significant improvements,
the same as the AI-empowered thermal management for green data centers. For example,
Li et al. [40] used a Neural Network to predict the temperature inside the data center,
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which can limit the temperature in advance to achieve a good thermal balance. AI can
easily achieve the challenge goals. Therefore, the ideal simulator should integrate and
incorporate AI. For example, it could support the popular AI platform and support the
deployment and execution environment for AI models such as Deep Neural Networks and
Deep Reinforcement Learning. AI-integrated simulators enable researchers to run their
AI-empowered optimization on the simulation case.

6.4. Larger-Scale Heterogeneous and Cross-Regional Data Centers Simulation

Data centers have been known for their scale ever since, and now cross-regional data
centers containing thousands of servers are the main focus of the research. The new focus
brings two challenges to data center simulation: heterogeneity and geo-distribution. On
the one hand, a heterogeneous data center may bring all kinds of computing resources
together: x86s and GPUs, FPGAs, and even other processor types like ARM processors.
Their computing, energy, and thermal features vary. A simulator would face the complexity
brought by heterogeneity. On the other hand, cross-regional data centers, being connected
and serving as a union, bring several benefits: providing services to the cross-region
areas efficiently, storing data with cross-region replication to ensure data availability, such
as Azure Geo-Redundant Storage (GRS) replications, and fully utilizing and cooperating
regional resources and requirements, such as energies, computing power, data, and requests.
The “Eastern Data Western Computing” plan in China is a good example of the above
scenario. To this end, the next-generation data center thermal simulator should enable the
simulation of heterogeneous and cross-regional data centers on a larger scale.

6.5. Thermal Extensions on CloudSim

As a famous commercial software, Fluent has good versatility and acceptable dexterity.
In contrast, CloudSim, a popular open-source platform, has strong potential to be better.
CloudSim is more applicable to simulating the runtime of a larger-scale data center, such as
task scheduling, workload placement, server state, VM migration, and resource provision,
which are frequently investigated in state-of-the-art studies. Fluent has a mature and
sophisticated thermal model that is difficult to reproduce. In contrast, the thermal model
integrated into CloudSim is primitive. However, a lightweight thermal model may cover
most thermal simulations, especially studies oriented to data center runtime. CloudSim is
also more open. Thus, the attributes of an ideal data center thermal simulator, which have
been analyzed in previous sections, could possibly be extended to the CloudSim. To this
end, the most promising CloudSim has considerable potential to be an ideal simulator after
extension, especially on thermal models.

7. Conclusions

This paper reviews the various simulators for data center thermal simulation over the
past decade. It mainly compares and evaluates existing data center simulators from two
aspects: Do state-of-the-art simulators have the same functions as thermal simulators for
green data centers? What are these functions designed for? How easy is it to apply these
simulators in thermal management research for green data centers? The analysis and exper-
imental results show that the most widely used data center simulators, Fluent, are versatile
but still need improvement in data center scenarios. CloudSim has the expected potential
to be an ideal simulator if it is well extended. Finally, the paper gives the characteristics of
the ideal data center thermal simulator and explains the improvement strategy.

Based on the answers of RQ1, RQ2, and RQ3, relevant researchers can quickly choose
the right simulator. Fluent can provide accurate static thermal simulation. Cloudsim can
provide dynamic thermal simulation.

Based on the “remarks” mentioned in this paper, the simulators could be extended
in multiple directions. To improve versatility, researchers should try to dig out new
functions that have not been covered by existing simulators so far. These new functions
could be a cross-regional green awareness scheduler on geographically distributed data
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centers, a sophisticated battery system that improves energy efficiency, and a multifarious
energy model that supports more types of renewable energy. We expect a general-purpose
simulator with our metrics as a guideline for the studies of the thermal-efficient data centers.
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