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Abstract: With the increasing integration of renewable energy sources into the power grid and the
continuous expansion of grid infrastructure, real-time preventive control becomes crucial. This
article proposes a real-time prediction and correction method based on the extreme gradient boosting
(XGBoost) algorithm. The XGBoost algorithm is utilized to evaluate the real-time stability of grid
static voltage, with the voltage stability L-index as the prediction target. A correction model is
established with the objective of minimizing correction costs while considering the operational
constraints of the grid. When the L-index exceeds the warning value, the XGBoost algorithm can
obtain the importance of each feature of the system and calculate the sensitivity approximation of
highly important characteristics. The model corrects these characteristics to maintain the system’s
operation within a reasonably secure range. The methodology is demonstrated using the IEEE-14 and
IEEE-118 systems. The results show that the XGBoost algorithm has higher prediction accuracy and
computational efficiency in assessing the static voltage stability of the power grid. It is also shown
that the proposed approach has the potential to greatly improve the operational dependability of the
power grid.

Keywords: static voltage stability; preventive control; real-time prediction; extreme gradient boosting
(XGBoost) algorithm; sensitivity approximation

1. Introduction

In recent years, many countries have experienced power grid accidents, leading to
voltage collapse and significant shutdown events [1–3]. As new energy technologies
continue to evolve and industrial electricity consumption rapidly escalates, the voltage
stability margin in power grid operations is nearing a precarious tipping point. When
the voltage stability margin surpasses its threshold, voltage collapse will manifest within
the power grid, significantly impacting the country’s economy and society. It is crucial
to promptly and precisely evaluate the power grid’s voltage stability margin to ensure
the safe and stable operation of the power grid. So far, there are many indicators for
evaluating power system voltage stability [1], such as singular value, eigenvalue index,
voltage stability L index, etc. However, these methods typically require the construction
of complex mathematical models and involve significant computational resources. It is
challenging to achieve real-time monitoring of voltage stability states for large-scale power
grid data [4,5].

To address the issue, machine learning-based methods are widely used to evaluate
the voltage stability of the power grid [2,3]. This type of research is currently divided
into classification problems and regression problems. The first type of research focuses on
voltage stability as a classification problem. The objective of this problem is to determine
whether the current voltage of the power grid is in a stable state [4]. This treatment method
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is equivalent to simplifying the problem. The second type of research focuses on voltage
stability as a regression problem: the voltage stability index under various operating
conditions is used as the target for fitting [5]. However, it is significant to know the value
of the system voltage stability index, as it enables the rational adjustment of the operating
mode based on the prevailing conditions of the power grid. Therefore, the research of this
paper addresses the topic of voltage stability by framing it as a regression problem.

The accuracy of predictions is equally crucial for the online evaluation model of static
voltage stability. To enhance the precision of online voltage stability margin prediction,
a model for assessing voltage stability within the transmission system through online
methods was introduced in [6] utilizing an active machine learning algorithm. In [7], an
improved online random forest model that incorporates drift detection and online bagging
methodologies was proposed. A radial basis function (RBF) network to evaluate power
grid voltage stability was proposed in [8]. The feature selection technique based on mutual
information is used to reduce the dimension of input features, which reduces the training
time of the model. A method for monitoring voltage stability in power systems through
ANN was proposed in [9]. By calculating the sensitivity value of each input feature relative
to the voltage stability margin and then selecting the feature with higher value as the input
characteristic of the model, the prediction accuracy and training speed of the network
are improved. These studies aim to improve the prediction accuracy by simplifying the
input features of the model [6–9]. In [10], a continuous online prediction approach for
anticipating power system instability was proposed utilizing a Convolutional Neural
Network (CNN) model, which utilizes heatmap representations of the measurements as
input for predicting instability. In order to monitor long-term voltage instability online, a
support vector machine (SVM) based on a genetic algorithm was proposed in [11]. The
genetic algorithm was used to calculate the optimal values of SVM parameters to improve
the accuracy and speed of the algorithm. The authors of reference [12] used various machine
learning methods to predict photovoltaic power, and the XGBoost algorithm had higher
prediction accuracy. In order to predict hospital energy consumption, a prediction model
that combines XGBoost and Random Forest (RF) was proposed in [13]. In [14], a method
for predicting wind power at a regional level was introduced, which utilized XGBoost
and multi-stage feature selection for short-term forecasting. In [15], a rapid and precise
short-term voltage stability assessment technique employing Joint Mutual Information
Maximization (JMIM) and XGBoost was introduced. JMIM is used to select key input
features from high-dimensional original features, thus reducing the complexity of the
model. The literature combines the strengths of two algorithms, thereby enhancing the
efficiency of the model [13–15]. A strategy utilizing a deep learning model based on Multi-
Layer Perceptron to enhance short-term voltage stability prediction accuracy was proposed
in [16]. A data-driven method utilizing enhanced Gradient Boost Decision Tree (eGBDT)
for the assessment of long-term voltage stability was introduced in [17]. In [18], the authors
presented a hybrid convolutional long short-term memory (ConvLSTM) approach aimed
at forecasting voltage stability. Additionally, in [19], a cascaded neural network (CNN)
framework was proposed for the real-time online monitoring of voltage stability, utilizing
load ability margin (LM) estimation. The predictive efficacy of the integrated solar and
wind power generation system demonstrated in this study is noteworthy.

While the aforementioned techniques improve the precision of voltage stability index
predictions, they have certain limitations: (1) the models involve numerous hyperparame-
ters, resulting in extended training times; (2) during training, there is a risk of underfitting
and susceptibility to local optimization; and (3) these prediction models are only functional
when the system’s L-index reaches a critical value. It is highly important to investigate the
utilization of machine learning techniques for system adjustment in order to ensure the
system remains operational within a stable range. The primary contributions outlined in
this study are as follows:

(1) The L-index is a metric employed to evaluate the level of voltage stability within the
power grid, and it is predicted online using the XGBoost algorithm.
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(2) XGBoost is used to obtain the importance of system characteristics, calculate the
approximate sensitivity value of highly important characteristics, and correct the
system according to the sensitivity of these characteristics in order to guarantee that
the system voltage can operate safely and steadily for an extended period.

The subsequent sections of the document are organized as follows: Section 2 provides
a concise overview of the voltage stability L-index concept. Section 3 elaborates on the
prediction and correction control model. Section 4 outlines the dataset generation method
and scrutinizes the model’s results. The paper concludes with Section 5.

2. Voltage Stability Evaluation Based on Machine Learning
2.1. Power System Voltage Stability Index

In this paper, the L index is used as the static voltage stability index of the power grid.
The L index is chosen due to its well-defined physical definition and clear upper and lower
bounds, and the index value can be normalized for any different system. Furthermore, the
L index has previously been applied in an actual power grid [20].

The local voltage stability L index is used to estimate the operation state of the power
system [20]. The electric network nodes can be divided into two categories: generator
nodes (αG) and load nodes (αL). The node voltage can be calculated based on Kirchhoff’s
current law, formulated as following:[

IG
IL

]
=

[
YGG YGL
YLG YLL

][
VG
VL

]
(1)

where IG and IL are the currents associated with the generator and load buses, respectively;
VG represents the terminal voltage of the generator; and VL represents the voltage at the
load node. YGG, YGL, YLG and YLL represent subsets of the node admittance matrix. When
ZLL = YLL

−1, Equation (1) can be written as[
IG
VL

]
=

[
YGG − YGLZLLYLG YGLZLL

−ZLLYLG ZLL

][
VG
IL

]
(2)

when FLG = −ZLLYLG, the Lj of load node j is defined as:

Lj =

∣∣∣∣∣1 − ∑
k∈αG

Fjk
Vk
Vj

∠(θjk + δk − δj)

∣∣∣∣∣ (3)

where Vk represents the voltage magnitude of the k-th generator; δk denotes the phase angle
of Vj; and Vj, δj represent the voltage magnitude and phase of j-th node, respectively. Fjk is
the j-th row and k-th column element of matrix FLG, the angle of θjk with respect to Fjk.

The set of local voltage stability indexes for load nodes, denoted as L = [L1, L2, · · · Lm]
m ∈ αL, is composed of the individual local voltage stability indexes of all load nodes
within the system.

The node with the highest L value is considered the most vulnerable node within the
system. The voltage stability index of the entire system is referring to:

L = ∥L∥∞ (4)

In the context of local voltage stability, the L-index is indicative of the power grid’s
voltage stability level. Specifically, it has been noted that in order to maintain a stable
voltage within a system, the L-index should be below 1. At the critical point of voltage
stability, the L-index equals 1, signifying a delicate balance. Conversely, in instances of
system voltage instability, the L-index exceeds 1.
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2.2. Extreme Gradient Boosting (XGBoost)

The XGBoost algorithm is a highly effective algorithm in machine learning [21]. The
XGBoost algorithm is a unified tree model that is formed by amalgamating various CART
decision tree functions. The basic idea is to perform the second-order Taylor expansion
of the objective function while assuming that a training dataset comprises n samples,
denoted as D = {(xi, yi), i = 1, . . . , n}, xi = (xi1, xi2, . . . , xim) represents the m-dimensional
eigenvector, and yi is the label associated with xi.

y∗i = φ(xi) =
K

∑
k=1

fk(xi); fk ∈ F (5)

where K represents the number of decision trees in the ensemble, F =
{

f (x) = ωq(x)

}
(

q: RM →T, ω ∈ RT
)

denotes the collection of decision trees, q signifies the configuration
of individual decision trees, T represents the number of terminal nodes within a tree, and
each fk is associated with a distinct tree configuration q along with the weight ω assigned
to its terminal nodes.

This study examines the voltage stability index within the context of a regression
problem and employs the regression model of the XGBoost algorithm. The loss function
associated with the regression class is incorporated into the error link during the train-
ing phase. The loss function of the XGBoost model consists of the training error and a
regularization term used to measure the complexity of the model:

L(φ) =
N

∑
i=1

(yi − y∗i )
2 +

K

∑
k=1

Ω( fk) (6)

where N is the total number of samples under consideration. The initial component is
the training error, which measures the difference between the actual label value yi and
the predicted value y*

i in the predictive modeling. The larger the disparity between the
projected and observed values of the L-index, the higher the training error value. The
second term is a regular term, which is defined as:

Ω( f ) = γT +
1
2

λ∥ω∥2 (7)

In the tree structure, the initial parameter regulates the quantity of terminal nodes,
whereas the subsequent parameter governs the significance or influence of these terminal
nodes. γ and λ are super parameters used to adjust the proportion of the two terms.

The smaller the training error, the smaller the loss function. Considering the issue
of overfitting the objective function, the regularization term value needs to be reduced.
Then, the objective function is expected to exhibit increased precision and an accelerated
convergence rate.

2.3. Steady State Feature Set of Power System

The voltage stability L index corresponding to the power system under any operating
condition is uniquely determined. Therefore, establishing the relationship between the
system characteristics under the current operating mode and the L index is essential. The
characteristics of each node in the static voltage stable state of the system are selected as
the input characteristics of the model. The steady-state characteristics of the system are
detailed in Table 1.
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Table 1. Characteristics of an electrical power system operating in a stable condition.

Feature Symbol Feature Meaning

Vi, θi The magnitude of voltage and the angle of phase at node i

PGi, QGi
The power output in terms of active and reactive components
form the i-th generator bus

PLj, QLj
The power demand in terms of active and reactive
components from the j-th load bus

Among these features, PGi, QGi represent the generator node output and PLj, QLj
represent load demand and supply demand, respectively. These features reflect the supply–
demand relationship, which changes according to the operational mode changes in the
system. The output and load demand of each node in the system are determined by the
power grid structure and parameters after the supply and demand are determined. These
characteristics collectively represent the L-index of the system’s voltage stability during a
specific operational state.

3. Correction Adjustment Model
3.1. Correction Control Model

The voltage stability L index undergoes dynamic changes during power grid operation,
potentially leading to voltage collapse if it surpasses a critical threshold. To maintain system
voltage stability, a corrective and adjustment model based on the XGBoost algorithm is
proposed. Firstly, the XGBoost model is employed to assess the impact of each system
node’s characteristic variable on the L index and identify the variable with the most
significant influence. The XGBoost algorithm is used to determine the sensitivity of these
features to the L index. Then, linear optimization techniques are used to devise an optimal
adjustment plan to ensure that the L index remains below the safety limit. The correction
control process of the model is illustrated in Figure 1.
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The adjusted data are fed into the trained XGBoost prediction model for validation
to ascertain whether the L index falls within a secure operational range. Despite potential
nonlinear model errors, the corrected L index prediction may still exceed the safety thresh-
old. Therefore, further optimization is conducted on the refined solution, resulting in the
final calibration plan when the L index value falls within the safe range.
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When the operational state of the power system violates the stability threshold, the
system is fine-tuned to reduce the regulatory changes. The linear optimization technique
aims to minimize the regulatory changes [22,23]:

minF = a · ∑
i∈SG

∆V2
i + b · ∑

i∈SG

∆P2
i + c · ∑

j∈SL

∆P2
j + d · ∑

j∈SL

∆Q2
j (8)

Stability constraint of system operation:
PGi − PLi − Vi ∑

j∈Sn

VjYij cos(δi − δj − αij) = 0

QGi − QLi − Vi ∑
j∈Sn

VjYij sin(δi − δj − αij) = 0
i ∈ Sn (9)

where Sn represents the set of all nodes of the system; Yij and αij are the amplitude and
phase of the transfer impedance between nodes i and j; and δi and δj represent the voltage
phases of nodes i and j.

In order to attain an optimal solution for a given system, it is essential to impose
constraints on the active power output of generators, the reactive power output of reactive
power sources, and the voltage magnitudes at the system nodes, ensuring they remain
within designated limits. These limitations are articulated through inequality constraints in
the model: 

Vi,min ≤ Vi ≤ Vi,max

PGi,min ≤ PGi ≤ PGi,max, i ∈ SG

PLj,min ≤ PLj ≤ PLj,max

QLj,min ≤ QLj ≤ QLj,max, j ∈ SL

(10)

where SG represents a set of generator nodes and SL represents a set of load nodes. Vi,max,
Vi,min are the upper/lower limit of voltage of unit i, respectively; PGi,max, PGi,min are the
upper/lower limit of real power output of unit i; PLj,max,PLj,min are the upper/lower limit
of real power output of node j; and QLj,max, QLj,min are the upper/lower limit of reactive
power of node j.

To improve the voltage stability of a system, there is a voltage stability operation constraint:

0 ≤ L + ( ∑
i∈SG

∂L
∂Vi

· ∆Vi + ∑
i∈SG

∂L
∂Pi

· ∆Pi + ∑
j∈SL

∂L
∂Pj

· ∆Pj + ∑
j∈SL

∂L
∂Qj

· ∆Qj) ≤ t (11)

In the process of correcting the node variables of the power system, it is essential to
impose limits on the changes in the active output of generators, the changes in the reactive
output, and the changes in the voltage magnitude at the system nodes, ensuring that
they remain within specified limits. These constraints are articulated through inequality
constraints in the model:

∆Vi,min ≤ ∆Vi ≤ ∆Vi,max

∆PGi,min ≤ ∆PGi ≤ ∆PGi,max, i ∈ SG

∆PLj,min ≤ ∆PLj ≤ ∆PLj,max

∆QLj,min ≤ ∆QLj ≤ ∆QLj,max, j ∈ SL

(12)

The objective function represents the total adjustment in features during the calibration
control optimization process. ∆Vi is the voltage fluctuation of generator i within the chosen
generator set SG; ∆Pi is the output of generator i within the selected generator set SG; ∆Pj
and ∆Qj are the variations in active and reactive power of node j, respectively; ∆Vi,max,
∆Vi,min represent the upper and lower limits of voltage variation for unit i, respectively;
∆PGi,max, ∆PGi,min represent the upper and lower limits of the real power output variation
of unit i; ∆PLj,max,∆PLj, min represent the upper and lower limits of the real power output
variation of node j; ∆QLj,max, ∆QLj,min represent the upper and lower limits of the reactive
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power variation of node j; ∂L/∂Vi, ∂L/∂Pi, ∂L/∂Pj, and ∂L/∂Qj represent L-V sensitivity,
L-P sensitivity, L-P sensitivity, and L-Q sensitivity, respectively; and t is the value of
the threshold.

3.2. Assessment Indicators

To assess the model rigorously and thoroughly, this study employs two evaluation met-
rics to gauge its efficacy: Root Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE). The calculation procedures for these metrics are outlined below:

MAPE =
100%

n

n
∑

k=1

∣∣∣∣∣yk −
∧
yk

yk

∣∣∣∣∣
RMSE =

√
1
n

n
∑

k=1
(yk −

∧
yk)

2
(13)

where n represents the test sample; yk denotes the true value of the kth sample; and
∧
yk is

the estimated value of the kth sample. MAPE represents the sum of each absolute error
divided by the actual value. These are common indicators used to evaluate prediction
accuracy. The RMSE, or Root Mean Square Error, serves as a prevalent metric employed for
assessing the predictive performance of a model.

4. Experiments and Discussion
4.1. Case Introduction

The IEEE-14 system is utilized to verify the accuracy of the proposed method, as
illustrated in Figure 2. The fluctuation range is shown in Table 2, leading to various power
flow samples within the tested dataset. A total of 5000 groups of training samples and
500 groups of test samples are sampled. Each specimen comprises the voltage amplitude,
voltage phase angle, active power and reactive power of nodes, and the system voltage
stability index L.
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Table 2. The range of parameters for each individual node varies.

Type of Data Fluctuation Range

The active power demand The data amplitude experiences ±20% variation
The active power output of generators The data amplitude experiences ±20% variation

The voltage magnitude of node connected to generator The data amplitude experiences ±3% variation
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Upon receiving the samples, the data undergo normalization using the following
calculation method:

x′ =
x − Amin

Amax − Amin
(14)

where x represents the initial value; x′ represents the normalized value; and Amax and Amin
represent the highest and lowest values within the dataset, respectively.

4.2. Predictive Analysis of XGBoost Model
4.2.1. Comparative Analysis of Different Models in IEEE-14 System

The IEEE-14 system is utilized to verify the accuracy of the XGBoost model. The
model is trained on a training dataset and then validated using a test set to assess its
performance. Typical algorithms, including SVR, RF, and GBRT, are compared with the
XGBoost algorithm. The comparison results are presented in Table 3. The results indicate
that the XGBoost algorithm outperforms other algorithms in the context of voltage stability
margin prediction. Both the RMSE and the MAPE are lower than those of the competing
algorithms, suggesting that the XGBoost is capable of effectively learning from the dataset
and achieving superior regression prediction performance.

Table 3. Comparison of prediction performance of IEEE-14 dataset with different machine learning models.

Model MAPE RMSE

SVR 1.024 0.00301
RF 1.373 0.00624

GBRT 0.711 0.00280
XGBoost 0.615 0.00251

Figure 3 illustrates the fitting performance of each model on the test samples, providing
a visual representation of the discrepancies between the predicted values and the actual
values. The y-axis depicted in the chart denotes the discrepancy between the model’s
predicted value and the actual value, and the x-axis represents the number of test samples.
A lower relative error indicates a greater prediction accuracy of the model. As illustrated
in Figure 3, the XGBoost model demonstrates a lower overall relative error during the
prediction process compared to the other three models evaluated. Consequently, the test fit
of the XGBoost model is more favorable.

In the above results, for the IEEE-14 node system, the XGBoost algorithm outperforms
the SVR, RF, and GBRT algorithms. For the three tree-based algorithms, RF, GBRT, and
XGBoost, RF is an algorithm based on bagging, while GBRT and XGBoost are algorithms
based on boosting. For the GBRT and XGBoost algorithms, XGBoost expands the loss
function by utilizing the second derivative of the Taylor formula. It also incorporates a
regularization term into the objective function to mitigate the issue of overfitting. Hence, the
objective function demonstrates superior accuracy and quicker convergence rates compared
to GBRT.

The training time T1 and prediction time T2 of the four machine learning algorithms
in the IEEE-14 system are shown in Table 4. Due to the low model complexity of SVR, the
training time consumption is less than that of the other three models. However, the training
speed of XGBoost is better than that of other three models. During the prediction process,
all four machine learning models have very short processing times, with the prediction time
for 5000 sets of test samples being less than 0.1 s. The XGBoost model demonstrates a high
level of predictive accuracy coupled with rapid prediction capabilities, and its prediction
time can be as low as 0.004 s. The results show that the prediction time of the XGBoost
algorithm fully meets the requirements of online applications.
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Table 4. Training and predicting time comparison of different models in IEEE-14 system.

Model T1/s T2/s

SVR 2.73 0.022
RF 46.62 0.095

GBRT 47.10 0.007
XGBoost 16.89 0.004

4.2.2. Comparative Analysis of Different Models in IEEE-118 System

The IEEE-118 system is used to demonstrate the universal applicability of the proposed
method. The method generated dataset for the IEEE-118 system is the same as that of the
IEEE-14 dataset. This dataset consists of 5000 groups of training samples and 500 groups
of test samples. Table 5 shows the comparison results of the prediction performances of
different methods. The results show that the XGBoost algorithm performs the best in
predicting the L-index among the four methods.

Table 5. Comparison of prediction performance of IEEE-118 dataset in different machine learning models.

Model MAPE RMSE

SVR 1.462 0.00399
RF 1.531 0.00678

GBRT 0.833 0.00317
XGBoost 0.795 0.00283

As illustrated in Table 6, the training and prediction duration of the XGBoost model
applied to the IEEE-118 system is comparatively shorter than that of alternative models.
Furthermore, the prediction time is recorded to be under 0.1 s, thereby satisfying the criteria
for online prediction within the system. The evaluation of XGBoost’s performance on the
IEEE-14 and IEEE-118 systems indicates that the model demonstrates a robust capacity for
generalization in the prediction of voltage stability within power systems.

Table 6. Training and predicting time comparison of different models in IEEE-118 system.

Model T1/s T2/s

SVR 20.17 0.177
RF 108.31 0.233

GBRT 112.59 0.093
XGBoost 47.89 0.089

4.3. Performance Test and Analysis of Correction Control Model

The power system’s operational state is currently undergoing dynamic fluctuations.
When the L-index surpasses the predetermined early warning threshold, the system is
susceptible to voltage collapse. Some eigenvalues of the system need to be adjusted to
restore the system to a secure state. The characteristic parameter of the IEEE-14 system, as
determined by the XGBoost algorithm, is illustrated in Figure 4. As shown in Figure 4, the
x-axis represents the system features, and the y-axis represents the influence of the features
on the L-index. The QL14 feature has the greatest impact on the L-index, while the PL14 and
PL9 features also significantly influence the L-index. Due to its superior predictive accuracy,
XGBoost enables the estimation of the sensitivity approximation for each feature in relation
to the L-index by utilizing the sensitivity definition. Therefore, when the L-index value
violates the predetermined threshold, the system can be adjusted based on the sensitivity of
critical features. This greatly reduces the time required for system correction and provides
significant assistance to the grid operators.
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During the system correction procedure, it is essential to give precedence to the
regulation of both the voltage and active power output of the generator to guarantee the
reliability of the system. In the first stage, the generator terminal voltage and output power
are adjusted; the second stage is to adjust the output of the load. To verify the efficiency of
the proposed approach, the threshold value of t is 0.5, and the L-index is assumed to be
0.957. The system is modified according to the sensitivity values of V1, V2, V3, V6, V8, QL14,
PL14, and PL9, ensuring that the L index value falls below the designated threshold t.

The system correction process is illustrated in Tables 7 and 8. Table 7 displays the
approximate sensitivity values of the characteristics concerning the L-index at various
L values. Table 8 displays the results of each system correction. The values in the table
represent the normalized values. Lture and Lpre are the real and predicted values of the L-
index, respectively. The upper limitation of the generator voltage is set to 1.1, and during the
adjustment of the load node, the fluctuation range is within 20%. As illustrated in Table 7,
the procedure involves initially adjusting the generator terminal voltage followed by
adjusting the load node once the generator voltage reaches its upper limit. The nonlinearity
of the model error results in a nonlinear response of input features to the variation in the L
value. Therefore, even after the initial calibration, the L value remains higher than the safety
threshold, albeit reduced compared to the previous value. Consequently, the calibration
process is repeated until the stability index of the system voltage reaches a value within
the safety threshold. The final optimized solution to be obtained can ensure the stable
operation of the power grid. Thus, the efficacy of the system correction approach outlined
in this study is validated.

To assess the universal applicability of the proposed methodology, the calibration
model is employed to rectify the operational mode of the system across four different cases.
Table 9 displays the correction results under four different cases, and the results show that
the proposed approach can modify the node feature of the system, thereby ensuring that
the voltage stability index remains within a safe and stable range. In instances where the
predicted L value fails to satisfy the threshold condition, the model will continue to correct
on the basis of this correction until the predicted L value meets the threshold condition.
As illustrated in Table 10, the relative errors between the predicted values and the actual
values of the L-index, following the correction, fall within an acceptable range. This finding
substantiates the efficacy of the optimization model presented in this study.
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Table 7. Sensitivity of indexes V1, V2, V3, V6, V8, QL14, PL14, PL9, PL14, and QL14 corresponding to
different values of the L-index during system calibration of the IEEE-14 bus system.

Correction Lpre
∂L
∂V1

∂L
∂V2

∂L
∂V3

∂L
∂V6

∂L
∂V8

∂L
∂PL9

∂L
∂PL14

∂L
∂QL14

Initial 0.957 0.779 1.400 0.950 2.954 1.520 0.328 2.684 6.237
1st 0.618 — — — — — 0.215 0.523 1.554
2nd 0.519 — — — — — 0.153 0.359 1.029

Table 8. The correction outcomes are observed when the L-index equals 0.957.

Correction Lture Lpre V1 V2 V3 V6 V8 PL9 PL14 QL14

Initial 0.946 0.957 1.070 1.049 1.019 1.072 1.097 1.397 0.703 0.236
1st 0.621 0.618 1. 100 1.100 1.100 1.100 1.100 1.397 0.703 0.204
2nd 0.524 0.519 1.100 1.100 1.100 1.100 1.100 1.397 0.599 0.163
3rd 0.516 0.499 1.100 1.100 1.100 1.100 1.100 1.397 0.599 0.144

Table 9. Correction results in different cases in the IEEE-14 bus system.

Initial 1st 2nd 3rd

Lture Lpre Lture Lpre Lture Lpre Lture Lpre

Case1 0.946 0.957 0.621 0.618 0.524 0.519 0.516 0.499
Case2 0.837 0.843 0.601 0.588 0.522 0.513 0.509 0.498
Case3 0.773 0,764 0.541 0.532 0.517 0.499 — —
Case4 0.637 0.641 0.518 0.505 0.511 0.497 — —

Table 10. An analysis of the correction outcomes within the IEEE-14 bus system.

Threshold Lture Relative Error

Case1 0.500 0.516 3.20%
Case2 0.500 0.509 1.80%
Case3 0.500 0.517 3.40%
Case4 0.500 0.511 2.20%

This model demonstrates the ability to propose effective corrective actions by pre-
cisely determining both the direction and magnitude of adjustments required for each
node feature within the system. This capability enhances correction efficiency, aligns the
correction outcomes more closely with the anticipated values, and alleviates the workload
for frontline personnel.

5. Conclusions

Accurate prediction of the static voltage stability index in the power grid is crucial
for maintaining the system’s operation within the voltage stability range. In this paper, a
prediction and correction control model based on XGBoost is proposed to improve voltage
stability. The evaluation was conducted on the IEEE 14 and 118 systems. The predictive
outcomes indicate that the RMSE and MAPE metrics of the XGBoost model surpass those of
the alternative algorithms under comparison. Moreover, the XGBoost model is faster than
tree-based models in training speed and quicker than other algorithms in prediction speed,
as well as the time required to predict the actual power system’s online forecasting needs.
Additionally, this paper also proposes a method to correct the system by utilizing feature
sensitivity, integrating the XGBoost model with a calibration control framework. Correction
results in the IEEE-14 bus system show that when the L index of a specific operational
mode exceeds the established safety threshold, the model effectively recalibrates the L
index to align with the safety threshold, thereby enhancing the operational reliability of the
system and demonstrating considerable practical applicability.
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This study exclusively focuses on conventional energy generation methods. The
integration of renewable energy sources into the power grid has introduced significant
volatility when compared to traditional energy generation. Consequently, ensuring the
safe and stable operation of the power system presents a considerable challenge for the
grid. Future research will incorporate wind and solar power generation to investigate the
effects of these new energy sources on voltage stability, as well as the feasibility of the
proposed model.

Author Contributions: Conceptualization, H.Q; methodology, S.L.; software, J.Z.; validation, Z.R., C.H.
and Z.C.; formal analysis, H.Q.; investigation, S.L.; resources, S.L.; data curation, J.Z.; writing—original
draft preparation, C.H.; writing—review and editing, J.Z.; visualization, C.H.; supervision, Z.C. and
B.L.; project administration, H.Q.; funding acquisition, Z.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Guangxi Power Grid Corporation. This research was funded
by “Research on distribution system planning integrating large-scale distributed PV system”, grant
number “GXKJXM20222144”.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Authors Huiling Qin, Juncheng Zhang, Chengyu He and Zhijun Chen were
employed by the Guangxi Power Grid Corporation. Authors Shuang Li and Zhi Rao were employed
by the China Southern Power Grid Co., Ltd. The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as potential conflicts
of interest.

References
1. Chandra, A.; Pradhan, A.K. A comparative study of voltage stability indices used for power system operation. In Proceedings of

the 2016 21st Century Energy Needs—Materials, Systems and Applications (ICTFCEN), Kharagpur, India, 17–19 November 2016;
pp. 1–4.

2. Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zeng, L.; Zhao, Y.; Zhang, R.; Tang, Y.; Wen, J. Artificial intelligence techniques for stability
analysis and control in smart grids: Methodologies, applications, challenges and future directions. Appl. Energy 2020, 278, 115733.
[CrossRef]

3. Glavic, M.; Greene, S. Voltage stability in future power systems. In Encyclopedia of Electrical and Electronic Power Engineering;
García, J., Ed.; Elsevier: Oxford, UK, 2023; pp. 209–223.

4. Moulin, L.S.; da Silva, A.P.A.; El-Sharkawi, M.A.; Marks, R.J. Support vector machines for transient stability analysis of large-scale
power systems. IEEE Trans. Power Syst. 2004, 19, 818–825. [CrossRef]

5. Zhou, D.Q.; Annakkage, U.D.; Rajapakse, A.D. Online Monitoring of Voltage Stability Margin Using an Artificial Neural Network.
IEEE Trans. Power Syst. 2010, 25, 1566–1574. [CrossRef]

6. Malbasa, V.; Zheng, C.; Chen, P.; Popovic, T.; Kezunovic, M. Voltage Stability Prediction Using Active Machine Learning. IEEE
Trans. Smart Grid 2017, 8, 3117–3124. [CrossRef]

7. Su, H.; Liu, T. Enhanced-Online-Random-Forest Model for Static Voltage Stability Assessment Using Wide Area Measurements.
IEEE Trans. Power Syst. 2018, 33, 6696–6704. [CrossRef]

8. Devaraj, D.; Preetha Roselyn, J. On-line voltage stability assessment using radial basis function network model with reduced
input features. Int. J. Electr. Power Energy Syst. 2011, 33, 1550–1555. [CrossRef]

9. Chakrabarti, S. Voltage stability monitoring by artificial neural network using a regression-based feature selection method. Expert
Syst. Appl. 2008, 35, 1802–1808. [CrossRef]

10. Gupta, A.; Gurrala, G.; Sastry, P.S. An Online Power System Stability Monitoring System Using Convolutional Neural Networks.
IEEE Trans. Power Syst. 2019, 34, 864–872. [CrossRef]

11. Sajan, K.S.; Kumar, V.; Tyagi, B. Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int. J.
Electr. Power Energy Syst. 2015, 73, 200–208. [CrossRef]

12. Guo, X.; Gao, Y.; Zheng, D.; Ning, Y.; Zhao, Q. Study on short-term photovoltaic power prediction model based on the Stacking
ensemble learning. Energy Rep. 2020, 6, 1424–1431. [CrossRef]

13. Cao, L.; Li, Y.; Zhang, J.; Jiang, Y.; Han, Y.; Wei, J. Electrical load prediction of healthcare buildings through single and ensemble
learning. Energy Rep. 2020, 6, 2751–2767. [CrossRef]

14. Li, W.; Peng, X.; Cheng, K.; Wang, H.; Xu, Q.; Wang, B.; Che, J. A Short-Term Regional Wind Power Prediction Method Based on
XGBoost and Multi-Stage Features Selection. In Proceedings of the 2020 IEEE 3rd Student Conference on Electrical Machines and
Systems (SCEMS), Jinan, China, 4–6 December 2020; pp. 614–618.

https://doi.org/10.1016/j.apenergy.2020.115733
https://doi.org/10.1109/TPWRS.2004.826018
https://doi.org/10.1109/TPWRS.2009.2038059
https://doi.org/10.1109/TSG.2017.2693394
https://doi.org/10.1109/TPWRS.2018.2849717
https://doi.org/10.1016/j.ijepes.2011.06.008
https://doi.org/10.1016/j.eswa.2007.08.059
https://doi.org/10.1109/TPWRS.2018.2872505
https://doi.org/10.1016/j.ijepes.2015.05.002
https://doi.org/10.1016/j.egyr.2020.11.006
https://doi.org/10.1016/j.egyr.2020.10.005


Energies 2024, 17, 5710 14 of 14

15. Yu, L.; Liu, W.; Si, R.; Xing, P.; Huang, M.; Wen, Y. Short-Term Voltage Stability Assessment of Multi-infeed HVDC Systems Based
on JMIM and XGBoost. In Proceedings of the 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu,
China, 26–29 March 2021; pp. 752–758.

16. Shahriyari, M.; Safari, A.; Quteishat, A.; Afsharirad, H. A short-term voltage stability online assessment based on multi-layer
perceptron learning. Electr. Power Syst. Res. 2023, 223, 109562. [CrossRef]

17. Gao, H.; Cai, G.; Yang, D.; Wang, L. Real-time long-term voltage stability assessment based on eGBDT for large-scale power
system with high renewables penetration. Electr. Power Syst. Res. 2023, 214, 108915. [CrossRef]

18. Abbass, M.J.; Lis, R.; Awais, M.; Nguyen, T.X. Convolutional Long Short-Term Memory (ConvLSTM)-Based Prediction of Voltage
Stability in a Microgrid. Energies 2024, 17, 1999. [CrossRef]

19. Anthony, K.; Arunachalam, V. Application of cascaded neural network for prediction of voltage stability margin in a solar and
wind integrated power system. Eng. Appl. Artif. Intell. 2024, 138, 109368. [CrossRef]

20. Kessel, P.; Glavitsch, H. Estimating the Voltage Stability of a Power System. IEEE Trans. Power Deliv. 1986, 1, 346–354. [CrossRef]
21. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
22. Yang, Y.; Huang, Q.; Li, P. Online prediction and correction control of static voltage stability index based on Broad Learning

System. Expert Syst. Appl. 2022, 199, 117184. [CrossRef]
23. Yang, Y.; Long, J.; Yang, L.; Mo, S.; Wu, X. Correction Control Model of L-Index Based on VSC-OPF and BLS Method. Sustainability

2024, 16, 3621. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.epsr.2023.109562
https://doi.org/10.1016/j.epsr.2022.108915
https://doi.org/10.3390/en17091999
https://doi.org/10.1016/j.engappai.2024.109368
https://doi.org/10.1109/TPWRD.1986.4308013
https://doi.org/10.1016/j.eswa.2022.117184
https://doi.org/10.3390/su16093621

	Introduction 
	Voltage Stability Evaluation Based on Machine Learning 
	Power System Voltage Stability Index 
	Extreme Gradient Boosting (XGBoost) 
	Steady State Feature Set of Power System 

	Correction Adjustment Model 
	Correction Control Model 
	Assessment Indicators 

	Experiments and Discussion 
	Case Introduction 
	Predictive Analysis of XGBoost Model 
	Comparative Analysis of Different Models in IEEE-14 System 
	Comparative Analysis of Different Models in IEEE-118 System 

	Performance Test and Analysis of Correction Control Model 

	Conclusions 
	References

