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Abstract: Silicone rubber (SIR) is a crucial insulating material in cable accessories, but it is also
susceptible to faults. In practical applications, mechanical pressure from bending or shrinking can
impact the degradation of SIR, necessitating the study of its electrical tree and partial discharge
(PD) characteristics under such pressure. This work presents the construction of a test platform for
electrical trees under varying pressures to observe their growth process. A high-frequency current
transformer is used to measure PD patterns during tree growth, enabling analysis of the effect of PD
on tree initiation and propagation under pressure. The experimental results demonstrate a significant
decrease in tree inception probability and increase in PD inception voltage under pressure. The
pressure also influences the tree structure and PD during the treeing process, where the longest tree
with a branch-like structure appears under 800 kPa. The effect of pressure on electrical tree and PD
characteristics can be attributed to changes in free volume, alterations in air pressure within the tree
channels, and the affected charge accumulation.

Keywords: silicone rubber; electrical tree; partial discharge; mechanical pressure; cable

1. Introduction

With the advancement of urbanization and industrialization, there is an increasing de-
mand for electricity, highlighting the critical importance of ensuring the safety of electrical
transmission [1]. As a crucial component in transmission, maintaining the safe and stable
operation of power cables is essential for the security and stability of the power system.
The joints of power cables, which consist of multiple layers of solid insulation, represent a
vulnerable point in cable insulation. During operations, electrical tree is a typical kind of
insulation degradation which leads to failure [2,3].

Electrical tree is a pre-breakdown phenomenon that occurs within insulating materials
and is one of the main problems causing faults in high-voltage cables and cable accessories.
The breakdown of solid dielectrics can be attributed to a series of local pre-breakdown
channels, which are generated due to the existence of defects in the insulation structure.
Around the defective parts of these dielectric structures, channels resembling the branches
of a tree will be formed, which are called electrical trees [4]. Electrical trees form in solid
insulation as a result of PD (partial discharge), which are widely present in various insulat-
ing materials, and are one of the important reasons for the degradation of cable insulation.
Electrical trees can exist in materials such as epoxy resin, crosslinked polyethylene (XLPE),
silicone rubber (SIR), and polypropylene (PP) [5,6]. The formation of electrical tree channels
usually leads to breakdown of the insulation material, resulting in failure [7,8].

SIR is a crucial insulating material used in 10–35 kV cold shrink joints and can be made
into the cold shrink joints which can be fixed onto a cable joint, relying only on its own
elasticity without heating. In operational conditions with local distorted electric fields, it
may also lead to the inception of electrical trees in SIR. Therefore, it is necessary to simulate
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the environment in the cold shrink tube and conduct an electrical tree test. Various factors
can influence the inception and growth of electrical trees during the use of SIR. The tree
channel in SIR appears to be white in color under natural light, distinguishing it from
other insulating materials, and its shape changes with temperature [9]. As the temperature
increases from 30 to 90 ◦C, the morphology of electrical trees gradually transitions from a
branch structure to a bush structure [9]. Additionally, the temperature gradient present in
SIR causes variations in tree initiation voltage, length, and structure [10]. One study found
that with increased tensile mechanical stress, the tree initial voltage decreased from 15.30 kV
to 14.33 kV, and the electrical tree tended to grow in the direction of stress application [11].
Moreover, high current-generated magnetic fields have a positive effect on promoting the
growth of electrical trees, with the effect threshold at 400 mT [12]. To inhibit electrical
treeing in SIR, nanocomposites have been introduced into dielectric applications. Due to
their substantial specific surface area and two-dimensional structure, graphene nanosheets
effectively suppress the initiation and growth of electrical trees in SIR [13,14]. Additionally,
non-metallic oxide silicon dioxide has been demonstrated to inhibit the formation of
electrical trees in SIR at appropriate additive concentrations [15,16]. Furthermore, materials
such as ferric oxide and aluminum oxide have been investigated for their potential to
be mixed into SIR to hinder electrical treeing [17,18]. Moreover, some researchers have
analyzed the generation mechanism and growth process of electrical tree channels on the
XLPE-SIR interface. Their findings indicate that roughness and interface stress are critical
factors influencing electrical treeing [19–21].

PD has been a focal point for numerous researchers as it is the primary driving force
for the development of electrical trees. Synchronous analysis of PD during electrical tree
growth is crucial in uncovering the dynamic characteristics of electrical trees [22]. In
the course of electrical tree growth, there is both PD at the needle tip and PD caused by
internal space charge accumulation, with some channels forming conductive streamers
that propagate through the branches to facilitate charge transport [23,24]. Researchers have
also observed that the conductivity of the tree channel itself plays a key role in shaping
the tree, with pine branch channels exhibiting higher conductivity and branch channels
showing lower conductivity in XLPE [25]. The phenomenon of PD has also been utilized
to characterize the developmental state of electrical trees [26]. The correlation dimension
and maximum Lyapunov index of PD sequences are associated with tree growth, rather
than random processes [27]. Additionally, a low-frequency power ratio and equivalent
bandwidth parameters prove to be more sensitive indicators for tracking tree progression
and align with tree length [26].

However, the SIR cable joint material may suffer from extrusion deformation under
mechanical pressure, such as self-stress or external bending, potentially altering the growth
characteristics of electrical trees and causing a change in PD [28–30]. This pressure will
influence both the PD and electrical trees. However, there is still a lack of research on
the relationships among the growth of electrical trees, pressure, and PD in SIR, and the
tree inception and growth characteristics need to be illustrated, considering PD as the
promoting factor.

A testing platform for SIR electrical trees under varying levels of mechanical pressure
was established in this work to determine the relationships between the mechanical pres-
sure, electrical tree, and PD. The tree inception voltage, tree structure, and their growth
were recorded. PD signals were also detected. Through the analysis of electrical trees and
PD signals, the free volume was found to be the reason for increased tree inception voltage.
The changed channel width, gas pressure, and charge accumulation inside the channels
were the key reasons for different tree processes under different pressures.
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2. Experiment Platform

As shown in Figure 1, the electrical tree test platform mainly comprises a power supply
system, a microscope recording system, and a PD detection system. High-voltage AC power
is provided using a voltage of 50 Hz and 220 V through the transformer (CHINT, TDGC 2–3).
A high-voltage resistor is utilized to protect the samples. During the application of voltage,
the sample is immersed in silicone oil to minimize the impact of discharge out of the sample.
Before applying voltage, a cold light source is turned on and the microscope is adjusted
such that the electrical tree shape captured with the microscope can be seen and recorded on
the computer. A high-frequency current transformer (HFCT) with a bandwidth of 100 kHz
to 50 MHz is applied to the ground cable for monitoring PD while the electrical tree is
developing. The PD detection system processes the data and generates the phase-resolved
partial discharge (PRPD) diagram, from which the information regarding the amplitude
and phase distribution of the PD can be extracted.
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Figure 1. Experiment platform for tree and PD test.

3. Sample Preparation

The high-voltage electrode is constructed with a needle featuring a 30◦ cone angle,
a 2 µm radius of curvature, and a 30 µm diameter. The ground electrode is a copper foil
attached to the bottom to ensure grounding without impacting pressure application. The
distance between the needle tip and the ground electrode is set to be 2 mm [31,32].

The electric field around the needle tip can be obtained using the Mason formula,
as follows:

E =
2U

R ln(1 + 4d
R )

, (1)

where E is the electric field intensity, U is the amplitude of applied voltage, R is the radius
of curvature of the tip, and d is the distance from the tip to the ground electrode.

Existing research has shown that when the pressure at the interface between cable
accessories and the main insulation is within the range of 100 kPa to 250 kPa, the require-
ments for electrical insulation can be met [29]. Therefore, the pressure range in this work
was chosen to be 0 to 800 kPa, in order to simulate the possible pressure in installation
and operation.

During the experiment, pressure was applied through the structure shown in Figure 2.
The set stress was obtained by adjusting the screws on the sample. In this work, the
deformation of SIR during the pressurization process was measured, and the results are
shown in Table 1.
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Figure 2. Structure of sample for test.

Table 1. Corresponding relationship between SIR deformation and pressure.

Pressure (kPa) Thickness (mm) Thickness Deformation (%)

0 5.73 0
200 5.42 −5.41
400 5.18 −9.60
600 5.11 −10.82
800 5.03 −12.22

4. Results
4.1. Electrical Tree Inception

Figure 3 illustrates the tree inception probability at 8.5 kV voltage after 5 min; 20 sam-
ples were tested under each pressure. The tree was considered to be triggered if a visible
branch longer than 20 µm was observed near the needle tip. At 0 kPa, the tree inception
probability is 90%, while at 800 kPa, it decreases to only 60%. A sharp decrease occurs when
the pressure is increased to 400 kPa. It is evident that the pressure on SIR has a negative
effect on tree inception at the same voltage.
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4.2. Electrical Tree Morphology

In the experiment, the growth time of the electrical trees was set at 60 min. The
morphology of the electrical trees under varying pressures exhibits significant variation,
with bush-like and branch-like structures being the predominant morphologies. The typical
bush-like electrical trees are depicted in Figure 4a, while the typical branch-like trees are
illustrated in Figure 4c. It is observed that as pressure increases, the proportion of bush-
like trees gradually decreases, with no discernible bush-like branches present under a
pressure of 800 kPa. As shown in Figure 4a, numerous interleaved tiny tree channels are
evident within the bush-like trees, accompanied by a large dark area at their center. This
dark area indicates that a substantial number of channels were shielded from light when
photographed using back light. Under a pressure of 400 kPa, it is noted that while the width
of the channel remains similar to that of bush-like trees, there is a significant reduction in
their number, and they begin to adopt a shape more closely resembling branch-like trees.
Upon reaching a pressure level of 800 kPa, distinct main channels become apparent within
the electrical tree region, generally numbering between two and five, and exhibiting larger
width and longer channel lengths.
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Figure 4. Morphology of electrical trees.

Cumulative damage can be clearly understood as the number of pixels occupied by the
area where the degradation appears. When it is used in tree analysis, it shows the damaged
area of insulation created by the electrical trees. The cumulative damage of the electrical
trees can be calculated by removing color and binarizing the original image. Figure 4
illustrates the cumulative damage of electrical trees. It is evident that as the pressure
increases, there is a decreasing trend in cumulative damage, which changes from 128,228 to
36,792 pixels.

4.3. Electrical Tree Growth

To comprehend the variations in tree length during their growth, 10 samples were
tested under each pressure. The length of each typical tree under every level of pressure
was calculated as the growth length of electrical trees at the treeing time. To clearly illustrate
the growth trend of electrical trees under varying pressures and streamline the data analysis
in this study, we focused on analyzing the growth process of electrical trees at 0, 400, and
800 kPa. It was observed that the growth trend at 200 and 600 kPa exhibited similarities to
those at 0 and 800 kPa, respectively.

Figure 5 illustrates the growth trend of three typical electrical trees. The presence of
pressure results in noticeable variations in tree length and growth characteristics. Within
the initial 5 min, the length of electrical trees under each level of pressure experiences
rapid growth to over 50% of total length, with the fastest growth rate observed at 0 kPa
and the slowest at 400 kPa. Subsequently, between 5 and 15 min, electrical trees at 0 and
400 kPa remain stagnant for an extended period, while the tree under 800 kPa continues to
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grow slowly. From this point until 60 min, electrical trees at 0 kPa only exhibit a growth
of approximately 50 µm, closely associated with their morphology at this voltage. The
bush-like electrical trees primarily demonstrate the continuous generation of tiny branches
during the growth process, leading to a deceleration in their length expansion. The final
morphology of trees at both 400 and 800 kPa differs significantly from bush-like; they show
a branch structure with main channels visible under high pressures. Although both types
of electrical trees continue to elongate between 15 and 60 min, their growth rate is slower
than the initial stage. Notably, in more than 80% of the samples, the tree length is the
longest under 800 kPa at 60 min.
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4.4. Partial Discharge in Tree Inception

A PD will occur before the tree is observed during the tree initiation. To confirm the
effect of pressure on this process, the partial discharge inception voltage (PDIV) of the pin–
plate electrode was tested under different pressure conditions. During testing, a gradient
increasing voltage with 0.2 kV/30 s was applied, and the PD testing method depicted in
Figure 1 was utilized to determine the PDIV. The results, as illustrated in Figure 6, indicate
an increase in average PDIV from 8.5 kV to approximately 9 kV with increasing pressure.
Furthermore, it is observed that the dispersion of PDIV decreases with rising mechanical
pressure, suggesting a significant inhibition effect on the inception voltage of PD in the
needle electrode due to increased pressure.

4.5. Partial Discharge in Tree Growth

While measuring and recording the growth of electrical trees, the PD characteristics
were also observed. Figure 7 illustrates the trend of changes in PD intensity during
electrical tree growth, with the maximum discharge amplitude recorded for each stage.
Additionally, Figure 8 displays the PRPD spectrum at different pressures, providing direct
insight into discharge intensity and phase distribution information. It is evident from
the figures that morphological features of PRPD vary with the growth of electrical trees.
With different pressures, they show consistency only in the initial stage and significant
differences thereafter.
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As depicted in Figure 7a, three peak periods of PD intensity are observed in the
sample at 0 kPa, specifically at 0–7 min, 15–25 min, and 50–55 min. During the initial
stage, the rate of attenuation in discharge amplitude is notably slower compared to other
pressures. Throughout the entire discharge process, there is consistency in the shape of
PRPD, with variations only in discharge intensity, as shown in Figure 8a–c. Discharges
are concentrated within the first and third quadrants, while at the beginning and end of
treeing time, discharge intensity in the positive half-cycle significantly exceeds that in the
negative half-cycle. In Figure 8b, a decrease in PD intensity is evident primarily through
attenuation in positive half-cycle discharge amplitude. However, there is no significant
change observed in its phase distribution.

As depicted in Figure 7b, the initial PD intensity under 400 kPa is notably lower
than that at 0 kPa, and the amplitude is below 100 pC throughout the growth of electrical
trees after 2 min. At 1 min, the PRPD morphology is similar to that at 0 kPa. However,
after 10 min, there is a change in PRPD morphology, as illustrated in Figure 8e, wherein
positive and negative half-cycle discharge amplitudes become similar, yet the discharge
becomes concentrated in four narrow phase windows within the third quadrant. The phase
distribution of PD ceases to be continuous, and this morphological feature persists until
60 min. This observation indicates that pressure significantly inhibits PD, resulting in
amplitude and phase differences.
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When the pressure reaches 800 kPa, the PD intensity exhibits three distinct stages. As
depicted in Figure 7c, the initial stage demonstrates a relatively high intensity, which then
decays to less than 50% of its initial level within approximately 2 min. This low-intensity
discharge persists for up to 30 min, followed by a subsequent increase in discharge intensity,
consistently displaying strong PD until 60 min. However, between 2 and 30 min, PRPD
manifests as two clusters of discharges with low amplitudes, as shown in Figure 8h. In the
third stage, there is an observable change in PRPD morphology alongside an increase in
discharge amplitude, as illustrated in Figure 8i.

The T-F Map method is a well-established technique for characterizing the features of
PD in the time–frequency domain, and it can effectively differentiate the variations in PD
distribution within this domain [33]. Following the acquisition of PD signal waveforms
in the time domain, T-F map calculations are performed at each treeing time. The results
indicate that the equivalent time distribution of PD signals remains consistent across
different time periods, while there are noticeable variations in frequency distribution with
changes in pressure. Specifically, analysis was conducted on T-F Map data under different
pressures at 1 min, as depicted in Figure 9. It is evident from the figure that as the pressure
increases gradually, the frequency center decreases from 19.3 MHz under 0 kPa to 17.8 MHz
under 800 kPa. This phenomenon exists throughout the whole treeing process.
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5. Discussion
5.1. Effect of Pressure on Tree Inception

The first factor that affects the tree inception process is the change in free volume
of SIR for electrical trees grown under different pressures [34]. The term “free volume”
refers to the unoccupied space between molecular chains, and it can also be described as
the distance between molecular chains. After the insertion of the needle electrode, free
electrons will accelerate and gain energy in this region due to the presence of the electric
field. This concept is closely related to the electrical tree resistance of insulation materials.
However, the size of the free volume will be altered with the bulk deformation. As shown
in Table 1, the free volume decreases with the shrinking of the sample under the different
mechanical pressures. The pressure will also make the molecular chain shift, filling the
free volume near the needle tip. The most important process during tree inception is the
acceleration of electrons and their collisions with molecular chains, resulting in a small
region of low density. While under pressure, the formation of this region will be delayed
by the constant pressure, which will cause the free volume between molecules to shrink in
some directions. As a result, the energy obtained by electrons under the influence of the
electric field will be diminished, weakening insulation damage and leading to a lower tree
inception probability.

When a low-density area forms and reaches a sufficient size, PD will occur within
this region. The heat, light, and gas produced by the PD will result in further damage to
the SIR material. Subsequently, observable initial tree channels will form in the damaged
area due to PD erosion. However, under different pressures, the occurrence of PD at this
initial stage will be altered by the size of the low-density region. Specifically, the formation
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of the induced PD within the low-density region will proceed more slowly under greater
pressure. This influence leads to a gradual increase in PDIV as pressure rises and a decrease
in PDIV dispersion.

5.2. Effect of Pressure on Tree Growth

During the development of electrical trees, significant variation in their morphology
and PD intensity is observed. These differences are closely associated with the influence of
distinct pressures, a topic that will be further explored in this section.

PD is considered to be the primary driving force for the generation of new branches
and the alteration in the length of electrical trees during their growth. These factors
influence the promotion of electrical trees involved in the generation of heat, light, and
accelerated charges during PD. When the pressure is applied, it directly influences the PD
process, thereby impacting the growth process of electrical trees.

PD occurs both at the needle tip and in part of the tree channels. The presence of the
needle tip causes significant electric field distortion at the root of the branch, facilitating
initiation of discharge into a gas environment. In the absence of pressure, a substantial
amount of gas is present in the gradually widening branch channel, forming a conductor-
silicone rubber-gas contact interface at the tip position, which will cause an intense PD
and accelerate tree growth, as shown in Figures 7 and 8. However, under the influence of
pressure, the electrical tree at the tip of the needle experiences a reduction in width due
to pressure, particularly at 800 kPa (as depicted in Figure 7). It is evident that both the
intensity and phase distribution of PD decrease significantly, especially between 5 and
30 min. Furthermore, the accumulation of charge caused by the trap distributed in the tree
channel will also induce a local high space charge field, leading to discharge and triggering
new tree channels. When there is no pressure, this kind of PD will occur randomly and
produce a large number of tiny channels. However, when subjected to pressure, the tree
channels experience continuous compression, leading to a blockage in the charge migration
process within the air gap. This ultimately results in the failure to randomly form local
high electric fields in the existing channels. Consequently, there is a decrease in the number
of newly generated channels as pressure increases, causing the morphology of the trees to
transition gradually from a bush-like to a branch-like structure.

During the development of electrical trees, the gas produced by PD accumulates
in the branch channel, and the air pressure within the channel fluctuates with the level
of discharge. Simultaneously, this gas pressure also impacts the inception voltage and
intensity of PD. According to the literature, the PDIV increases with higher air pressure [35].
The SIR material exhibits high elasticity under normal pressure and demonstrates good
resilience. As the air pressure within the channel rises, the surrounding SIR material
will expand accordingly. The expansion process ceases when the stress from silicone
rubber deformation balances with that generated by internal gas pressure. However, when
subjected to high external mechanical pressure, the expansion of material caused by the gas
is diminished. This results in a significant increase in gas pressure, thereby elevating the
PDIV within the channel. Consequently, this effect leads to changes in the PRPD, especially
in trees with a short length and fewer channels.

It is important to note that when the pressure reaches 800 kPa, there are significant
main channels with a notably greater width compared to other channels. This phenomenon
can be attributed to the intense erosion resulting from continuous discharge within a single
channel. Under very high external pressure, fewer initial branches are formed, leading
to more concentrated PD at the needle tip and within the channel. Following prolonged
erosion (30 min in the sample depicted in Figure 7c), this channel undergoes noticeable
widening, resulting in reduced inhibition of mechanical pressure on PD. As a result, more
intense PD occurs and accelerates the growth of these tree channels, forming branch-like
trees, as depicted in Figure 4c.
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6. Conclusions

In this work, the characteristics of electrical tree and PD in SIR under pressure were
investigated. The key findings are as follows:

(1) With mechanism pressure increasing from 0 to 800 kPa, the tree inception probability
decreases from 90% to 60%, and the average PDIV increases from 8.5 to 9 kV. This
provides evidence for the inhibition effect of pressure on tree inception.

(2) At 60 min, the morphology of electrical trees undergoes a gradual transition from a
bush-like structure to a branch-like structure as pressure increases, ultimately resulting
in all trees having a branch-like structure under 800 kPa. The slowest growth rate
occurs at 400 kPa.

(3) The lowest PD amplitude appears at 400 kPa, consistent with the growth rate of
electrical trees, and there is a decrease in the frequency center of PD signals with the
T-F map analysis.

(4) The pressure restricts the inception of PD and the formation of initial trees by influ-
encing the free volume. It also alters the morphology of electrical trees through its
impact on internal gas pressure and charge accumulation.
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