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Abstract: The combined complexity of wind turbine systems and harsh operating conditions pose
significant challenges to the accuracy of operational data in Supervisory Control and Data Acqui-
sition (SCADA) systems. Improving the precision of data cleaning for high proportions of stacked
abnormalities remains an urgent problem. This paper deeply analyzes the distribution characteristics
of abnormal data and proposes a novel method for abnormal data cleaning based on a classification
processing framework. Firstly, the first type of abnormal data is cleaned based on operational criteria;
secondly, the quartile method is used to eliminate sparse abnormal data to obtain a clearer boundary
line; on this basis, the Random Sample Consensus (RANSAC) algorithm is employed to eliminate
stacked abnormal data; finally, the effectiveness of the proposed algorithm in cleaning abnormal data
with a high proportion of stacked abnormalities is verified through case studies, and evaluation indi-
cators are introduced through comparative experiments to quantitatively assess the cleaning effect.
The research results indicate that the algorithm excels in cleaning effectiveness, efficiency, accuracy,
and rationality of data deletion. The cleaning accuracy improvement is particularly significant when
dealing with a high proportion of stacked anomaly data, thereby bringing significant value to wind
power applications such as wind power prediction, condition assessment, and fault detection.

Keywords: data cleaning; quartile; RANSAC; wind power curve; wind turbine

1. Introduction

As the energy crisis intensifies, renewable energy generation has emerged as a crucial
means to alleviate the crisis and improve environmental quality. Wind power generation,
with its clean and renewable characteristics, is leading a profound transformation in the
energy sector. In 2023, the global installed capacity of new wind power reached a record-
breaking 117 GW, marking a year-on-year increase of 50% [1]. Furthermore, the Global
Wind Energy Council (GWEC) has revised upwards its growth forecast for 2024–2030 by
10% to 1210 GW, highlighting the robust growth momentum of global wind energy. To
ensure efficient supervision and maintenance management, most wind turbine systems
are equipped with Supervisory Control and Data Acquisition (SCADA) systems for data
collection. Among these data, the wind speed-power output curves are indispensable in
many applications, serving as vital reference indicators for assessing the power generation
efficiency of individual wind turbines and the overall operational status of wind farms [2].
They are frequently utilized in wind power forecasting [3–5], performance and condition
monitoring of wind turbines [6–8], as well as fault diagnosis of wind turbine systems [9–11].
However, due to factors such as extreme weather conditions, wind curtailment, sensor
failures, communication malfunctions, and others, the data collected by SCADA systems
often contain a significant amount of abnormal data, which undermines the accuracy of
wind turbine research. Consequently, effectively cleaning the abnormal values in wind
power data has become a crucial and indispensable step.
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Currently, domestic and foreign scholars have carried out relevant research on wind
power abnormal data cleaning and achieved many results. These research results can be
mainly divided into the following three categories.

(1) The first category mainly relies on statistical and clustering methods for data cleaning.
Lou et al. employed the Optimal In-group Variance (OIV) method for cleaning [12],
which, despite its rapid identification capability, is susceptible to the influence of data
grouping methods. Zheng et al. utilized the Local Outlier Factor (LOF) to distinguish
between normal and abnormal data [13], showcasing strong adaptability and the
ability to handle data with different density distributions. Reference [14] initially
used the quartile method to eliminate dispersed data, followed by k-means clustering
to clean the stacked data, although the selection of parameters significantly impacts
the clustering effectiveness. Zhao et al. proposed a strategy combining Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) and the quartile
method [15]. In reference [16], a combined algorithm of Isolation Forest and mean
shift was constructed. Although it can achieve efficient cleaning, its cleaning results in
datasets with high noise levels may be affected. Luo et al. designed a method based
on density clustering and boundary extraction, but this approach incurs higher time
costs [17].

(2) The second category determines the upper and lower boundaries of the wind power
curve for cleaning. In reference [18], a wind power curve model was established
using the copula conditional function, which is highly effective for identifying sparse
anomalous data. Villanueva and Feijóo proposed a real power curve model that fits the
wind power within various wind speed ranges to a normal probability distribution,
considering data exceeding three standard deviations as anomalies [19]. Wang et al.
improved the binning algorithm for regional calculation [20], but data at regional
boundaries may be difficult to accurately fit, affecting accuracy. Cleaning through
neural networks allows for the adjustment of network structures and parameters to
address different types of anomalies, such as using the Artificial Neural Network
(ANN) algorithm [21], as well as Graph Convolutional Neural Networks combined
with Long Short-Term Memory networks (GCN-LSTM) for cleaning [22]. Neural
network algorithms can automatically extract features; however, when the model
becomes too complex, there is a risk of overfitting.

(3) The third category adopts the method of image processing for wind power curves.
Liang et al. use the pixel counting method to generate feature grayscale images and
combine the image threshold segmentation method to eliminate abnormal data [23].
Wang et al. proposed a fast data cleaning algorithm to maintain the longest continu-
ous pixels in each column and each row of the binary curve image [24]. Long et al.
proposed a wind power abnormal data cleaning algorithm based on color space trans-
formation and image feature detection of wind power curve images [25]. However,
image processing methods require powerful computing resources and often entail
relatively high time costs. In summary, the relevant research that has been carried out
provides references and theoretical support for subsequent work.

Although many scholars have conducted a lot of research on abnormal data cleaning,
the cleaning technology for wind speed power abnormal data with a high proportion of
stacked abnormalities still needs to be further improved, and there is still a lack of relevant
research. Therefore, this paper proposes a new method for abnormal data cleaning based
on a classification processing framework. This method is not subject to constraints or
statistical assumptions about the data, and it directly performs unsupervised learning
driven by the data. First, based on the distribution characteristics of abnormal data in
wind power curves, this method preprocesses the first type of abnormal data based on
operating criteria. Second, a combination of the quartile method and the Random Sample
Consensus (RANSAC) algorithm is used to accurately clean the second type of sparse
abnormal data and the third type of stacked abnormal data. Finally, the effectiveness of
the quartile-RANSAC algorithm for cleaning data with a high proportion of abnormalities
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is verified through case analysis. To further accurately evaluate the performance of this
algorithm, this paper conducts a thorough comparison and verification from four core
dimensions: cleaning effect, efficiency, accuracy, and rationality of data deletion. The
research results show that when faced with high proportions of stacked abnormal data, the
proposed method significantly optimizes the cleaning effect. This study not only effectively
enhances the accuracy of operational data for wind turbine generators but also provides
a new approach in the field of abnormal data cleaning, offering theoretical and technical
support for ensuring smooth dispatch and safe, stable operation of wind farms.

This paper is divided into five sections. Section 2 analyzes the distribution charac-
teristics of abnormal data in power curves and categorizes the abnormal data into three
types. Section 3 presents the principle and framework of the algorithm proposed in this
paper. In Section 4, the effectiveness of the algorithm proposed in this paper was verified
through experiments, and it was compared with three other types of algorithms. Evaluation
indicators were used to assess and discuss the results. Section 5 serves as the conclusion of
this paper, summarizing the main research findings and conclusions.

2. Wind Power Curve

The wind power curve, formed by data collected by the SCADA system, serves as
one of the key indicators for evaluating the performance of wind turbines. However, the
directly collected SCADA data contain a large amount of abnormal data, which significantly
interferes with the assessment of wind power generation performance. The factors causing
abnormalities are diverse, such as extreme weather, wind curtailment, and turbine failures.
Based on the distribution characteristics of the data within the wind power curve, these
abnormalities can be roughly classified into three categories, and the distribution of each
type of abnormal data is shown in Figure 1.
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Figure 1. Classification of abnormal data in wind power curves.

(1) Type I abnormal data are the lower horizontal band abnormal data:
The first type of abnormal data refers to the abnormal data where the wind speed is
greater than the cut-in wind speed but the power is less than or equal to zero. This
type of abnormal data exhibits distinct characteristics in the wind power curve graph,
forming a horizontal band region composed of dense data points at the lower end of
the curve. The main factors contributing to this type of abnormality include internal
failures of wind turbines and shutdowns for maintenance.

(2) Type II abnormal data are sparse abnormal data:
The second type of abnormal data exhibits a unique distribution pattern, appearing as
scattered and irregular data points. These data points display significant randomness
but maintain a certain correlation with the standard power curve. The main factors
contributing to this type of abnormality include meteorological fluctuations, signal
transmission noise interference, sensor failures, and various other unpredictable
random factors.
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(3) Type III abnormal data are stacked abnormal data:
The third type of abnormal data typically appears over a continuous period, clustering
into one or more distinct horizontal data bands in the middle region of the power
curve. The emergence of this type of abnormality is closely related to issues such as
wind curtailment and communication failures. The technical factors directly leading
to wind curtailment include power system failures, insufficient system frequency
regulation capabilities, and inadequate transmission and storage technologies [26].
In particular, wind curtailment and power rationing have become prominent issues
restricting the sustainable and healthy development of the wind power industry.

3. Building an Outlier Data Cleaning Model Based on Quartile RANSAC

An anomaly data cleaning algorithm model based on quartile RANSAC is constructed
by analyzing the abnormal data distribution in the wind speed-power scatter plot of the
wind turbine and aiming at the data cleaning with a high stacking anomaly proportion.
Combining the quartile method with the RANSAC algorithm provides a novel method for
the identification and cleaning of abnormal wind power data. The algorithm framework is
shown in Figure 2.
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The quartile RANSAC algorithm mainly includes the following steps:

1. Data collection: utilize the SCADA system to collect wind speed, power, and rotational
speed data from the wind farm to form a dataset.

2. Data preprocessing: compare the wind speed-power scatter plot with the standard
wind power curve and filter the first type of abnormal data based on the basic op-
erating principles of the standard wind power curve. Eliminate data points where
wind speed (v), power (P), or rotational speed (n) are less than zero, and mark data as
abnormal when the power is less than or equal to zero while the wind speed is greater
than the cut-in wind speed (vcut_in).
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3. Elimination of sparse abnormal data using the quartile method: sort the preprocessed
data pairs by power in ascending order and divide the data into equal interval power
bins. Apply the quartile method to filter the data within each power bin, marking
wind speed data that fall outside the inner limits [Fl , Fu] as abnormal and removing
them from the dataset.

4. Elimination of stacked data based on RANSAC regression fitting: extend the original
two-dimensional data to a three-dimensional space through polynomial features to
fit more complex nonlinear relationships. On this basis, the RANSAC regression
algorithm will be employed to predict wind speed values. Use random sample points
to fit a model, calculate the distance of all data points to the fitted model, and classify
points into inliers and outliers based on a threshold. Continuously update and iterate
until the model performance is optimized. Finally, determine whether a data point
exceeds the threshold; if so, it is classified as an abnormal point; otherwise, it is
considered a normal point.

3.1. Data Preprocessing

Eliminate Type I abnormal data based on operational criteria. Firstly, considering
practical factors, data with wind speed, power, and rotational speed less than zero need
to be eliminated. Secondly, when the wind speed is greater than the cut-in wind speed,
which is the minimum wind speed at which the wind turbine can generate electricity, the
power should be greater than zero. Therefore, data with power less than or equal to zero
are eliminated, completing the cleaning of Type I abnormal data.

3.2. Quartile Method

After data preprocessing, the quartile method is used to clean Type II abnormalities.
The quartile method is a commonly used data analysis technique in statistics. Quartiles
are the three values that divide an ordered data sample into four equal parts, represented
by the first, second, and third quartiles, respectively, with each part containing 25% of the
overall data. The schematic diagram of the quartile method is shown in Figure 3.
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For a sample X = [x1, x2, . . . , xn] sorted in ascending order, the quartiles are calculated
as follows:

1. Calculate the second quartile Q2, which is the median:

Q2 =

x n+1
2

n = 2k + 1; k = 0, 1, 2, . . .
x n

2
+x n+2

2
2 n = 2k; k = 1, 2, . . .

(1)

2. Calculate the first and third quartiles Q1 and Q3:
When n = 2k (k = 1, 2, . . .), divide X into two parts from Q2, with Q2 excluded from
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both parts of the data, and calculating the medians of the two parts, Q2
′ and Q2

′′ , then
Q1 = Q2

′, Q3 = Q2
′′ .

When n = 4k + 3 (k = 0, 1, 2, . . .), there are{
Q1 = 0.75xk+1 + 0.25xk+2
Q3 = 0.25x3k+2 + 0.75x3k+3

(2)

When n = 4k + 1 (k = 0, 1, 2, . . .), there are{
Q1 = 0.25xk + 0.75xk+1
Q3 = 0.75x3k+1 + 0.25x3k+2

(3)

3. The interquartile range IQR can be obtained by calculating Q1 and Q3:

IQR = Q3 − Q1 (4)

4. Based on the IQR, the inner limits [Fl , Fu] for identifying outliers in the data sample X
are determined as follows:

[Fl , Fu] = [Q1 − 1.5IQR, Q3 + 1.5IQR] (5)

where Fl represents the lower limit and Fu represents the upper limit, data points
falling outside the inner limits [Fl , Fu] are considered outliers.

The quartile method is not only applicable to different data distributions but also
can effectively resist the influence of extreme values in the data on statistical results,
showing good robustness. In addition, this algorithm also demonstrates efficient computing
capabilities in large-scale data analysis. Compared with the original data, the boundaries of
abnormal data clusters are more obvious after adopting the quartile method, which enables
the next step of regression analysis to achieve better results. However, this method has
certain limitations and can only correctly and effectively identify abnormal data when the
proportion of abnormal data is small. In the problem studied in this paper, the amount of
abnormal data is comparable to that of normal data. Using the quartile method alone will
not be able to effectively identify abnormal data and may even mistakenly delete normal
data. Therefore, this paper only uses the quartile method to eliminate sparse outliers.

3.3. RANSAC Regression Algorithm

For Type III anomalies, the RANSAC regression algorithm is used for cleaning. The
principle of the RANSAC algorithm is to robustly estimate the parameters of a mathematical
model from a dataset containing a large amount of noise or outliers through an iterative
approach [27]. The principle of RANSAC is illustrated in Figure 4. The algorithm first
randomly selects a minimal subset of data points that satisfy predefined conditions and
constructs an initial model based on this subset. Then, the algorithm evaluates and expands
this subset to include more data points that are consistent with the initial model, thereby
forming a larger dataset with higher data consistency. In this way, RANSAC can effectively
reduce the interference of outliers or noise on model estimation and ensure the accuracy of
model parameters. Finally, through multiple iterations and optimizations, the algorithm
finds the optimal model parameter estimation that maximizes the utilization of valid
data points (i.e., inliers) and minimizes the influence of outliers. This principle makes
RANSAC perform well in processing datasets containing a large amount of noise or outliers,
providing robust and reliable model parameter estimation.
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Unlike the quartile method, the RANSAC algorithm is capable of robustly fitting
models even in datasets containing a significant amount of noise and outliers. By iteratively
selecting the best model with the largest number of inliers, RANSAC eliminates the need
to pre-specify the initial values or ranges of model parameters, thereby reducing human
intervention and providing more accurate and reliable model estimates. Furthermore, the
algorithm’s strong adaptability and flexibility allow it to dynamically adjust and refine
model parameters for optimal fitting, enabling RANSAC to often deliver excellent results
when dealing with data of varying complexity.

4. Case Study
4.1. Data Description

To verify the effectiveness of the proposed wind speed and power abnormal data
cleaning method, a case study is conducted using SCADA operational data from a wind
farm in China. The dataset records the SCADA operational data of 12 wind turbines for one
year, with data recorded every 10 min. The key technical indicators of the wind turbines
are: rated power of 2000 kW, rotor diameter of 99 m, cut-in wind speed of 3 m/s, and
cut-out wind speed of 25 m/s.

It is evident that the specific locations and quantities of abnormal data vary among the
turbines. Therefore, this study selects wind turbines No. 2, 3, 7, and 8, which best represent
typical types of abnormal data, to demonstrate the effectiveness of the proposed algorithm
in identifying and eliminating various types of abnormalities. The operational data of these
four wind turbines are collected by the SCADA system every 10 min, totaling 159,644 data
points.

4.2. Case Study on Data Cleaning of Wind Turbine with High Proportion of Stacked Abnormalities

The SCADA data of the No. 3 wind turbine generator set are used to clean abnormal
data in order to verify the effectiveness of the proposed method. The stacking abnormality
proportion of the No. 3 wind turbine generator set is significantly higher than that of the
other three typical types of abnormal data, which was suitable for verifying the cleaning
effect of the new method proposed in this paper for cleaning abnormal data with a high
stacking proportion. The cleaning results are shown in Figure 5.
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(1) Data Preprocessing
Under normal operating conditions, it is unreasonable for the generator to produce
negative wind power. Therefore, values with wind speed, power, and rotational speed
less than zero are eliminated from the scatter plot. Based on the basic operating prin-
ciples of wind turbines, data with wind speeds exceeding the cut-in wind speed but
power less than or equal to zero are also marked as abnormal, accurately identifying
the first type of abnormal data.

(2) Elimination of Sparse Outliers
After preprocessing, the data are sorted in ascending order of power and divided
into intervals with a spacing of 25 kW. The quartile method is then applied to each
interval of data to eliminate abnormal data points lying outside the inner limits. After
data preprocessing and the application of the quartile method, most sparse outliers
have been eliminated, revealing a clearer data distribution profile, especially with
very distinct boundaries for stacked outliers. Examining the box plot generated by the
quartile method for data within the power interval [1000, 1025] kW, it can be observed
that most data points within the interval fall within the inner limits [Fl , Fu], identified
as normal data and marked blue, while those outside the inner limits are recognized
as sparse outliers and marked gold.

(3) Elimination of Stacked Outliers
When performing RANSAC regression fitting, the two-dimensional data are first
extended to three-dimensional data through polynomial feature expansion to better
perform nonlinear fitting. Then, hierarchical sampling of the minimum effective
sample subset is performed on the data, and the corresponding model parameters are
calculated using the least variance estimation method. Subsequently, the deviation
between each sample data point and the estimated model is calculated. Based on
this, the deviation is compared with the threshold. If the deviation is less than the
threshold, it is considered normal data; if the deviation is greater than the threshold,
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it is identified as abnormal data. Finally, iterations continue until the model achieves
the optimal effect. As shown in Figure 5, during curve fitting, the clear boundaries of
stacked outliers reduce their impact on the fitting effect. After the RANSAC regression
algorithm is used to identify stacked outliers, the stacked abnormal data are clearly
marked, and the wind speed-power curve is clearly outlined. Gold represents the
elimination of sparse outliers, green represents the elimination of stacked outliers,
and blue represents normal data. It can be seen that the wind speed-power curve is
clearly identified. The power curve fitted by the “bin” method on the cleaned data
is highly consistent with the standard power curve, demonstrating the effectiveness
of the new method proposed in this paper for cleaning abnormal data with a high
proportion of stacked outliers.

4.3. Algorithm Comparison and Analysis
4.3.1. Comparative Experiment

To evaluate the strengths and weaknesses of the quartile RANSAC algorithm, a
comparative experiment was conducted with three existing algorithms: Quartile, Isolation
Forest, and k-means. The cleaning effectiveness of each algorithm was measured by
visualizing the post-cleaning wind speed-power curves. A high degree of consistency
between the cleaned data and the standard power curve indicates effective cleaning, while
significant deviations suggest ineffectiveness. The results of the comparative experiments
are presented in Figures 6–9. Among them, green represents abnormal data, while normal
data is marked as blue.
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The interval unit for the quartile algorithm is set to 25 kW, and Figure 6 shows the
cleaning results using the quartile method. This process effectively removes a significant
amount of abnormal data, but there are still a few scattered abnormal data points remaining
on the left side, and there are clusters of abnormal data and a large number of stacked
abnormal data on the right side.

For the Isolation Forest algorithm, the contamination ratio is set to 0.05, and the
maximum number of features (max_features) is set to 0.1. Isolation Forest requires two
prerequisites: a small proportion of abnormal data and large differences in data features.
As can be seen in Figure 7, Isolation Forest is not suitable for global detection but is only
effective in eliminating sparse, abnormal data and stacked abnormal data that are far from
normal values.

The k-means algorithm is set with a cluster center count of 10. As shown in Figure 8,
the data cleaning results using the k-means algorithm still exhibit several shortcomings.
There are misdetections on the wind power curve, and there are missed detections within
the clusters of abnormal data on the right side. The selection of parameters, such as
the number of clusters and cluster centers in the k-means algorithm, directly affects the
clustering effect.

The data cleaning results of the proposed quartile RANSAC algorithm, as shown
in Figure 9, reveal that it achieves relatively satisfactory results for four different types
of wind turbines with abnormal data. The high degree of consistency between the
cleaned data and the standard power curve demonstrates the effectiveness of the quartile
RANSAC algorithm.

4.3.2. Evaluation Metrics

To further quantitatively analyze the performance of abnormal data cleaning algo-
rithms, this paper introduces data deletion rate R (%), cleaning time T (s), mean absolute
error (MAE), and root mean square error (RMSE) as evaluation metrics for comparison.

The data deletion rate R (%) is defined as the ratio of abnormal data to the original
data, as shown in Equation (6), where n represents the number of abnormal data points
and N represents the total number of original data points.

R =
n
N

× 100% (6)

To more accurately evaluate the model’s degree of fit, the cleaned data are segmented
into intervals of 0.5 m/s along the standard power curve. The deviation from the standard
power curve in each interval is quantitatively expressed by calculating the MAE and RMSE
within each interval. The calculation formulas are shown in Equations (7)–(10), where Ni is
the amount of data in the ith interval; M is the number of wind speed intervals, Pi is the
value of the standard power curve within the ith interval, j represents the jth data point
within the ith interval, and Cap is the capacity of the wind turbine generator.

MAEi =
1
Ni

Ni

∑
j=1

∣∣Pi − Pi,j
∣∣ (7)
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RMSEi =
1

Cap

√√√√ 1
Ni

Ni

∑
i=1

(
Pi − Pi,j

)2 (8)

MAE =
1

Cap

M

∑
i=1

MAEi (9)

RMSE =
1

Cap

M

∑
i=1

RMSEi (10)

Based on these evaluation metrics, the four abnormal data cleaning algorithms are
evaluated, and the results are presented in Figure 10, Tables 1 and 2. Moreover, in Figure 10,
the best performance index of each unit is marked in red.
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Table 1. Comparison of data deletion rate and cleaning time among the four algorithms.

Wind Turbine Total Number of Data
Quartile RANSAC Quartile Isolation Forest K-Means

R (%) T (s) R (%) T (s) R (%) T (s) R (%) T (s)

No. 2 38,855 11.13 0.42 3.33 0.18 5.14 0.90 9.93 0.56
No. 3 38,995 33.54 0.42 1.44 0.18 4.53 0.96 9.96 0.60
No. 7 43,324 12.93 0.42 4.27 0.17 5.38 1.06 9.94 0.67
No. 8 38,470 7.62 0.39 4.62 0.16 4.99 0.87 9.92 0.63

Table 2. Comparison of MAE and RMSE results among the four algorithms.

Wind Turbine Number
Original Data Quartile RANSAC Quartile Isolation Forest K-Means

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

No. 2 0.0982 0.2158 0.0316 0.0476 0.0697 0.1429 0.0853 0.1916 0.0758 0.1783
No. 3 0.1437 0.2582 0.0303 0.0495 0.1365 0.2215 0.1330 0.2389 0.1277 0.2309
No. 7 0.0912 0.1998 0.0322 0.0511 0.0739 0.1488 0.0786 0.1731 0.0648 0.1484
No. 8 0.0671 0.1665 0.0283 0.0414 0.0334 0.0505 0.0542 0.1338 0.0459 0.1193
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As shown in Table 1, among the four algorithms, the proposed quartile RANSAC
algorithm exhibits a significantly higher data deletion rate compared to the others, with
33.54% and 7.62% for Wind Turbines No. 3 and No. 8, respectively. Combining the wind
speed-power scatter plots, Wind Turbine No. 3 has the most abnormal data, while No. 8
has the least, which is consistent with the data deletion rates of the proposed algorithm,
proving that it can filter out more abnormal data, regardless of whether they are stacked or
sparse. In terms of cleaning time T (s), the quartile method has the shortest cleaning time
but a relatively lower data deletion rate, indicating weaker anomaly detection capability.
Although the proposed method’s cleaning time is slightly longer than the quartile method,
it outperforms Isolation Forest and k-means. The proposed method ensures cleaning
efficiency while significantly optimizing the cleaning effect and making the data deletion
rate more reasonable.

As seen in Table 2, the proposed quartile RANSAC algorithm achieves the smallest
MAE and RMSE values. For wind turbine No. 3, which has a high proportion of stacked
anomalies, the MAE and RMSE of the proposed algorithm are 0.0303 and 0.0495, respec-
tively, representing a 78% reduction in both MAE and RMSE compared to the quartile
method, which performed the best among the compared algorithms. Compared with the
original data, MAE and RMSE are reduced by 79% and 81%, respectively. This demon-
strates the significant superiority of the quartile RANSAC algorithm in cleaning data with
a high proportion of stacked anomalies. For wind turbines No. 2, 7, and 8 with other types
of abnormal data, the proposed method reduces MAE by 54%, 56%, and 15%, respectively,
and RMSE by 67%, 66%, and 18%, respectively, compared to the quartile method. This
further proves the outstanding cleaning performance of the quartile RANSAC algorithm in
handling both high-proportion stacked anomalies and various other types of anomalies,
verifying its superiority and wide applicability.

The abnormal data cleaning method for wind turbines proposed in this paper provides
strong support for wind power prediction, state monitoring, and fault diagnosis in wind
power generation. First, the cleaned data are more accurate and reliable, providing high-
quality data support for wind power prediction. Secondly, it can help with state monitoring.
By analyzing the cleaned data, the operating state of wind turbines can be understood
more clearly. Thirdly, it lays the foundation for fault diagnosis. When there are abnormal
fluctuations in the data, the key components of the fan can be checked specifically to see if
there are fault risks.

5. Conclusions

(1) A novel method for abnormal data cleaning based on a classification processing
framework is proposed, which employs operational guidelines, the quartile method,
and the RANSAC regression algorithm for three types of abnormal data. This staged
approach significantly enhances the robustness and accuracy of cleaning data with a
high proportion of stacked anomalies.

(2) Through a case study on the cleaning of abnormal data from wind turbines with a
high proportion of stacked abnormalities, the high degree of consistency between the
cleaned data and the standard power curve indicates that the cleaning effect is good.
Furthermore, the proposed method is accurate for cleaning other types of abnormal
wind turbines, and the effectiveness of the quartile RANSAC algorithm has also been
proved.

(3) To validate the significant advantages of the proposed method, it was compared with
quartile, isolation forest, and k-means algorithms. The cleaning results intuitively
demonstrate that the proposed method significantly outperforms the other three
existing algorithms in terms of cleaning effectiveness. The introduction of evaluation
metrics further accurately demonstrates the superiority of the cleaning results, with
the proposed method achieving a more reasonable data deletion rate and excellent
cleaning efficiency. Compared to the quartile method, which performed the best
among the compared algorithms, the proposed method reduces MAE by 54%, 78%,
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56%, and 15% and RMSE by 67%, 78%, 66%, and 18%, respectively, across the four
wind turbines, proving the better performance of the quartile RANSAC algorithm in
abnormal data cleaning. It must be pointed out that the performance of the algorithm
proposed in this paper depends to some extent on its parameter configuration. If the
parameters are not set reasonably, it may lead to deviations in the results. The authors
will strive to address this issue in future work.
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