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Abstract: The urgent need to mitigate climate change and reduce reliance on fossil fuels has driven
the global shift towards renewable energy sources (RESs). However, the intermittent nature of RESs
poses significant challenges to the widespread adoption of Zero-Carbon Smart Grids (ZCSGs). This
study proposes a synergistic framework to address this hurdle. It utilizes energy storage systems
(ESSs) by comparing Vanadium redox flow batteries (VRFBs) and Lithium ion batteries (LIBs) to
identify the most suitable option for ZCSGs, with precise models enabling robust performance
evaluation. Moreover, an accurate demand-side management (DSM) strategy considering power
elasticity to manage discrepancies between electricity load, RES generation, and ESS availability is
introduced for estimating fair, dynamic tariffs. An advanced load and weather-forecasting strategy
is introduced for improving grid planning and management. An advanced optimization algorithm
enhances grid stability and efficiency. Simulations demonstrate significant reductions in carbon
footprint, peak power demand, and reliance on fossil fuels. The study finds that VRFBs outperform
LIBs in cost and security, and dynamic tariffs based on accurate DSM significantly reduce energy
costs. This work explores the challenges and opportunities of this integrated approach, offering
policy recommendations and future research directions for truly optimized ZCSG implementation.

Keywords: smart grid; zero-carbon; energy storage; Lithium ion VRFB batteries; demand-side
management; optimization; renewable energy; sustainability

1. Introduction

Conventional power systems rely on centralized power plants that generate electricity
from fossil fuels and transmit it unidirectionally to loads via transmission lines. Due to the
serious environmental effects and the scarcity of abundant fossil fuels, the world started to
switch its reliance from fossil fuels to renewable energy sources (RESs). Conventional power
systems can regulate generation to match load demand. However, RESs are inherently
variable, making it challenging to control their output to satisfy the load demand. This
variability and the discrepancy between generation and load can negatively impact power
system stability and reliability if not properly managed. Three different strategies can be
used to avoid this problem which are the use of energy storage systems (ESSs), demand-
side management (DSM), and load/weather forecasting (LWF) strategies. Each one of
these strategies enhances the stability of the RESs. For this reason, these strategies will be
synergistically used in this study to ensure the stability and reliability of the Zero-Carbon
Smart Grids (ZCSGs). The use of ESSs should be able to fill the discrepancy between the
generation from RESs and the loads with reasonable cost. The DSM tools such as time of use
(ToU) and real-time pricing (RTP), among others, are also used for the same purpose, and
can be used to control the loads to be correlated with the available generation from RESs [1].
By accurately forecasting both load demand and weather conditions, system operators can
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gain valuable insights into the future state of the power system. This knowledge enables
them to take proactive measures, such as adjusting generation schedules or activating
reserve capacity, to mitigate potential stability and reliability risks.

1.1. Literature Survey

Several studies have been introduced in the literature to connect RESs with fossil
fuel power plants in on/off-grid connections [2–4]. These systems aim to supply the load
primarily with available renewable energy generation from sources like solar and wind.
However, when RESs or ESSs are unable to fully meet energy needs, fossil fuel generators
are seamlessly activated to address the power deficit. This integrated approach both ensures
reliability and support for the hybrid renewable energy system (HRES), guaranteeing
consistent power regardless of fluctuations in renewable energy availability [4]. While
these systems significantly reduce carbon and greenhouse gas (GHG) emissions, they do
not eliminate them entirely. ZCSGs aim to achieve zero GHG emissions by completely
eliminating the need for fossil fuel generators. Several studies have been introduced in the
literature to study the optimal structure of the ZCSG in many sites in the world [2] and in
Saudi Arabia as well [1,4]. Most of these studies used the ESS, DSM, and LWF strategies to
support the ZCSG and to avoid any stability and reliability issues.

ZCSGs are very sensitive to any abnormal change in the load and the weather condi-
tions, due to the absence of high inertial generators such as the synchronous generator. For
this reason, a fast-response ESS should be available to support these systems during any
abnormal operating conditions. Moreover, the ESS should also be able to store the surplus
generated energy during high generation from RESs and discharge this energy back to the
load during a deficit in generated energy, which is called energy arbitrage. The frequency
regulation needs a very fast response, which makes the battery ESS (BESS) suitable for this
need. Meanwhile, pumped hydro-energy storage (PHES) systems are suitable for energy
arbitrage, due to their slow response compared to the BESS [1]. Several BESSs have been
used for frequency regulation of the HRES, such as sealed lead–acid (SLA) [3,4], Lithium
ion batteries (LIBs) [1], Vanadium redox flow batteries (VRFBs), and Sodium–sulfur (NaS)
batteries [1,5,6]. NaS batteries have gained space in electric grid storage since the early
2000s, and dominated the grid electricity-storage market up to 2014, thanks to their high
energy density, high efficiency, lifetime, and fast response time. NaS batteries suffer from
high initial costs and safety concerns, as sodium is a reactive metal that can ignite in air
and moisture. Additionally, short circuits and exothermic reactions can lead to extremely
high temperatures, posing significant safety risks [5]. Moreover, NaS batteries are still
under development and they need further improvement to become mature technology,
due to their long response and their need for high temperatures (300 ◦C to 400 ◦C) for
normal operation [6]. The LIBs and VRFBs are showing promising results and have been
used widely for frequency regulation of the HRES, and, based on this reason, they will be
considered to be used in this study [7,8]. One of these studies [8] concluded that VRFBs
can be a great competitor for LIBs if further improvements for VRFBs are made in the
future [8]. Other studies introduced VRFBs in the ESS of RESs, and most of these studies
recommend the replacement of the LIBs with the promising VRFBs [7–21]. A detailed
comparative study has been carried out in [22] between LIBs and VRFBs for the simulated
household model.

VRFBs have emerged as a highly viable and efficient ESS, especially for smart grid
applications [7–20]. They offer several advantages, including high capacity, durability,
and scalability for grid management and backup energy. The unique ability of VRFBs
to effectively stabilize fluctuating power generation from RESs makes them a promising
platform for electrical ESSs. Utilizing Vanadium as the redox-active material in aqueous
solution, VRFBs generate electricity based on the potential differences of the VO2+/VO+

2
and V2+/V3+ redox couples separated by a membrane. This design not only provides
long service life and high output, but also ensures safety and high energy efficiency. In
addition to their suitability for large-scale renewable ESSs, VRFBs have also been recognized
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for their low environmental impact compared to traditional secondary batteries such as
LIBs. With their long cycle life, fast response, and flexible design, VRFBs are increasingly
garnering attention for various RES applications, including electric vehicles (EVs). Due
to their low environmental polluting potential, they are becoming an attractive option for
sustainable ESSs. One key advantage of VRFBs is their simplified structure, which allows
for quick charging and discharging, with the capability to withstand fluctuating RESs.
Moreover, while ion-exchange membranes in VRFBs are not completely impermeable
to vanadium ions, advancements in membrane technology have significantly reduced
cross-contamination [23]. This has led to a growing pursuit of next-generation VRFBs with
high electrochemical performance, further solidifying their place as a well-established and
promising ESS technology.

Compared to other ESS technologies like PHES and compressed-air energy storage
(CAES) systems, batteries shine in their responsiveness. While PHES and CAES systems
can take minutes to react to demand fluctuations, batteries deliver power almost instanta-
neously, with response times measured in milliseconds. This lightning-fast speed makes
them ideal for applications requiring immediate power availability, such as grid stabiliza-
tion and backup systems for critical infrastructure. Additionally, batteries boast higher
energy density, meaning they can store more energy per unit volume or weight than their
counterparts, offering valuable space and weight savings in certain applications [5].

PHES systems have been widely used for energy arbitrage for HRESs, due to their
low energy storage cost and high energy and power contribution [24]. Meanwhile, the
only shortcoming of these ESSs is the site dependence, where there should be available
altitude differences within the same site. The literature showed that for the feasible use of
PHESs in certain sites, the altitude difference between the upper and lower reservoirs and
the horizontal distance between them should be higher than 0.1 [25].

One study introduced the use of PHES systems with LIBs to support ESSs without
deeply studying the degradation model of LIBs [1]. This study did not consider any other
battery system; moreover, the battery model introduced in this study does not consider the
hourly degradation of the battery, but it only considers the average degradation which will
be considered in this study. Other studies introduced thermal energy storage with battery
storage systems as a combined ESS to assure the stability of RESs [26,27].

Beyond ESSs, DSM with dynamic pricing like RTP or ToU tariffs plays a pivotal role
in enhancing smart grid reliability and resource utilization. ToU tariffs offer predictable
electricity costs by dividing the day into 2–4 pre-defined periods like peak, off-peak, and
shoulder hours [28–30]. Prices are set in advance, allowing consumers to plan their energy
usage for minimal cost. However, this simplicity comes at the cost of limited flexibility for
grid operators. Conversely, RTP informs customers of hourly (or even minute-by-minute)
electricity prices, providing network operators with greater control over electricity demand
and ensuring optimal grid stability. While this approach maximizes resource utilization and
promotes RES integration, it requires sophisticated communication systems and consumer
adaptation to its dynamic-pricing structure. Understanding the trade-offs between these
two pricing models is crucial for designing efficient and reliable smart grids. This study
introduces a groundbreaking one-hour-ahead RTP strategy that optimizes cost, reliability,
and customer satisfaction, addressing the limitations of existing methods. This approach
utilizes advanced forecasting algorithms and optimization models to set dynamic prices
reflecting real-time supply and demand conditions. This empowers consumers to make
informed choices, like shifting laundry to off-peak hours or participating in DSM programs,
potentially leading to cost savings. For grid operators, the proposed RTP strategy is utilized
to enhance stability by reducing peak demand and smoothing out renewable energy
fluctuations. This translates to increased reliance on RESs, potentially reducing carbon
emissions. This cutting-edge approach positions RTP as a key driver for a sustainable and
efficient smart grid, paving the way for a cleaner and more resilient energy future.

Table 1 provides a comparative analysis of the proposed ZCSG and existing hybrid
energy systems from the literature [1,2,13,28–30] in terms of RES integration, ESS technolo-
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gies, DSM strategies, battery-aging models, LWF implementation, and system greenness.
Key findings from the comparative analysis in Table 1 can be summarized as follows:

• The first three studies [28–30] are not entirely green systems, as they incorporate diesel
units. In contrast, the remaining studies present fully green systems.

• All studies, except [13], can be categorized as smart grid systems due to the imple-
mentation of DSM strategies. Study [13] is included in the comparison to analyze
the performance of different battery technologies, such as SLA, LIB, and VRFB, in
conjunction with flywheel systems.

• All studies, except [1] and the proposed system, neglected hourly battery-degradation models.
• All studies, except [13], integrated both solar and wind energy sources. Study [13]

focused solely on solar PV systems.
• The only studies which considered the LWF are [28] and the proposed ZCSG.

In conclusion, the proposed ZCSG is the only study among those reviewed that
incorporates DSM, accurate battery-aging models, LWF, and a fully green system design.

Table 1. Comparison between the existing hybrid energy systems in the literature review and the
proposed ZCSG introduced in this study.

Study RESs ESS DSM Battery-Aging Model LWF Entire Green

[29] 2021 PV and Wind SLA RTP No No Diesel

[30] 2016 PV and Wind SLA ToU No No Diesel

[28] 2022 PV and Wind LIB and PHES RTP No Yes Diesel

[2] 2021 PV and Wind LIB and PHES RTP No No Yes

[13] 2019 PV LIB and SLA and
VRFB flywheel No No No Yes

[1] 2023 PV and Wind LIB and PHES RTP Yes No Yes

Proposed PV and Wind LIB and PHES RTP Yes Yes Yes

1.2. Motivation and Objectives

This study tackles the dilemma between integrating intermittent renewables and
ensuring grid stability. It meticulously evaluates large-scale storage solutions like PHES for
energy arbitrage and grid-scale LIBs or VRFBs for crucial frequency regulation. The research
delves into comparing the use of the VRFBs compared to the LIBs due to their long lifetime
and other outstanding operating performances. Moreover, DSM is used to align demand
with RES availability and potentially reduce dependence on storage while enhancing grid
reliability. This two-pronged approach is reflected in the study’s detailed modeling of
the HRES, encompassing both ESSs and DSM. This meticulous analysis culminates in
the selection of the optimal battery technology and tariff strategies that benefit both grid
stability and consumer electricity bills.

1.3. Innovation and Contribution

This study focuses on the optimal operation of ZCSGs with PHES and BESS systems,
prioritizing both performance and affordability. Two promising battery technologies (VRFB
and LIB) were analyzed to identify the most effective for frequency regulation. The study
investigates tariff structures based on real-time pricing (RTP) to optimize ZCSG perfor-
mance and maximize customer satisfaction. The proposed model stands out by introducing
a novel dynamic-tariff-estimation mechanism that controls loads based on real-time and
future system operation, informed by accurate load and weather forecasting. This ap-
proach not only ensures a stable and efficient ZCSG, but also empowers consumers to make
informed energy choices. This study’s findings could prove instrumental in replicating
sustainable ZCSG design in other regions, paving the way for a more ZCSG future. The
following points show the innovation introduced in this paper:

1. Building an accurate model for different components of the ZCSG.
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2. Novel hourly models that predict degradation, efficiency, state of charge (SoC), and
state of health (SoH) for both LIBs and VRFBs are introduced. These models are
based on real-world operating data, providing a more accurate representation of
battery performance.

3. An optimal tariff-estimation model to enhance the stability and reliability of the ZCSG
with the highest benefits for the customers is introduced.

4. An accurate load and weather forecast methodology is introduced to estimate the
current and future situation of the ESS to make the ZCSG system ready for any
abnormal operating conditions.

5. A recent Musical Chair Algorithm (MCA) strategy is used for hourly optimal power
dispatch for fast and accurate convergence compared to several metaheuristic algorithms.

1.4. Study Outlines

The proposed system integrates PHES, VRFBs, and LIBs as ESSs to ensure reliable
and sustainable operation. DSM strategies are further incorporated to enhance system
stability. The study outlines the proposed system in detail, starting with an introduction
and a comprehensive literature review in Section 1. Section 2 delves into the configuration
of the ZCSG with novel models for the LIBs and VRFBs, followed by an introduction of
the modified MCA approach in Section 3. Section 4 provides a detailed description of
the developed computer program for system analysis. Section 5 details the simulation
work, including the simulation program and its input data. The study concludes with key
findings and recommendations for future work in Section 6.

2. Zero-Carbon Smart Grid Configuration

This study proposes a ZCSG to reliably power load with renewable energy from wind
and PV systems. The ZCSG ensures uninterrupted electricity supply (zero loss-of-load
probability) at the lowest possible cost and without any emissions. Various ESSs bridge
the gap between the RES generation and fluctuating demand. The PHES system acts as
a large-scale ESS, while BESS provides rapid frequency regulation. Given the hot Saudi
Arabian climate, the study analyzes LIB and VRFB batteries to identify the most suitable
option. The proposed dispatch strategy prioritizes charging batteries whenever excess RES
generation is available. If the PHES system is unavailable or its discharge capacity is limited,
the BESS kicks in to meet immediate demand [31]. This ZCSG design not only guarantees a
clean and reliable power supply for the loads, but also sets a model for sustainable energy
infrastructure. The schematic diagram shows the proposed ZCSG in Figure 1.
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2.1. Energy Storage Systems

The ZCSG harnesses the power generated from RESs using the benefits of the DSM
and the ESSs such as the PHES system, VRFBs, and the LIBs. The PHES system acts as a
gravitational battery, using surplus renewable energy to pump water uphill to the high-
elevation reservoir. This stored potential energy can be unleashed later, driving turbines to
generate electricity when demand peaks. The BESS, on the other hand, delivers lightning-
fast responses, drawing upon electrochemical reactions to stabilize the grid frequency by
compensating for rapid fluctuations in wind power output. During sunny and windy days,
excess energy preferentially charges the BESSs, ensuring their readiness for any sudden
dips in generation. This dynamic interplay ensures a continuous power supply. For lack of
generation from RES periods, the BESS swiftly bridges the gap, drawing upon its charged
reserves until the PHES system takes over, seamlessly releasing its stored energy later in
case the BESS cannot afford the required energy by the load. This robust interplay between
PHES system and BESS not only guarantees reliable electricity but also paves the way for a
sustainable future, slashing carbon emissions and paving the path for greater renewable
energy integration.

2.1.1. PHES Model

PHES is an optimal option to be used in energy arbitrage in the ZCSG. The PHES
system pumps the surplus energy from the lower reservoir to the upper one to store this
energy as potential energy to be used during the low-generation periods by using hydraulic
turbines. The following equations govern the operation of the PHES system during pump
and turbine modes of operation.

PHES pump-turbine units can be equipped with binary (pump turbine linked to an
electrical machine) or ternary units (a turbine and a pump coupled to an electrical machine).
Because of their narrow stable functioning range, binary units are less versatile and slower
than ternary units, although they are nonetheless more often utilized, because of their
compactness and affordability. Variable-speed motor-generators (variable-speed pump
turbines) have been used with binary pump turbines in recent years to enhance their
flexibility and reaction time. This has allowed the turbines to function in a broader variety
of operating circumstances.

The main shortcoming of the PHES system is its slow ramp-up from a standstill or
during its normal operation. The PHES system needs at least 5 min to successfully operate
from a standstill to its full capacity. Moreover, it needs at least 15 s to ramp up from half to
full capacity [32]. For this reason, the batteries are required to swiftly regulate abnormal
operating conditions; meanwhile, the PHES system is a perfect and cost-effective option for
energy arbitrage [32].

Several types of pump-turbine units can be used in PHES applications such as Francis
turbines, reversible Kaplan turbines, Pelton turbines, etc. The selection of the appropriate
turbine for a PHES facility depends on various factors, including the head, the flow rate,
and the required ramp-up time. By carefully considering these factors, engineers can
choose the optimal turbine type to maximize the performance and efficiency of the PHES
plant. However, Francis and reversible-Kaplan turbines remain the dominant choices due
to their versatility, efficiency, and suitability for the typical operating conditions of the
PHES system [32]. Owing to the higher efficiency and lower initial cost, and the lower
complexity of the Francis turbine compared to the reversible-Kaplan turbine, it will be used
in this study. The main shortcoming of the Francis turbine is its slow ramp rate, which is
not important in the presence of the BESS, as in the case of this study. The variation in the
efficiency of the Francis turbine with the relative power is shown in Figure 2 [32,33]. The
schematic diagram of the PHES system is shown in Figure 3.
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Several studies have been proposed to determine the optimal diameter of the penstock [34–36].
Warnick, C. et al. [34] proposed the optimal diameter based on the rated flow rate (Q) using the
following empirical formula (1) [34]. The same study proposed the optimal diameter in terms of the
rated power of the unit (PR

PHES) and the head difference between the upper and lower reservoirs
(h) as shown in Equation (2) [34]. This formula (2) has been used in the simulation of this study.

De = 0.72 Q0.5 (1)

De = 0.72 P0.43
PHES/h0.63 (2)

The head friction loss in the penstock has been modeled in many studies and has been
summarized in [35]. The head friction loss can be obtained from Equation (3) [35].

h f =
0.0826 f Q2 L

D5
e

(3)

where f is the friction factor with a value varying between 0.32 and 0.36 [35], and L is the
length of the penstock (1200 m, based on the topological characteristics of the PHES site
used in this study).

The effective head of the pump operation is the actual head plus the head due to
friction, which can be obtained from Equation (4). Meanwhile, the effective head of the
turbine operation is equal to the actual head minus the head losses due to friction, as shown
in Equation (5).

h = ht + h f in pump mode (4)

h = ht − h f in turbine mode (5)

The generated power from the turbine-generator unit is shown in Equation (6) [37].

Pt
T = ηT ρw h g Qt

T (6)
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where ηT is the turbine-generator unit efficiency, ρw is the water density (1000 kg/m3), g is
the acceleration due to gravity, and Qt

T is the discharge flow rate (m3/s).
The pump-motor unit power can be obtained from Equation (7) [37].

PP
t = QP

t × ρwgh/ηT (7)

where QP is the flow rate through the pump.
The gravitational potential energy stored in the upper reservoir (EU) is obtained from

Equation (8) [37],
EU = ηT ρw (Vt

U − Vmin) g h (8)

where VU is the volume of water in the upper reservoir; meanwhile, Vmin is the minimum
volume of the upper reservoir. The minimum volume of the upper reservoir is chosen as
5% of the rated value, as recommended by [38].

The hourly volume of water in the upper reservoir is equal to the previous hour’s
volume minus the flow rate through the turbine plus the flow rate through the pump minus
the water loss, which can be obtained from Equation (9).

Vt+1
U = Vt

U − Qt
T + Qt

P − Qt
Loss (9)

2.1.2. LIB Degradation Model

Several technologies are used to manufacture the LIBs, and most of them are differ
in the cathode materials. The most suitable technology is the Lithium Iron Phosphate
(LiFePO4) due to its high safety, long lifespan, high power density, wide operating tempera-
ture, high round-trip efficiency, and reasonable cost [39]. Two different degradations occur
inside the LIBs, which are the degradation due to calendar and cycling. The degradation
due to the calendar is directly proportional to the operating temperature and the battery
state of charge (SoC). The cycling degradation is directly proportional to the operating tem-
perature and the charging/discharging power, and inversely proportional to the SoC. The
degradation of the LIBs has been introduced in the literature in many studies [9,10,40,41].
Some studies introduced accurate models that depend on the actual calendar and cycling
tests [28,42–44], and will be considered in the novel model introduced in this study. In
these studies, the LIBs degradation is measured in the lab, and the experimental results
are used to determine the model parameters by minimizing the root mean square error
(RMSE) between the calculated degradation from the model and the one obtained from the
tests. This model is very accurate, but most manufacturers do not provide this data and the
calculation should be performed before using the LIBs. Most of the manufacturers provide
the relation between the achievable cycle count (ACC) and the depth of discharge (DoD) as
shown in Figure 4 [42]. For this reason, the novel degradation model of the LIBs is driven
from this curve.
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The relation between the number of lifetime cycles and the DoD of the LIBs shown in
Figure 4 can be mathematically modeled, as shown in Equation (10) [42].

ACC = a · DoD−b (10)

where a and b are fitting parameters that can be obtained from the curve shown in Figure 4.
The DoD is equal to the difference between the maximum and minimum SoCs as

shown in Equation (11).

DoDt
LIB = 1 −

Et
LIB

ER
LIB

= 1 − SoCt
LIB (11)

where ER
LIB and Et

LIB are the rated capacity and the current stored energy of the LIB.
The SoH of the LIB is the ratio between its maximum stored energy (Emax

LIB ) to its rated
capacity (ER

LIB), which can be obtained from Equation (12).

SoH =
Emax

LIB
ER

LIB
(12)

The throughput energy that the LIB can process through its lifespan is shown in
Equation (13), which considers the charging/discharging efficiency and the degradation
capacity through the lifetime of the battery.

ET = 2 · η2
LIB · ACC · DoD · ER

LIB ·
(

1 + θ

2

)
(13)

where θ is the percentage of the capacity that the LIB should replace when it reaches this
value. This value is 80% in the EV applications [42]; meanwhile, in stationary applications
such as the BESSm this value can reach 40% [1].

The degradation density function (DDF) which represents the LIB degradation per
unit energy (kWh) can be obtained using Equation (14)

DDF =
1

ET
=

1
η2

LIB · ACC · DoD · ER
LIB · (1 + θ)

(14)

From Equation (10) and Equation (14), the DDF can be represented in terms of DoD
and SoC as shown in Equation (15) and Equation (16), respectively.

DDF =
1

η2
LIB · a · ER

LIB · (1 + θ)
· DoDb−1 =

1
η2

LIB · a · ER
LIB · (1 + θ)

· (1 − SoC)b−1 (15)

DDF = KD · DoDb−1 = KW · (1 − SoC)b−1 (16)

where KD = 1
η2

LIB · a · ER
LIB · (1+θ)

.

The simulation used in this study assumes that the charging/discharging power is constant
during each hour (∆t), and for this reason the charging/discharging ramp is modeled for a one-hour
period. The total wear-per-hour can be obtained from Equation (17) [45].

Dt
LIB =

∫ t1+∆t

t1

ER
LIB · DDFt(SoC)

dSoC(t)
dt

dt (17)

The time variation of the SoC ( dSoC(t)
dt ) can be calculated from Equation (18).

dSoC(t)
dt

=
PLIB

ER
LIB

(18)
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The following equation is used to determine the degradation occuring inside the LIB per time
∆t (one hour in this study).

Dt
LIB =

KD · P2
LIB

b · ER
LIB

(1 − SoCint +
PLIB · ∆t

ER
LIB

)b

− (1 − SoCint)
b

 (19)

where SoCint is the initial SoC of the charging/discharging ramp.

2.1.3. VRFB Model
Vanadium redox flow batteries have emerged as a highly viable and efficient ESS, especially

for RESs. They offer several advantages, including high capacity, durability, unparalleled service
life, high safety, environmentally friendliness, high energy efficiency, low cross-contamination, and
scalability for grid management and backup energy. In comparison to LIBs, VRFBs offer several
advantages in RES applications. These include long cycle life, high stability, fast response, and no
cross-contamination of the active species. Furthermore, VRFBs can be scaled up for high capacities,
making them suitable for large-scale ESSs. When it comes to cost-effectiveness, VRFBs initially have
a higher installation cost compared to LIBs [22]. In terms of specific energy-storage requirements,
VRFBs have the advantage of being able to scale their capacity by adjusting the size of the electrolyte
tanks and the number of active cell stacks. This flexibility makes VRFBs suitable for applications that
require large-scale energy storage. Additionally, the abundance and wide distribution of Vanadium
resources make VRFBs a more sustainable and environmentally friendly option compared to LIBs,
which rely on limited resources such as lithium. VRFBs do not have the risk of thermal runaway or
fire, making them a safer choice for large-scale ESSs. Moreover, the desired DoD also plays a critical
role in sizing VRFBs for RESs [46].

Utilizing Vanadium as the redox-active material in aqueous solution, VRFBs generate electricity
based on the potential differences of the VO2+/VO+

2 and V2+/V3+ redox couples separated by a
membrane and couples in concentrated sulfuric acid solutions as positive and negative electrolytes, as
shown in Figure 5. This study considers the impact of carbon electrodes, in addition to the electrolyte
and membrane, on VRFB degradation, as discussed in [47]. Carbon/graphite fiber electrodes play a
crucial role in VRFB performance, as the redox reactions of vanadium ions occur on their surface.
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Several modeling strategies for the VRFBs have been introduced in the literature, and most
of these studies used one factor as a target to be considered, such as thermal modeling [48], loss
modeling [49], degradation modeling [50], etc. In this study, all these important parameters have been
considered in modeling the VRFBs to determine the accurate cost of charging for a fair comparison
with the LIBs.

The relation between the VRFB voltage and the SoC and operating temperature can be obtained
from the modified Nernst equation, as shown in Equation (20) [8].

Vstack = Veq + 2
RT
F

(
SoC

1 − SoC

)
, Veq = nVcell (20)
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where Vcell is the standard electrode voltage of the VRFB cell and set as 1.39 V [48], F is the Faraday constant
(96,485.33 C/mol), T is the operating temperature, and R is the gas constant [8.3144598 J K−1 mol−1] [48].

The SoC of the VRFB depends on the dispatch power, the current efficiency, and the previous
value of the SoC, and it can be shown in Equation (21) and Equation (22) for charging and discharging,
respectively [51].

SoCt
FB = SoCt−1

FB +
Pt

FB · ∆t · ηc
FB

ER
FB

for discharging (21)

SoCt
FB = SoCt−1

FB +
Pt

FB · ∆t
ηd

FB · ER
FB

for discharging (22)

where SoCFB is the SoC of the VRFB, PFB is the charging/discharging power of the VRFB, ∆t is the
window or increment time, ηc

FB and ηd
FB are the VRFB charging and discharging efficiencies, and ER

FB
is the rated capacity of the VRFB in kWh.

Several losses occur inside the VRFB in ideal, charging, and discharging states. Most of these
losses are due to the diffusion of active anodes through the membrane between the two electrolyte
tanks. Moreover, there is a hydraulic migration from the positive electrolyte to the negative one
during charging. Furthermore, the consumed energy by the two pumps also consumes a significant
amount of power which reduces the operating efficiency of the VRFBs [52]. The power-flow diagram
through the VRFB in charging and discharging is shown in Figure 6. VRFBs experience energy losses
that reduce their overall efficiency. One of the losses is called Ohmic loss, which is generated as heat
due to the internal resistance. This resistance comes from the battery’s parts (electrodes, electrolytes,
separators) and increases with higher current or colder electrolytes. The other losses are called the
pump losses, which represent the energy dissipated across the pumps of the two tanks. The crossover
losses are losses due to the Vanadium ion migration through the VRFB’s membrane, moving from
one side to the other. This migration zaps the battery’s power and shrinks its potential. Finally, the
shunt-current losses occur due to the energy escaping the VRFB active anodes through the membrane,
which can significantly reduce the efficiency of the VRFB.
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The overall efficiency during the charging and discharging depends on the voltage and stack
efficiencies of the VRFB, as shown in Equation (23) and Equation (24), respectively.

ηc
FB = ηc

v · ηc
s for charging (23)

ηd
FB = ηd

v · ηd
s for discharging (24)

where ηc
v and ηc

s are the voltage and stack efficiencies during charging, which can be determined
from Equation (25) and Equation (26), respectively [51]. Meanwhile, ηd

v and ηd
s are the voltage and

stack efficiencies during charging, which can be determined from Equation (27) and Equation (28),
respectively [51].

ηc
v =

ao
vTe SoC + bo

vTe + co
v

(ac
v SoC + bc

v)
Pc

FB
ER

FB
+ cc

v SoC + dc
v

(25)
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ηc
s =

(ac
s SoC + bc

s)
Pc

FB
ER

FB
+ cc

s SoC + dc
s

Pc
FB

ER
FB

(26)

ηd
v =

ad
v

Pd
FB

ER
FB

+ bd
v SoC + cd

v

ao
vTe SoC + bo

vTe + co
v

(27)

ηd
s =

Pd
FB

ER
FB

ad
s

Pd
FB

ER
FB

+ bd
s SoC(SoC − 1) + cd

s

(28)

where ao
v, bo

v, and co
v are constants depending on the idle state of the VRFB; meanwhile, ac

v , bc
v, cc

v,
dc

v are the charging parameters of the VRFB, which can be determined from [51] and are shown in
Table 2, Pc

FB is the charging power of the VRFB, ER
FB is the rated capacity of the VRFB in kWh, ad

v , bc
v,

cd
v, dd

v are the discharging parameters of the VRFB which can be determined from [51] and are shown
in Table 2, and Pd

FB is the discharging power of the VRFB.

Table 2. The VRFP model parameters [51].

(i, k) ai
k bi

k ci
k di

k

(o, v) 0.079170 −0.002440 1.276400 -

(d, v) −0.283330 0.13251 0.986140 -

(d, p) 1.033400 0.345400 0.119200 -

(c, v) 0.197390 0.161670 0.142080 0.974790

(c, p) −0.128000 1.050000 0.038000 0.118000

(a, b) −8.390400 8.663400 7.363200 −7.504000

The maximum charging/discharging power that the VRFB can process is a function of its SoC,
as shown in Equation (29) and Equation (30), respectively [7]. The simulation should take these
values of charging/discharging powers as constraints during the operation of the VRFB, as will be
shown in the flowchart showing the VRFB model in Section 4.

Pmc
FB = PR

FB

(
ac

m · SoC2 + bc
mSoC + cc

m

)
(29)

Pmd
FB = PR

FB

(
ad

m · SoC2 + bd
mSoC + cd

m

)
(30)

where Pmc
FB , Pmd

FB are the maximum power dispatch of the VRFB during charging and
discharging, respectively.

The lifespan of the VRFBs is substantially longer than LIBs, and it can reach more than
25 years [48–50]. Moreover, the capacity degradation is negligible in many studies [7,51]. Meanwhile,
few studies considered the degradation that occurs inside the VRFB as a consideration [10,18,50].
For this reason, the aging model for the VRFB shown in [50] is used to determine the degradation
cost. Two different degradation mechanisms occur inside the VRFBs, the calendar and cycling
degradations. The overall degradation is the summation of these two degradations, as shown in
Equation (31). The calendar degradation during a certain period is shown in Equation (32), where Lca
is the total time to reduce the SoH from 100% to 80% of the battery due to storing in the VRFB. The
cycling degradation is due to the normal operation (charging/discharging) of the VRFB, as shown in
Equation (33), where Lcy is the total time to reduce the SoH from 100% to 40% of the battery due to
cycling [50].

Dt = Dca + Dcy (31)

Dca = ∆t/Lca (32)

Dcy =
0.5 · |PB|∆t

Lcy · ER
B

(33)

Understanding degradation modeling in the VRFB is crucial for predicting and managing the
performance and lifespan of the battery. This involves studying the degradation mechanisms and
factors that contribute to the deterioration of the VRFB’s performance over time. By analyzing and
modeling degradation in VRFBs, researchers can optimize VRFB design, operation strategies, and
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maintenance protocols to enhance the longevity and efficiency of the VRFB. Additionally, degradation
modeling in the VRFB allows for the identification of potential issues such as electrode fouling,
membrane degradation, and side reactions, which can affect the overall performance of the VRFB.
This information can be used to develop strategies for mitigating degradation and improving the
overall durability of VRFBs in RESs.

By thoroughly evaluating these factors, including energy capacity, power output, DoD, lifetime,
and cost-effectiveness, a properly sized VRFB can be designed and integrated into the ZCSG, allowing
for efficient energy storage and utilization.

2.2. Demand-Side Management
Despite its advantages in flexibility and grid stability, RTP presents implementation challenges.

It demands sophisticated communication infrastructure and relies on a delicate balance between fair
pricing and the ZCSG stability. To address these hurdles, a novel one-hour-ahead pricing strategy
that guarantees optimal performance is introduced on three key fronts: maximizing grid reliability,
minimizing customer costs, and maintaining user satisfaction. This novel strategy leverages a multi-
objective function that carefully balances these competing objectives, a core focus of this study which
is shown in the following subsections.

2.3. Zero-Carbon Smart Grid Reliability
The reliability of the ZCSG can be measured using many reliability indices, such as the loss

of load probability (LOLP), the loss of energy expected (LOEE), etc., as shown in Equation (34) and
Equation (35), respectively [1]. Different evaluation indices should be considered in the design of the
HRES. These indices are shown in the following equations:

LOLP =

(
8760

∑
i=1

toutage(i)

)
/8760 (34)

where toutage is the time that the system cannot fully feed the loads with each need, where this
value equals 1 in the case where the HRES cannot feed the electric loads with its needs, and
equals 0 otherwise.

LOEE =

(
8760

∑
t=1

Pde(t)

)
/

8760

∑
t=1

PL(t) (35)

where Pde(t) is the energy that the HRES cannot afford at time t.
The hourly discrepancy between the generated energy from the RESs and the demand power,

considering the current difference and the forecasted difference, can be modeled by using the
forecasted factor (FF), as shown in Equation (36).

FFt =
1

NF · PLA

NF

∑
i=1

Pt+i
G − Pt+i

L
PLA · i

(36)

where NF is the number of forecasted hours, Pt+i
G is the generated power from RESs at i-hours ahead,

i is a variable between 1 and NF, and Pt+i
Lo is the demand power at i-hour ahead.

The situation of the ESS at any hour can be measured by the energy stored in the upper reservoir
of the PHES plus the energy stored in the battery, in addition to the forecasted difference between the
generation and the loads in the coming hours, which can be obtained from the value of FF, as shown
in Equation (37).

CSE(t) = RVt
U +

ER
B

ER
U
· SoCt

B + FF (37)

where the RVt
U is the ratio of the present upper-reservoir volumes to their maximum value, which

can be obtained from Equation (38), ER
B is the rated capacity of the battery, ER

U is the rated capacity
stored in the upper reservoir of the PHES, and SoCt

B is the current SoC of the battery used.

RVt
U =

(
Vt

U − Vmin
U

)
/
(

VR
U − Vmin

U

)
(38)

2.4. The Revenue of the ZCSG
The hourly revenue is the difference between the total hourly income and the cost. The income

is equal to the load power multiplied by the tariff. Meanwhile, the cost is divided into two categories,
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constant and variable costs. The constant cost represents the cost of assets per hour. Meanwhile,
the variable cost represents the variable costs depending on the operation of the devices during
the current hour, such as degradation of the batteries and the loss costs of the ESS devices such as
batteries and PHES, as shown in Equation (39). The constant cost represents the LCOE due to the
constant cost, which can be obtained from Equation (40) multiplied by the load power PL(t). The
variable cost is the cost associated with the degradation cost of the batteries and the maintenance cost
of the PHES, as shown in Equation (40).

Revt = pt · Pt
L − Ct

c − Ct
v (39)

Revt =
(

pt − LCt
c
)
· Pt

L − PHESt
O&M · Pt

PHES − DCt
BESS (40)

where pt is the hourly tariff, LCc is the hourly levelized cost due to constant costs, PL is the modified
load power, PHESO&M is the hourly maintenance and operation costs of the PHES per kW, PPHES is
the power processed by the PHES, and DCBESS is the hourly degradation cost, which can be obtained
from Equation (19) and Equation (33) for LIBs and VRFBs, respectively.

The hourly constant cost of the ZCSG system represents the net present cost of assets divided
by the total hours of the project, as shown in Equation (41).

LCt
c =

NPCC · CRF
TP · 8760

(41)

where CRF is the capital recovery factor which can be determined from Equation (42), TP is the project
lifetime (years), and NPCC is the net present cost of assets (constant cost), which can be determined
from Equation (43).

CRF =
r(1 + r)TP

(1 + r)TP − 1
(42)

where r is the interest rate.
NPCC = IC + RC + OMCc − SAL (43)

where IC is the initial cost, RC is the replacement cost, OMCc is the constant operating and mainte-
nance cost (OMC), which depends on the cost per time, not on the normal operating of the device,
and SAL is the salvage price of the retired components.

The initial cost (IC) of the ZCSG system includes the cost of all components, including the cost
of the feasibility study and any consulting fees, the cost of installation, etc., as shown in Equation (44).

IC = WTIC + PVIC + BAIC + PHESIC (44)

where WTIC, PVIC, BAIC, and PHESIC are the IC of the costs of wind energy systems, PV energy
systems, BESS, and PHES, respectively.

The WTIC is equal to the number of wind turbines (WTs) multiplied by the cost of each unit.
PVIC is equal to the area of the required PV system multiplied by the cost per m2. The BAIC is the
cost of the battery system, which is different in the case of LIBs and the VRFB, where the BAIC for
LIBs is obtained by multiplying the capacity of the LIBs by the cost per kWh. Meanwhile, the cost of
the VRFBs depends on the cost per energy capacity plus the cost of power capacity, which can be
determined from Equation (45).

BAICFB = CE · ER
FB + CP · PR

FB (45)

where CE is the cost per kWh capacity of the VRFB, CP is the cost per kW power capacity of the VRFB,
ER

FB is the energy capacity of the VRFB, and PR
FB is the power capacity of the VRFB.

The initial cost of the PHES is equal to the cost of installing the upper reservoir dam plus the
cost of the pump-turbine unit, as shown in Equation (46).

PHICIC = VR
U vC

u + PR
PHES · pC

PHES (46)

where VR
U is the rated volume of the upper reservoir, vC

u is the cost of the upper dam per m2 of the
volume of the upper reservoir, PR

PHES is the rated power of the pump-turbine unit of the PHES, and
pC

PHES is the price of the pump-turbine unit per kW of its capacity.
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The net present replacement cost of any device d can be obtained from Equation (47).

RCd =
NRd

∑
i=1

ICd

(1 + r)
(

TP · i
NRd + 1

)

(47)

where NRd is the number of replacements of component d, which can be obtained from Equation (48),
and ICd is the initial cost of the component d,

NRd = Roundup
(

TP
LTd − 1

)
(48)

where LTd is the lifetime of the component d.
The OMC is divided into two parts: the first part depends on the schedule maintenance, which is

called the constant OMC, and the other part depends on the real use of the components, which is called
the variable OMC. The constant OMKC depends on the size of each component and it is counted as a
percentage of the initial cost of this component, and it can be obtained from Equation (49).

OMCc =
TP

∑
i=1

YearlyOMC

(r + 1)i (49)

The salvage price can be determined based on selling the retired devices once they reach their
end of life, and it can be obtained from Equation (50),

SALd =
NRd+1

∑
i=1

SALPrice

(r + 1)
(

TP · i
NRd + 1

) (50)

The variable cost of the BESS depends on the degradation that occurs in the battery which can
be obtained from Equation (19) and Equation (33) for the LIBs and VRFBs, respectively.

The hourly variable operating and maintenance cost of PHES VPHESt
O&M is is equal to the

start-up cost and wear cost of the turbine-pump unit, which is obtained from Equation (51).

VPHESt
O&M = µS +

∣∣Pt
PHES

∣∣ · pPHES (51)

where µ is the flag for the previous operation of the PHES, where it equals zero if the PHES was
working during the previous hour (

∣∣Pt
PHES

∣∣ > 0); otherwise, it equals one, and pPHES is the variable
OMC of the PHES per kW.

2.5. The Customer Satisfaction Factor
The customer satisfaction factor is used to measure the satisfaction of the customers. This factor

measures the difference between the original load power and the modified power due to the RTP,
used as a ratio of the original power, as shown in Equation (52). When electricity tariffs rise, the
adjusted power consumption will decrease automatically, considering the flexibility of different loads.
This adjustment might lead to customer dissatisfaction (reflected in a negative satisfaction factor).
Conversely, tariff reductions incentivize increased power consumption beyond the original level,
potentially improving customer satisfaction. Therefore, maximizing the satisfaction factor becomes
crucial to ensure a positive customer perception of the system.

SFt =
Pt

L − Pt
Lo

Pt
Lo

(52)

The price elasticity of demand (PED) is the relation between the change in power due to the
change in tariff, which can be obtained as shown in Equation (53) [24,29].

PED =
∆Pt

L/PLA

∆pt/p0
(53)

where the ∆Pt
L is a change in power due to the change in tariff, and p0 is the base tariff.
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2.6. Multi-Objective Function
In the proposed study, there is multi-objective function used for an optimal operation which

should be performed hourly to optimally determine the flow of power, based on the objective
functions shown in Equations (37), (39) and (52), which can be collected in one objective function, as
shown in Equation (54). All these terms should be maximized to obtain the optimal techno-economical
operation of the ZCSG system.

Ft
O = m1 · CSEt + m2 · Revt + m3 · SFt (54)

where m1 to m3 are weight values for each single objective function which should satisfy the condition
shown in Equation (55).

m1 + m2 + m3 = 1 (55)

A detailed description of the optimization algorithm is shown in Section 4, and a detailed
description of the logic used in the simulation program is shown in Section 5.

2.7. Energy-Balance Modeling
Due to the discrepancy between the generated power from RESs and the load, there is a need for

ESSs, which may add a significant increase in the cost of energy utilized due to their high cost. For this
reason, the DSM strategy is used with the ESS synergistically to maintain the highest reliability with
a reasonable cost of energy. The dispatch between the generated power and the loads in the presence
of the DSM is introduced in this section. During the positive difference between the generated power
from RESs (PG = PW + PPV) and the load requirements, the surplus power (PD) will move to charge
the ESS. If PD > 0, then PD will go to the ESS. The optimization algorithm will manage the share
between the ESS devices and the loads using maximization of the multi-objective function shown
in Equation (54). Meanwhile, if the PD < 0, then the deficit power should be compensated from the
ESS, and the DSM should control the loads using the RTP tariff, using the multi-objective function
shown in Equation (54). The following constraints are used to manage the flow of power among the
ZCSG components.

The power of the pump-turbine unit (
∣∣Pt

PT
∣∣) should be less than or equal to the rated power of

the turbine-pump unit (PR
TP) as shown in Equation (56).∣∣Pt

PT
∣∣ ≤ PR

PT (56)

The upper-reservoir volume should be between the upper and lower limits of the volume, as
shown in Equation (57). The lower reservoir is big enough, and its limit will not be considered in
this analysis.

Vmin
U ≤ VU(t) ≤ Vmax

U (57)

where VU(t) is the volume of the upper reservoir, and Vmin
U and, Vmax

U are the highest and lowest
volumes allowed for the upper reservoir, respectively.

The SoC of the battery should not exceed the boundary limits by the manufacturer as shown in
Equation (58).

SoCmax ≤ SoC(t) ≤ SoCmin (58)

where SoCmin and SoCmax are the minimum and maximum SoC of the BESS.
The charging- and discharging-power limits of the VRFB should not exceed the allowable values ob-

tained from Equations (29) and Equation (30), respectively, and are summarized in Equations (59) and (60).

0 < Pc
FB ≤ Pmc

FB for charging (59)

0 < Pd
FB ≤ Pmd

FB for discharging (60)

The maximum charging/discharging power of the LIB is as recommended by the manufacturer,
where the maximum power is equal to the rated energy [1].

3. Musical Chairs Algorithm
The optimal operation needs an optimization algorithm to run hourly to determine the optimal

power dispatch between ZCSG components and the optimal tariff, based on the optimal function
shown in Equation (54). The optimization algorithms are time-consuming, and to obtain an accurate
result, a large number of search agents should be used to avoid premature convergence. Unfortunately,
the increase in search agents will increase the convergence time, where there is a trade-off between
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the accuracy of the results and the convergence time. For this reason, a recent optimization algorithm
called the musical chairs algorithm (MCA) is used, in which this optimization algorithm started
the optimization algorithm with a high number of search agents to enhance the exploration and
gradually removed the worst search agents with the progress of optimization steps to reduce the
convergence time, while maintaining the highest accuracy of the results.

The MCA is a metaheuristic optimization algorithm inspired by the musical chair game in
which n players rotate around n − 1 chairs while the music is playing. Once the music stops, each
player takes the nearest chair, and one of the players who cannot capture the chair is called a “loser”,
as shown in Figure 7 [42,53]. This loser and one chair should be removed and the game started again.
In the last round, there will be one chair and two players, and the one who takes this chair is called
“the winner”. The same logic is used to implement the MCA, where n of search agents (players) will
start searching for the optimal solution once the worst player, who has the lowest fitness function, is
removed from the swarm. The player’s position and value will be transmitted to the next chair as
initial values for chairs. The new position of players can be obtained from Equation (61) [53]. The
flowchart showing the logic of the MCA is shown in Figure 8.

di
pk = di−1

pk + M · |u|
v1/β

·
(

dbest − di
pk

)
(61)

where i is the iteration number (i = 1, 2, . . .. . . it), where it is the total number of iterations, k is the
searching agent order within the swarm (k = 1, 2, . . . n), n is the number of players in each iteration,
M is a constant used to determine the step of transition of the MCA, b is the step size of the L’évy
flight [53], and u and v are the uniform distributions matrices which can be obtained from (62) [54].

u ≈ N
(

0, σ2
u

)
and v ≈ N

(
0, σ2

v

)
(62)

where σu and σv are the variance of u and v matrices, and they can be determined from Equation (63) [54].

σu =

Γ(1 + β) · sin(π · β/2)

Γ
(

1+β
2

)
· β · 2(

β−1
2 )

 and σv = 1 (63)
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3.1. Validating Player Positions and Evaluating Fitness
The algorithm first verifies that the new positions assigned to each player comply with the

predefined constraints specific to their technology. Subsequently, these positions are communicated
to the ZCSG model, which calculates their corresponding fitness values.

The next step involves comparing the latest fitness value of each player to their value from
the previous iteration. If the new value is an improvement, it replaces the older one, along with the
associated player position. Conversely, if the older value is superior, it remains unchanged.

3.2. Competition Between Players and Chairs
Each chair’s fitness is then compared to the fitness of its two closest players. If a chair outper-

forms both players, its position and fitness remain unchanged. However, if either player demonstrates
better fitness, the chair’s position and fitness are overwritten with the superior player’s information.
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3.3. Optimization and Stopping Criteria
The algorithm checks if the number of chairs exceeds one. If so, the player and chair with the

lowest fitness values are eliminated from their respective groups. This step aims to eliminate the
less-performant options and to encourage the exploration of new possibilities.

Finally, the stopping criteria are evaluated. If met, the position and fitness of the best chair
represents the optimal solution, and the algorithm terminates. Otherwise, the process loops back to
the beginning, recalculating player positions based on Equation (61) for the next iteration.

4. The Simulation Program
The simulation program has been used for hourly optimal operation of the ZCSG to optimally

supply the loads for the highest reliability, revenue, and customer satisfaction. This can be per-
formed using the MCA optimization algorithm for maximization of the objective function shown
in Equation (54). The simulation should be performed for all the years of the project lifetime. The
variables of the optimization algorithm are the tariff, the battery charging/discharging power, and
the pump/turbine power of the PHES. The flowchart showing the proposed simulation program is
shown in Figure 9. During this operation, the generated power is calculated hourly, and compared
with the load; based on this difference and the situation of the energy storage in the EES systems,
the new electricity tariff is suggested, and the contribution from the PHES and the BESS is fed in to
determine the operation objective function FO, as shown in Equation (54). The flowchart showing the
models of the PHES, LIB, and VRFB are shown in Figures 10–12, respectively. Based on this value
of the operation objective function, an update for the tariff and the contribution for the PHES and
BESS will be suggested. Once the stopping criteria are validated, the system will ensure whether
the load is satisfied or not. In the case of the load not being satisfied, this means that loss of load
occurs and the LOLP should be increased by one; otherwise, do nothing and go to the next hour.
The stopping criterion for the optimal operation-optimization algorithm is checked, and if it is not
validated, the value of FO will go again to a new suggested value of variables until the stopping
criterion is validated and the optimization algorithm will stop; it will send the optimal tariff, BESS,
and PHES contribution and revenue, and the LCOE and LOLP to the output results.
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5. Simulation Work
The simulation of the proposed system is used to show the comparison between the use of the

LIB and VRFB as an ESS for ZCSG. Two different simulation studies are performed: the first one
is the use of the LIB with the PHES system as ESS and the second one is the same as the first one,
replacing the LIB with the VRFB. The simulation model of the proposed strategy is implemented
using m-files under a Matlab environment.

5.1. Input Data
The hourly wind speed, solar irradiance, and the temperature of the NEOM site are used as

input data for the simulation program, which can be obtained from [1]. The monthly average load
power is obtained from the same reference [1].

The wind turbine specifications used in the simulation and the specification of the Panasonic
VBHN325SA16 module used in the simulation are obtained from [29]. The specifications of the PHES
are shown in Table 3. The specifications of the LIB and VRFB are shown in Table 4.
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Table 3. The specifications of PHES.

Parameter Value Parameter Value

Pump/Turbine Cost USD 225/kW [24] Rated Head 1162 m [24]

Civil Work USD 7.884 [24] Friction factor, f 0.34 [35]

ηP and ηT 92% [24] Pipe Diameter De = 0.72 P0.43/H0.63 [35]

Lifetime 40 [24] Pipe Length 1200 m [35]

OMC 1% of initial cost [24]

Table 4. The battery specification parameters.

Items LIB VRFB

Battery cost USD 156/kWh [55] USD 426/kW and USD 100/kWh

BA_OMC USD 0.02/kWh/year USD 0.1/kWh/year

BA_SL 20% BA_cost 30% BA_cost

EOL Capacity 40% 40%

Efficiency 0.95 Equations (27) and (28)

σ 0.02% 0.035%

DOD 70% 100%

5.2. Simulation Results
The simulation of the proposed system has been performed using Matlab code version 2023a

using an Intel i7-7500U, 2.70 GHz, dual-core CPU with 32 GB RAM, 405 operating on Windows 11.
Several simulation studies have been introduced in this paper.

The first study is used to compare the use of the MCA optimization algorithm with other
optimization algorithms such as grey wolf optimization (GWO) [56], particle swarm optimization
(PSO) [57], bat algorithm (BA) [58], cuckoo search (CS) [59], and crow search algorithm (CSA) [60].
The performance of these optimization algorithms is shown in Figure 13 and Table 5. The convergence
time of these optimization algorithms are 3.4 s, 6.6 s, 9.2 s, 9.4 s, 7.6 s, and 11.6 s, respectively. As
depicted in Figure 13 and Table 5, MCA significantly outperforms other optimization algorithms in
terms of convergence speed. Notably, GWO requires nearly double the convergence time of MCA.
Moreover, CSA exhibits the slowest convergence, taking a staggering 341% longer than MCA. In
terms of maximum fitness value, MCA consistently surpasses other algorithms, further solidifying
its superiority.
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Table 5. The comparison of MCA and other optimization algorithms.

Algorithm Convergence Time (s) % Convergence Time
Compared to MCA Objective Function

MCA [61] 3.4 100 2.180107

GWO [56] 6.6 194.1176 2.178874

PSO [57] 9.2 270.5882 2.178537

BA [58] 9.4 276.4706 2.178875

CS [59] 7.6 223.5294 2.179815

CSA [60] 11.6 341.1765 2.179496

The second study is used to evaluate the effect of the use of DSM compared to the case of not
using the DSM in controlling the load. In this study, the LIB is used with the PHES as ESSs. The
proposed computer program runs with PED = 0 (NO DSM), as shown in Figures 14 and 15. The
generated power from wind and PV, the load power, and the difference between generated power
and the load, FF, the ratio of the volume of water in the upper reservoir to its rated volume, the SoC
of the LIB, and the situation of the ESSs (CSE) are shown in Figure 14. Figure 15 shows the variation
in the difference between the generated power and the load power, the variation in the water in the
upper reservoir, the power from PHES, the charging/discharging power from the LIB, the SoC of the
LIB, and the SoH of the LIB. The main results of this case (PED = 0) are summarized in Table 5. The
simulation results showed that the LCOE is USD 0.0931/kWh with USD 19.258 net present cost. The
net present value of this project is USD 6.357.

The other case used with DSM with PED = −0.5 is shown in Figures 16 and 17. The difference
between the original load power and the modified one is shown in the upper trace of Figure 16. The
difference between the generated power and the load power is shown in the second trace of Figure 16.
The forecast factor, the ratio of the water volume of the upper reservoir to its rated value, the SoC
of the LIB, CSE, and the tariff are shown in Figure 16. Figure 17 shows the difference between the
generated power and the load power against the situation of the ESSs and the form factor. The main
results of the ZCSG system without DSM (PED = 0) and when the DSM is used (PED = −0.5) are
shown in Table 6. It is clear from this table that the use of the DSM (PED = −0.5) reduced the LCOE
from USD 0.0931/kWh to USD 0.0625/kWh, which means that the LCOE is reduced by 32.87% with
the use of DSM (PED = −0.5) compared to the unused DSM (PED = 0). Moreover, the revenue from
the ZCSG system with DSM (PED = −0.05) is USD 12.778 × 109 compared to USD 6.357 × 109 when
the DSM is not used (PED = 0), which means that the revenue with the use of DSM is increased by
more than 100% compared to the case of not using the DSM. Moreover, the size of components when
using the DSM is significantly reduced compared to not using the DSM (PED = 0). These important
results show the superiority of the use of DSM when designing the ZCSG system.

To examine the logic used in the optimal dispatch of the system, the second day of the simulation
is used to zoom in on the variation of different parameters of the ZCSG system, as shown in Figure 18.
This figure shows the simulation from t = 25 to 48 h. The upper trace shows the variation in the
original demand power (PLo) and the modified one (PL). The second trace of Figure 18 shows the
difference between the generated power from the RESs and the load power. The other traces in
Figure 18 show the power of the PHES (PPT), the LIB power, the FF, the CSE, and the tariff. It is
clear from this figure that at t = 25:30 h, there is a small positive difference between the generated
power and the load power, which means that the extra power should go to the ESSs, and, due to this
surplus value being small, it used the LIB to store this power and did not start the PHES to save this
low surplus power. It is worth noting that, during this period (t = 25:30 h) the FF and CSE are very
low, which means that the situation of the future of the ZCSG and the ESSs is not high, which can
be translated to high tariffs to encourage the customers to reduce their loads. It is also clear from
t = 21:38 h of Figure 18 that there is a high surplus power that uses the PHES to store these energies.
During this time, the FF and the CSE were very high, which means that the system is in a better
situation and, for this reason, the optimal operating system reduced the tariff during this period to
stimulate the customers to increase their loads. However, during the period of t = 38:48 h, the surplus
power is reduced and the FF and CSE are becoming very low, which means that the ESSs are not in
good condition; for this reason, the optimal operation system increased the tariff again to its highest
value to stimulate the customers to reduce their loads for a better situation of the ESSs.
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Table 6. The summary of simulation results of the ZCSG system with and without DSM with LIB and
VRFB options.

ITEMS

Cases LIB VRFB

Without DSM
(PED = 0)

With DSM
(PED = −0.5) % Change Without DSM

(PED = 0)
With DSM

(PED = −0.5) % Change

LCOE 0.0931 0.0625 −32.87 0.0872 0.0594 −31.88

NPC (109$) 19.258 12.845 −33.30 18.356 12.019 −34.52

NPP (109$) 25.615 25.623 0.03 25.627 25.621 −0.02

NPV (109$) 6.357 12.778 101.01 7.271 13.602 87.07

NWT 41,000 32,800 −20.00 39,523 31,815 −19.50

SCA 35,000,000 27,200,000 −22.29 35,815,176 28,754,381 −19.71

VR
U 450,000,000 32,000,000 −92.89 360,000,000 24,000,000 −93.33

PPT 2,000,000 1,888,000 −5.60 1,953,000 1,574,000 −19.41

PB 250,000 186,500 −25.40 438,500 253,400 −42.21

EB 500,000 373,000 −25.40 743,000 419,000 −43.61

BLT (years) 5.5 5.5 0 14 14 0
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The use of the VRFB is studied to show its performance compared to the LIB, as shown in
Table 6, for the use of DSM and without the use of DSM. These results showed the superiority of the
use of DSM with the VRFB, as demonstrated above, when used with the LIB. The results shown in
Table 6 showed that the LCOE with the VRFB is reduced from USD 0.0872/kWh to USD 0.0594, due
to the use of DSM, which means the LCOE is reduced by 31.88%, due to the use of the DSM with
PED = −0.5. It is also worth noting that with the DSM, the LCOE with the VRFB is USD 0.0594/kWh
compared to USD 0.0625/kWh when the LIB is used. This means that replacing the LIB with the
VRFB will reduce the LCOE by 4.96%. Moreover, the NPV of the ZCSG with the VRFB is USD
13.602 × 109 compared to USD 12.778 × 109 when the LIB is used, which means that the NPV of the
use of VRFB is higher than the use of LIB by 6.45%, which proves the superiority of the use of VRFB
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instead of the LIB in the ZCSG systems. Figure 19 shows the variation in the SoH of the VRFB and
LIB when used with the ZCSG systems. It is clear from this figure that the LIB is losing about 3.6%
of its life yearly, which means that its lifetime (battery life time (BLT)) is almost 5.5 years before it
reaches its end of life (SoH = 80%). Meanwhile, the VRFB is losing 1.4% of its life yearly, which means
that its lifetime (BLT) is almost 14 years before it reaches its end of life (SoH = 80%).
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6. Conclusions
Driven by environmental and economic concerns, modern studies advocate for a shift from

fossil fuels to renewable energy sources like wind and solar. However, these renewables introduce
a new challenge: the mismatch between their variable generation and fluctuating demand. To ad-
dress this, a three-pronged approach is crucial: (1) Energy Storage Systems bridge the gap between
generation and demand, (2) Smart Grid Concepts like demand-side management (DSM) empower
consumers to adjust usage patterns and reduce peak demand, and (3) accurate forecasting allows
for better planning and grid management. Zero-carbon systems face these challenges even more
acutely. This study proposes a zero-carbon smart grid (ZCSG) that leverages wind and solar power
alongside energy storage solutions: Pumped Hydroelectric Storage (PHES) for long-term storage
and Battery Energy Storage Systems (BESSs) for frequency regulation. The study also proposes an
hourly optimization strategy for dispatching power within the smart grid system. This strategy aims
to achieve both maximum reliability and revenue by ensuring the system operates efficiently. This
study leverages the Musical Chairs Algorithm (MCA) to optimize real-time pricing (RTP) tariffs
for demand-side management (DSM) strategies. MCA significantly outperforms other optimiza-
tion algorithms, notably doubling the convergence speed of the Grey Wolf Optimizer (GWO) and
achieving a convergence speed of more than three times faster than other comparison algorithms.
These results underscore the superior performance of MCA in this application. Moreover, this study
focuses on replacing Lithium ion batteries (LIBs) in BESS with Vanadium redox flow batteries (VRFBs)
due to their numerous advantages. Replacing LIBs with VRFBs reduced costs by 5% and increased
the net present value (NPV) by another 6.5%. Furthermore, the LIB is losing about 3.6% of its life
yearly, which means that its lifetime is almost 5.5 years before it reaches its end of life (SoH = 80%).
Meanwhile, the VRFB is losing 1.4% of its life yearly, which means that its lifetime is almost 14 years
before it reaches its end of life (SoH = 80%). These impressive results showcase the effectiveness
of VRFBs compared to LIBs, demonstrating the superiority of DSM and VRFB technology in smart
grid applications. Moreover, this study highlights the significant impact of DSM on smart grids.
Implementing DSM not only reduced energy costs by over 30% compared to no DSM use, but also
doubled the NPV.

A promising avenue for future research involves exploring the integration of fuel cells to further
enhance the stability and performance of ZCSG systems. By incorporating fuel cells, these systems
can achieve greater reliability and efficiency. Additionally, incorporating uncertainty in renewable
generation, load demand, and energy prices into optimization models can significantly improve the
robustness of ZCSG systems. Finally, assessing the resilience of ZCSG systems to various disturbances,
such as extreme weather events and cyberattacks, is crucial. Developing strategies to enhance this
resilience should be a primary focus of future research.
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