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Abstract: The growing energy demand and the need for climate mitigation strategies have spurred
interest in the application of CO2–enhanced oil recovery (CO2–EOR) and carbon capture, utilization,
and storage (CCUS). Furthermore, natural hydrogen (H2) production and underground hydrogen
storage (UHS) in geological media have emerged as promising technologies for cleaner energy and
achieving net–zero emissions. However, selecting a suitable geological storage medium is complex, as
it depends on the physicochemical and petrophysical characteristics of the host rock. Solubility is a key
factor affecting the above–mentioned processes, and it is critical to understand phase distribution and
estimating trapping capacities. This paper conducts a succinct review of predictive techniques and
present novel simple and non–iterative predictive models for swift and reliable prediction of solubility
behaviors in CO2–brine and H2–brine systems under varying conditions of pressure, temperature,
and salinity (T–P–m salts), which are crucial for many geological and energy–related applications. The
proposed models predict CO2 solubility in CO2 + H2O and CO2 + brine systems containing mixed
salts and various single salt systems (Na+, K+, Ca2+, Mg2+, Cl−, SO4

2−) under typical geological
conditions (273.15–523.15 K, 0–71 MPa), as well as H2 solubility in H2 + H2O and H2 + brine systems
containing NaCl (273.15–630 K, 0–101 MPa). The proposed models are validated against experimental
data, with average absolute errors for CO2 solubility in pure water and brine ranging between 8.19
and 8.80% and for H2 solubility in pure water and brine between 4.03 and 9.91%, respectively. These
results demonstrate that the models can accurately predict solubility over a wide range of conditions
while remaining computationally efficient compared to traditional models. Importantly, the proposed
models can reproduce abrupt variations in phase composition during phase transitions and account
for the influence of different ions on CO2 solubility. The solubility models accurately capture the
salting–out (SO) characteristics of CO2 and H2 gas in various types of salt systems which are consistent
with previous studies. The simplified solubility models for CO2 and H2 presented in this study
offer significant advantages over conventional approaches, including computational efficiency and
accuracy across a wide range of geological conditions. The explicit, derivative–continuous nature
of these models eliminates the need for iterative algorithms, making them suitable for integration
into large–scale multiphase flow simulations. This work contributes to the field by offering reliable
tools for modeling solubility in various subsurface energy and environmental–related applications,
facilitating their application in energy transition strategies aimed at reducing carbon emissions.

Keywords: CO2 solubility; H2 solubility; geologic carbon storage; underground hydrogen storage;
natural hydrogen production; experimental data; predictive models
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1. Introduction

Mitigating CO2 emissions through carbon capture and storage (CCS) and carbon
capture, utilization, and storage (CCUS) is an increasingly promising approach to curbing
the rise of temperature on earth [1–3]. Geologic formations such as deep saline aquifers [4],
depleted oil and gas reservoirs [5–7] and unmineable coal seams are examples of structures
viable for CO2 storage [8]. Among these, deep saline aquifers have the most significant
storage potential. Carbon capture and storage (CCS) in saline aquifers depends on four fun-
damental mechanisms: structural/stratigraphic, dissolution/solubility, capillary/residual,
and mineral trapping [9]. Dissolution trapping involves CO2 dissolving into the brine,
which decreases its buoyancy, whereas capillary trapping holds CO2 in rock pores [10].
Mineral trapping occurs when CO2 reacts with minerals to form stable carbonates that en-
sure long–term storage [11]. When CO2 is injected into a geological formation, it dissolves
into the reservoir brine, increasing the brine density and creating a density gradient [12].
This gradient induces convective mixing, which speeds up the dissolution of CO2 and en-
hances solubility trapping. The effectiveness of dissolution trapping is crucial for successful
geological carbon storage. Furthermore, the interaction between CO2 and brine solubility
significantly impacts long–term storage security and the reservoir’s complex physical and
chemical interactions among minerals and fluids. To accurately evaluate these effects and
optimize carbon storage, a reliable model for predicting CO2 solubility in reservoir brines
under geological conditions is essential [13].

Predictive solubility models are essential not only for CO2 storage but also for CO2
utilization in enhanced oil recovery (EOR) projects [5,14–16]. These models are crucial in
determining the amount of CO2 that can be stored during EOR and the volume of CO2 that
is miscible with the oil front for improved recovery—for instance, Pi et al. [17] observed
a decrease in the pH of formation water during CO2 flooding in rock cores. They also
recorded a reduction in the minimum miscibility pressure as the salinity of connate water in
rock cores increased. This indicates changes in CO2 concentration within the porous media
at lower salinity levels of connate water. When modeling CO2–EOR, it is essential to have
reliable CO2 dissolution models to accurately represent the amounts of CO2 available for
compositional interaction with the oil front. Similarly, during water–alternating–gas (WAG)
injection, the salinity of injected water has been noted as a critical factor in creating optimal
miscible flood fronts [18]. For example, saline–injected water with 1–2 wt.% showed good
synergy and improved oil recovery. These solubility predictive models can also provide
insight into the concentration or volume of CO2 available for miscibility with oil front.
Another scenario in which predictive models are essential is during the drilling of acid gas
reservoirs. Acid gas reservoirs contain high amounts of CO2, which have the potential to
dissolve in water–based or oil–based drilling fluid [19,20]. The dissolution degree depends
on the drilling fluid downhole salinity, pressure, and temperature. Near the wellhead, the
dissolved gas will separate from the aqueous phase and expand rapidly due to a decrease
in gas solubility. Therefore, the gas kick commonly exhibits the characteristics of early
latency and late burst, which brings significant challenges to the safety of well control [21].
To improve safety, CO2 predictive models can help understand the degree of solubility and
well control choking required for the wellhead’s safety.

In UHS, hydrogen is stored within geological formations, with its capacity and security
maintained by specific trapping mechanisms akin to those used for CO2 storage. These
mechanisms include (a) structural or stratigraphic trapping [22,23], (b) residual or capillary
trapping [6,24], (c) mineral trapping, (d) dissolution trapping [25], and (e) the more recently
studied adsorption trapping potential of coal seams [26,27] or shale [28]. A graphical
illustration of these mechanisms is shown in Figure 1. Among these trapping phenomena,
trapping by solubility in aqueous media offers the highest efficiency because it requires
minimal monitoring and maintenance compared to capillary trapping, which requires close
monitoring. Unfortunately, storing hydrogen at surface facilities is challenging because
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of its low density, thereby requiring high pressures to adequately compress it due to its
high diffusivity [29]. Furthermore, H2 has a low ignition temperature that makes it highly
inflammable. Hence, the safest place to store H2 is likely underground [30,31]. The storage
of H2 in geologic structures is regarded as the most feasible option for large–scale energy
storage on a global basis, mimicking the carbon capture and utilization of the storage
industry. In particular, salt caverns previously used for hydrocarbon storage are promising
geologic candidates for UHS [32]. The interest in salt caverns is primarily due to the high
capacity, rapid operation, and minimal contamination risk. However, cavern storage may
be constrained by geography and transportation costs. Alternatively, depleted hydrocar-
bon reservoirs provide established infrastructure and proven containment capabilities
for hydrogen storage. However, there are concerns about H2 mixing with the residual
hydrocarbons or reacting with underground minerals. Saline aquifers trap CO2 effectively
in CCUS but need more study for H2 storage due to potential interactions with brine and
rock minerals. Further, hard rock caverns (e.g., granite) offer stability but are costly to
develop and may leak if not sealed properly.
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Figure 1. A diagram showing the working gas (CO2 or H2) of underground gas storage (UGS) in the
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Raza et al. [33] conducted a review on underground hydrogen storage, and they
concluded that the accurate prediction of H2 solubility across a wide range of geographical
depth–dependent temperatures, pressures, and salinities (T–P–S) is vital for assessing
the feasibility of storing hydrogen in geological formations such as aquifers depleted oil
and gas fields, and salt caverns [30,32,34]. This understanding is essential not only for
determining the storage capacity and retention potential but also for evaluating the risks of
hydrogen loss due to dissolution into formation waters or reactions with minerals [35].

Secondly, evaluating the natural production of hydrogen requires knowledge of the
solubility of H2 in the subterranean environment, particularly from serpentinization pro-
cesses. Serpentinization is a metamorphic process in which mainly ultramafic rocks are
oxidized by water into serpentine, producing hydrogen [36]. A typical ultramafic rock is a
peridotite, which contains olivine and fayalite minerals that undergo oxidation to release
H2 into brines at temperatures between 200 to 300 ◦C. Pressure has also been reported to



Energies 2024, 17, 5723 4 of 48

increase the rate of peridotite serpentinization [37]. The salinity of the water is a crucial
factor in the serpentinization process, as reported by [38]. The authors reported a decrease
in serpentinization rates as salinity and concentration of dissolved Mg increase. Hence, pre-
dictive models that can estimate H2 solubility may be vital in evaluating the H2–producing
potential of target ultramafic rocks. These factors influence the solubility and subsequent
migration of hydrogen in subsurface environments [39]. The solubility of hydrogen in these
settings can control the concentration of hydrogen that accumulates in fractures and pores,
ultimately affecting the efficiency of hydrogen extraction [40].

Critical factors influencing geological carbon storage (GCS) and underground hydro-
gen storage (UHS) can be broadly categorized into solid, fluid, and solid–fluid interaction
factors [30]. Solid factors include absolute permeability and effective porosity, which dictate
the capacity and efficiency of the storage formations. Fluid factors such as fluid density,
viscosity, solubility, and diffusivity govern the behavior and movement of the gases within
the storage medium. Meanwhile, solid–fluid interaction factors like wettability, solid–fluid
interfacial tension, capillary pressure, relative permeability, mobility ratio, and adsorption–
desorption processes play crucial roles in determining the ease with which gases can be
injected, stored, and retained within the geological formations. Figure 2 presents the classi-
fications of the parameters influencing the storage of hydrogen gas in subsurface formation.
Understanding these parameters is essential for optimizing storage strategies and ensuring
the long–term stability and safety of CO2 and H2 storage. Solubility is a key parameter that
impacts several of the other parameters significantly.
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Muhammed et al. [30]).

Given the complexity and the plethora of parameters influencing GCS, UHS, and
natural hydrogen production, this paper focuses on the solubility factors of CO2 and
H2 in water and saline systems, which are pivotal for various subsurface and industrial
applications. The solubility of CO2 and H2 in solvent directly affects the capacity and
stability of the stored gases, influencing how CO2 and H2 interact with the storage medium
at a molecular and pore–scale level. The critical review of techniques for predicting CO2
solubility and H2 solubility, concludes that currently available predictive models employed
in predicting CO2 solubility and H2 solubility from equation of state (EoS) to machine
learning models (ML) have the following limitations: EoS modelling [41–53] involve
iterative approach that might have convergence problems, most of published empirical
models [54–59] also involve iterative method and many parameters, Molecular dynamic
simulation [44,60–65] require additional parameter and high computation costs, and ML
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models [66–72] lack interpretability. Therefore, we proposed simple, non–iterative and
reliable models to accurately predict CO2 solubility and H2 solubility in pure water and
various salt systems. This paper contributes to the body of knowledge by enhancing the
understanding of CO2 solubility in natural formation brines, aiding in the assessment of
CO2 and H2 storage capacity and the long–term behavior of CO2 and H2 at storage sites in
the context of GCS, UHS, and natural hydrogen production.

The rest of the paper’s sections following the introduction are outlined as follows:
Section 2 provides a concise review of the progress of experimental work and different
techniques of modeling the solubility of CO2 and H2 in water and saline systems. Section 3
focuses on analyzing the collected CO2 and H2 solubility data and developing CO2 and H2
correlations. Section 4 presents the validation and evaluation of the predicted performance
of the developed CO2 and H2 solubility correlations. Also, discusses the salting out
characteristics of CO2 and H2 in various brine solutions. Lastly, Section 5 provides major
findings and limitations of the study.

2. Literature Review

This section briefly reviews the state–of–the–art techniques on CO2 and H2 solubil-
ity determination in various pure water and aqueous systems. The techniques include
experimental works, equation of state (EoS) models, empirical correlations, molecular
dynamics simulations (MDS), and machine learning (ML) techniques. Each approach offers
unique insights and advantages that contribute to a deeper understanding of gas solubility
under diverse conditions with implications for both large–scale industrial applications and
scientific research.

2.1. Carbon Dioxide (CO2)

Knowledge of CO2 solubility in geological fluids is essential for studying fluid inclu-
sions [73], carbonate precipitation [74–76], and the global carbon cycle. Despite extensive
research, accurately predicting CO2 solubility across different temperatures, pressures, and
ionic strengths remains a challenge. Researchers have primarily focused on CO2 solubility
in water and NaCl solutions, which are common in geological fluids [73]. Among potential
long–term CO2 storage sites, deep saline aquifers stand out, with an estimated storage
capacity of 2400 to 21,600 billion metric tons [77]. To estimate this storage potential accu-
rately, it is crucial to evaluate the pore volume available for supercritical CO2 storage and
the capacity for CO2 to dissolve into the brine. Understanding how CO2 dissolves in brine
and groundwater helps predict possible migration pathways and environmental impacts,
especially in the event of a leak. CO2 solubility is influenced by factors like temperature,
pressure, and solute concentrations, which can vary both between and within different
formations [13,78].

2.1.1. CO2 Solubility–Experimental Works

Carbon dioxide (CO2) solubility in water has been extensively studied over the years
due to its relevance in various industrial and environmental applications, including carbon
sequestration, enhanced oil recovery, and understanding natural carbon cycles. Various
experimental techniques have been employed to explore CO2 solubility in water under dif-
ferent conditions (see Table 1). Among the earliest and most influential studies were those
by Wiebe and Gaddy [79], who investigated the CO2 solubility in water at temperatures
ranging from 323 to 373 K and pressures approaching 71 MPa. Their work has provided
foundational data for the study of CO2 behavior under sequestration conditions. In the
literature, the highest pressure at which CO2 solubility in water has been experimentally
measured is around 350 MPa, according to studies by Todheide and Franck [80], and later
by Takenouchi and Kennedy [81,82]. These works significantly expanded the understand-
ing of CO2 solubility across a wide range of temperatures (323 to 623 K) and pressures
(up to 350 MPa), offering critical insights into CO2 behavior in deep geological formations.
Finally, the study of CO2 solubility in water and aqueous salt solutions has made consid-
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erable progress, with a rich database of experimental data now available for modeling
efforts. However, the field still faces challenges, particularly in obtaining high–quality
data for mixed–salt solutions and under extreme conditions. Continued experimental and
theoretical work is necessary to build refined models and enhance the understanding of
CO2 behavior in these complex systems.

Table 1. Published experimental studies of CO2 solubility in water and aqueous systems in the
compiled database.

References Data
Points

Tmin
(K)

Tmax
(K)

Pmin
(MPa)

Pmax
(MPa)

Smin
(mol/kg)

Smax
(mol/kg) Systems

Hou et al. (b) [46] * 71 323.15 423.15 2.6 18.2 2.50 4.00 KCl, NaCl
Todheide and Franck [80] * 104 323.15 623.15 10.0 350.0 0.00 0.00 H2O
Takenouchi and Kennedy (b) [81] * 21 423.15 723.15 10.0 140.0 0.00 4.28 H2O, NaCl
Takenouchi and Kennedy (a) [82] * 116 383.15 573.15 10.0 150.0 0.00 0.00 H2O
King et al. [83]* 28 288.15 298.15 6.1 24.3 0.00 0.00 H2O
Ahmandi and Chapoy [84] * 29 300.95 423.48 1.3 42.1 0.00 0.00 H2O
Al Ghafri, S.Z.S. [85] * 8 323.15 323.15 2.1 18.7 0.00 0.00 H2O
Anderson, G.K. [86] * 54 274.15 288.15 0.1 2.2 0.00 0.00 H2O
Bamberger et al. [87] * 29 323.20 353.10 4.1 14.1 0.00 0.00 H2O
Bando et al. [88] * 45 303.15 333.15 10.0 20.0 0.00 0.55 H2O, NaCl
Bastami et al. [89] * 32 328.15 375.15 6.9 20.7 0.00 4.80 H2O, CaCl2
Bermejo et al. [90] * 92 286.97 368.81 2.0 13.1 0.25 0.99 Na2SO4

Bo liu et al. [91] * 538 298.00 373.00 0.1 20.3 0.00 0.26 CaCl2, H2O, MgCl2, (MgCl2
+ CaCl2)

Campos et al. [92] 50 298.20 323.20 0.1 0.5 0.00 0.00 H2O
Carvalho et al. [93] 107 283.24 363.42 0.3 40.0 0.00 2.00 H2O, NaCl
Chapoy et al. [94] 27 274.14 351.31 0.2 9.3 0.00 0.00 H2O
Corti et al. [95] 10 323.15 348.15 3.8 14.5 0.96 2.72 Na2SO4
Dalmolin et al. [96] 49 288.00 323.00 0.1 0.5 0.00 0.00 H2O
Dell’Era, C. et al. [97] 7 298.48 298.63 0.3 0.7 0.00 0.00 H2O

dos Santos et al. [98] 62 303.15 423.15 1.5 20.3 1.00 6.00 MgCl2, NaCl, (NaCl +
Na2SO4)

Ellis and Golding [99] 54 445.15 607.15 1.6 9.3 0.00 2.00 H2O, NaCl

Gilbert et al. [100] 35 308.15 413.15 1.9 35.8 0.00 3.40 CaCl2, H2O, Na2SO4, NaCl,
NaHCO3

Guo et al. [101] * 168 273.15 453.15 10.0 40.0 1.00 5.00 NaCl
Han et al. [102] * 75 313.00 333.00 0.3 2.0 0.00 1.00 NaHCO3
Han Ji et al. [103] * 28 313.20 343.20 4.3 18.3 0.00 0.00 H2O

He and Morse [104] 157 298.15 363.18 0.0 0.1 0.02 6.14 CaCl2, K2SO4, KCl, MgCl2,
MgSO4, Na2SO4, NaCl

He et al. [105] 35 293.15 348.15 5.2 38.3 0.00 2.70 H2O, NaCl
Hoballah [106] * 12 348.15 398.15 5.0 50.0 0.80 0.80 NaHCO3
Hou et al. (a) [107] * 41 298.15 448.15 1.1 17.6 0.00 0.00 H2O
Kamps et al. [108] * 138 313.10 433.10 0.3 9.4 0.43 4.05 K2CO3, KCl
Kiepe et al. [109] * 190 313.16 393.17 0.1 10.5 0.00 4.34 H2O, KCl, NaCl
Koschel et al. [110] * 49 323.00 423.00 5.0 20.2 0.33 4.50 KCl, MgCl2, NaCl
Malinin and Kurovskaya [111] 25 298.15 348.15 4.8 4.8 0.36 5.21 CaCl2
Malinin and Kurovskaya [111] 27 298.15 423.15 4.8 4.8 0.32 1.91 NaCl
Martin et al. [112] * 5 353.00 393.00 10.0 30.0 0.00 0.00 H2O
Messabeb et al. [113] * 40 323.15 423.15 5.0 20.2 0.00 6.00 H2O, NaCl
Mohammadian et al. [114] * 68 333.15 353.15 0.1 21.3 0.00 0.26 H2O, NaCl
Muromachi et al. [115] * 17 286.15 298.15 0.2 4.0 0.00 0.00 H2O
Nighswander et al. [116] 33 353.00 473.65 4.1 100.3 0.17 0.17 NaCl

Portier and Rochelle [117] * 35 291.15 353.15 8.0 12.0 0.38 0.38 NaCl, KCl, MgCl2, CaCl2,
NaHCO3

Poulain et al. [118] * 48 323.00 423.00 1.0 20.0 1.40 1.50 NaCl, CaCl2, KCl
Prutton and Savage [119] 139 348.65 394.15 1.5 71.2 0.00 3.90 CaCl2, H2O
Qin et al. [120] * 7 323.60 375.80 10.6 49.9 0.00 0.00 H2O
Ruffine and Trusler [121] * 3 333.00 333.00 4.9 11.5 0.00 0.00 H2O
Rumpf and Maurer [122] 111 313.11 433.16 0.0 9.7 0.99 2.01 Na2SO4
Rumpf et al. [123] 63 313.14 433.08 0.5 9.6 4.00 6.00 NaCl
Sako et al. [124] 7 348.30 421.40 10.2 19.7 0.00 0.00 H2O
Serpa et al. [125] * 9 298.00 323.00 0.1 0.4 0.00 0.00 H2O
Servio and Englezos [126] * 6 278.05 283.15 2.0 3.7 0.00 0.00 H2O

Tang et al. [127] * 70 308.15 408.15 8.0 40.0 0.00 1.41 H2O, NaCl, CaCl2, MgCl2,
NaHCO3

Tong et al. [128] * 94 308.00 424.68 1.1 38.0 0.00 5.00 CaCl2, H2O, MgCl2, NaCl,
KCl

Valtz et al. [129] * 47 278.22 318.23 0.5 8.0 0.00 0.00 H2O
Wiebe [130] * 73 273.15 373.15 2.5 70.9 0.00 0.00 H2O
Wiebe and Gaddy [131]* 29 323.15 373.15 2.5 70.9 0.00 0.00 H2O
Y. Liu et al. (a) [132] * 154 308.15 328.15 1.3 16.0 0.00 1.90 CaCl2, KCl, NaCl,
Y. Liu et al. (b) [133] * 6 308.15 318.15 8.0 16.0 0.00 0.00 H2O
Yan et al. [134] * 54 323.20 413.20 5.0 40.0 0.00 5.00 H2O, NaCl
Zhao et al. (b) [135] * 70 323.00 423.00 15.0 15.0 0.33 4.50 CaCl2, KCl, MgCl2, Na2SO4
Zhao et al. (a) [136] * 21 323.15 423.15 15.0 15.0 0.00 6.00 H2O, NaCl

* Experimental CO2 solubility data were used in the regression of this study model.
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2.1.2. CO2 Solubility–Equation of State

Generally, Peng Robinson Equation of State, PR (EoS) [137,138] have been commonly
used to describe the phase behavior of pure components and mixtures in the gas, liquid,
and supercritical fluid states. The traditional PR (EoS) model often results in significant
errors, particularly in predicting gas solubility in aqueous phases. It struggles to account
for the effects of salts like NaCl, leading to underestimation of the salting–out effect
and inaccurate phase behavior predictions in subsurface engineering simulations. To
enhance the prediction of CO2 solubility in brine and hydrocarbon systems, Søreide and
Whitson [139] introduced a tailored α–term to the PR (EoS) [137,138]. Other authors
have expanded on this work, Duan and Sun [52] extended the pressure (0 to 200 MPa),
temperature (273 to 533 K), and ionic strength up to 4.3 M using specific particle interaction
theory for the liquid phase. Duan et al. [53] introduced Pitzer’s specific interaction model
to calculate the chemical potential of CO2 in the vapor phase. Advancing on earlier works,
various authors [46–51,140] have contributed to the modeling of CO2 solubility in water
and saline systems.

2.1.3. CO2 Solubility–Empirical Correlations

Despite the advantage of EoS modeling being fast and requiring less computing
power compared to molecular dynamics, the application of this method to estimate CO2
solubility in brine, particularly under extreme subsurface injection conditions, remains
challenging. These EoS models are usually accurate within a given constraint of pressure
and temperature [139]. In addition, EoS can sometimes be computationally extensive, hence
the need for accurate, fast, and cheap empirical models. In an earlier study, Darwish [55]
developed an extension of the Setschenov model to predict CO2 solubility in the H2O–NaCl
system under geological sequestration conditions, spanning temperatures from 300 to
500 K, pressures from 5 to 200 MPa, and salt concentrations of 1 to 4 mol/kg. Barta and
Bradley [56] applied an interaction model to study gas solubility in high ionic strength and
high–temperature aqueous salt solutions, focusing on CO2, H2O, and CH4 in aqueous NaCl
up to 6 molar, 623.15 K and 15.19 MPa. Furthermore, to accurately correlate CO2 solubility
in water by analyzing 110 data points from literature covering a temperature range of 298 to
523 K and a pressure range of 3.4 to 72.41 MPa, Enick and Klara [58] employed Henry’s law
to model CO2 solubility in pure water, utilizing an equation of state for hydrocarbon phase
equilibria. Diamond and Akinfiev [141] present a detailed evaluation of the solubility of
carbon dioxide in pure water over a temperature range of 271.65 to 373.15 K and pressures
between 0.1 and 100 MPa. Sun et al. [57] developed a simple model for the prediction of
mutual solubility in CO2 + H2O and CO2 + Brine systems that cover 0–250 ◦C, 0–200 MPa
and brines containing Na+, K+, Ca2+, Mg2+, Cl−, and SO4

2−.

2.1.4. CO2 Solubility–Molecular Dynamics Studies

MDS and other atomistic techniques like Monte Carlo (MC) simulations have be-
come essential for exploring the molecular foundations of various phase behavior and
geochemical processes. These simulations offer a unique capability to study the behavior
of individual atoms, providing insights that are often challenging to obtain through ex-
perimental approaches, which typically capture the average behavior of large molecular
groups. The versatility of MDS, which can examine a wide range of length and time
scales —from angstroms to nanometers and from femtoseconds to microseconds—makes
them particularly effective in understanding how small–scale molecular properties lead to
more pr collective behaviors in geochemical systems. One significant application of these
molecular simulations has been in investigating the vapor–liquid equilibrium (VLE) in
H2O–CO2 and CO2 –NaCl brine systems.

Liu et al. [63] examined the phase behavior of H2O–CO2 mixtures using histogram–
reweighting Grand–Canonical Monte Carlo (GCMC) simulations over a temperature range
of 323.15 to 723.15 K and pressures from 0 to 100 MPa. The study by Yasaman et al. [65]
leverages comprehensive MDS with a focus on force field parameters using Large–scale
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Atomic and Molecular Massively Parallel Simulator (LAMMPS) [142] to predict the equi-
librium, interfacial, and transport properties of CO2 –brine systems under realistic CO2
storage conditions. In another study, Vorholz et al. [64] utilized Gibbs Ensemble Monte
Carlo (GEMC) [143] simulations to study the VLE of water (H2O) at temperatures between
323 and 573 K, CO2 between 230 and 290 K, and H2O–CO2 mixtures between 348 and
393 K, employing both Number of Particles Volume and Temperature (NVT) and Number
of Particle Pressure Temperature (NPT) ensembles. Furthering this research, Liu et al. [62]
also investigated the phase behavior and interfacial tension of H2O–CO2 –NaCl mixtures
using MDS across a temperature range of 323.15 to 523.15 K, pressures from 0 to 60 MPa,
and NaCl concentrations between 1 and 4 molal. Moreover, Orozco et al. [144] applied
NPT GEMC simulations to optimize intermolecular potential parameters for describing
the phase behavior of H2O–CO2 mixtures. Similarly, Lobanova et al. [145] modeled the
VLE of CO2 –H2O systems at 423 and 548 K using SAFT–CG Mie force fields for CO2
and H2O, achieving good agreement with experimental solubility data. In another article,
Jiang et al. [146] studied the phase equilibria of H2O–CO2 and H2O/n–alkane mixtures
using GEMC simulations, covering a temperature range of 323 to 523 K and pressures from
20 to 80 MPa. Hulikal et al. [147] tackles the challenge of predicting VLE in H2O–CO2
and CO2 –NaCl brine systems over a temperature range of 230 to 723.15 K and pressures
up to 100 MPa using advanced methods like Gibbs Ensemble Monte Carlo (GEMC) and
Grand–Canonical Monte Carlo (GCMC). Their work revealed discrepancies between simu-
lation results and experimental data, highlighting the need for better force fields. Moreover,
Adam et al. [148] utilized equilibrium MD using the LAMMPS software (23Jun22 version)
to explore the solubilities of H2 and CO2 in brine under conditions relevant to CCUS.

2.1.5. CO2 Solubility–Machine Learning Studies

Machine learning (ML) provides alternative and reliable techniques for predicting the
solubility of CO2 in aqueous solutions. In contrast to conventional models, which frequently
rely on simplified equations with restricted variables, ML is a data–driven approach
that uses readily available parameters such as temperature, pressure, and electrolyte
concentration to predict solubility. Here, we present a succinct review of ML studies to
estimate CO2 solubility in water and brine systems, particularly under subsurface processes.

Menad et al. [67] applied machine learning to model CO2 solubility in brine, uti-
lizing Multilayer Perceptron (MLP) optimized by the Levenberg–Marquardt algorithm,
and Radial Basis Function Neural Network (RBFNN) optimized using Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). Mohammadian
et al. [68] used the Group Modeling Data Handling (GMDH) in predicting CO2 solubility
in aqueous solutions at pressures up to 400 atm and temperatures between 283 and 298 K.
Continuing this research, Mohammadian et al. [149] applied four data–driven techniques—
extreme gradient boosting (XGB), multilayer perceptron (MLP), K–nearest neighbor (KNN),
and an in–house genetic algorithm (GA)—to estimate CO2 solubility across a broader range
of conditions (salinity 0–15,000 ppm, temperatures 298–373 K, and pressures up to 200 atm).
Ratnakar et al. [150] developed a machine learning–based workflow for accurately estimat-
ing CO2 solubility in brine for CCUS applications. In another study, Jeon and Lee [69] used
an artificial neural network (ANN) to predict CO2 solubility, utilizing 2406 experimental
data points in salt–dissolved solutions across a broad range of pressures (0.92–712.31 bar),
temperatures (273.15–473.65 K), concentrations of water molecules (0–90.12 mol/kg), and
overall mole fractions of dissolved salts (0–25.39 mol%), including supercritical CO2 condi-
tions. Recently, Mahmoudzadeh et al. [70] developed two tree–based models, LightGBM
and GBoost, to predict CO2 solubility in pure H2O using a comprehensive dataset of 785 ex-
perimental data points from various sources. Pressure and temperature were the input
parameters, and solubility was the output. The GBoost model outperformed LightGBM,
achieving an R2 of 0.9976 and an RMSE of 0.137 mol/kg. Similarly, Zou et al. [151] used
machine learning to predict CO2 solubility in water and brine–based on 1278 experimental
data points covering temperatures from 273.15 to 453.15 K and pressures ranging from 0.06
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to 100 MPa. They employed two ANNs—cascade forward neural network (CFNN) and
generalized regression neural network (GRNN)—along with three optimization algorithms.

The advancement of machine learning techniques in these studies has significantly
boosted the precision and reliability of CO2 solubility predictions. Initial models encoun-
tered difficulties in formulating practical equations and handling high–pressure conditions.
However, later research improved accuracy by utilizing advanced optimization algorithms,
hybrid models, and thorough feature analysis. The use of extensive and diverse datasets,
along with careful validation against experimental data, has been key in overcoming the
shortcomings of earlier models. This has positioned data–driven approaches as a reliable
alternative for estimating CO2 solubility in brine.

2.2. Hydrogen (H2)

The study of hydrogen (H2) solubility is crucial for understanding various natural
and engineered processes, particularly in the context of UHS and the natural production
of hydrogen. There is a pressing need for more experimental and theoretical work to
accurately model hydrogen solubility across the full spectrum of relevant T–P–S conditions,
particularly in complex saline aquifer systems and under the high–pressure conditions
found in deep geological formations [59,152]. This review of hydrogen solubility is not only
fundamental for the safe and efficient design of hydrogen storage systems but also for under-
standing the broader implications of hydrogen in natural geochemical processes, including
its role in the global hydrogen cycle and its potential as a renewable energy resource.

2.2.1. H2 Solubility–Experimental Works

In the literature, there are numerous data on the solubility of hydrogen in pure water,
the majority of which comes from very old studies. All these data are also limited to low
temperature and atmospheric pressure. On the other hand, the solubility of hydrogen
in various brines have been studied less than in pure water. A substantial amount of
experimental data on hydrogen solubility in pure water is available in the literature. This
data mainly includes volume ratio measurements, such as Ostwald, Knudsen, and Bunsen
coefficients. Additionally, some data are provided as direct solubility measurements in mole
fraction using PVT cells (“TPxy” data) or as Henry’s constants. Some experimental data
on hydrogen solubility in seawater solutions and NaCl(aq) are available in the literature;
however, these data cover only a narrow range of temperatures and salinities. According
to IUPAC’s [153] evaluation of experimental data, Wiebe and Gaddy [154] data are the
most reliable and largely cover the pressure and temperature range of geological storage
conditions. The most significant contribution comes from Crozier and Yamamoto [155],
who collected extensive data on hydrogen solubility in seawater and NaCl aqueous solu-
tions, albeit experiments were conducted at atmospheric pressure. Conversely, the data
from Braun [156] were excluded because they were found to be inconsistent with all other
available data under similar conditions. Recently, Chabab et al. [59,152] carried out mea-
surements of hydrogen solubility of the H2 + H2O + NaCl system, as well as data from the
literature. Therefore, it is necessary to overcome data gaps, especially for the H2 + H2O +
NaCl system, which is the most important since Na+ and Cl— are the predominant species
in natural saline water. These experimental data on hydrogen solubility in water and salt
were collected and listed in Table 2. Figures 3 and 4 show experimental data as a function
of temperature and pressure.

Table 2. Published experimental studies of H2 solubility in aqueous systems in the compiled database.

Authors Year Min. Temp
(K)

Max. Temp
(K)

Min. Press
(MPa)

Max. Press
(MPa)

Max. Molality
(mol/kg) Systems

Chabab et al. [59] * 2020 323.00 372.00 2.00 20.00 5.0 NaCl
Chabab et al. [152]. * 2023 298.15 373.15 10.00 20.00 4.0 NaCl
Wiebe and Gaddy [154] 1934 273.15 373.15 2.53 101.33 0.0 H2O
Crozier and Yamamoto [155] * 1974 274.60 302.47 0.10 0.10 0.0 H2O
Crozier and Yamamoto [155] * 1974 274.03 301.51 0.10 0.10 0.5 NaCl
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Table 2. Cont.

Authors Year Min. Temp
(K)

Max. Temp
(K)

Min. Press
(MPa)

Max. Press
(MPa)

Max. Molality
(mol/kg) Systems

Braun [156] 1900 278.15 298.15 1.022 1.045 0.0 H2O
Braun [156] 1900 278.15 298.15 1.022 1.045 1.1 NaCl
Torin–Oilarves and Trusler [157] * 2021 323.00 323.00 12.00 39.40 2.5 NaCl
Bunsen [158] 1855 277.15 296.75 0.10 0.10 0.0 H2O
Bohr and Bock [159] 1891 273.20 373.15 0.10 0.20 0.0 H2O
Winkler [160] 1891 273.65 323.25 0.10 0.11 0.0 H2O
Steiner [161] * 1894 288.20 288.20 0.10 0.10 0.0 H2O
Steiner [161] * 1894 286.32 286.95 0.10 0.10 5.3 NaCl
Steiner [161] 1894 291.77 292.38 0.10 0.10 4.0 KCl
Steiner [161] 1894 290.83 291.67 0.10 0.10 3.2 CaCl2
Steiner [161] 1894 291.56 291.72 0.10 0.10 1.4 Na2SO4
Steiner [161] 1894 290.25 291.41 0.10 0.10 2.6 MgSO4
Geffcken [162] * 1904 288.15 298.15 0.10 0.10 0.0 H2O
Knopp [163] * 1904 293.15 293.15 0.10 0.10 0.0 H2O
Knopp [163] 1904 293.15 293.15 0.10 0.10 2.1 KCl
Huefner [164] * 1907 293.15 293.34 0.10 0.10 0.0 H2O
Findlay and Shen [165] 1912 298.15 298.15 0.10 0.18 0.0 H2O
Muller [166] 1913 289.35 290.35 0.10 0.10 0.0 H2O
Ipatiew et al. [167] 1932 273.65 318.15 2.03 14.19 0.0 H2O
Morrison and Billett [168] * 1952 285.65 345.65 0.10 0.14 0.0 H2O
Pray et al. [169] * 1952 324.82 588.71 0.69 2.42 0.0 H2O
Zoss [170] * 1952 273.15 606.48 3.45 20.70 0.0 H2O
Stephan et al. [171] 1953 373.15 435.93 1.41 10.03 0.0 H2O
Wet [172] * 1964 291.65 304.55 0.10 0.11 0.0 H2O
Ruetschi and Amlie [173] * 1966 303.15 303.15 0.11 0.11 0.0 H2O
Shoor et al. [174] 1969 298.15 333.15 0.10 0.12 0.0 H2O
Longo et al. [175] * 1970 310.15 310.15 0.11 0.11 0.0 H2O
Power and Stegall [176] 1970 310.15 310.15 0.11 0.11 0.0 H2O
Gerecke and Bittrich [177] * 1971 298.15 298.15 0.10 0.10 0.0 H2O
Gerecke and Bittrich [177] * 1971 288.15 298.15 0.10 0.10 4.3 NaCl
Gerecke and Bittrich [177] * 1971 288.15 288.15 0.10 0.10 1.0 KCl
Jung et al. [178]* 1971 373.15 423.15 1.00 8.58 0.0 H2O
Schroder [179] 1973 298.15 373.15 10.13 10.13 0.0 H2O
Gordon et al. [180] * 1977 273.29 302.40 0.10 0.10 0.0 H2O
Devaney [181] * 1978 366.48 588.7 1.38 11.03 0.0 H2O
Cargill [182] 1978 277.70 344.83 0.10 0.14 0.0 H2O
Meyer et al. [183] * 1980 310.15 310.15 0.10 0.10 0.0 H2O
Gillespie and Wilson [184] * 1980 310.93 588.71 0.35 13.80 0.0 H2O
Choudhary et al. [185] 1982 323.15 373.15 2.53 10.13 0.0 H2O
Dohrn and Brunner [186] 1986 473.15 623.15 10.00 30.00 0.0 H2O
Alvarez et al. [187] * 1988 318.90 497.50 0.44 4.59 0.0 H2O
Kling and Maurer [188] * 1991 323.15 423.15 3.18 15.37 0.0 H2O
Jauregui–Hazaetal. [189] 2004 353.00 373.00 0.15 0.20 0.0 H2O

* Experimental H2 solubility data used in the regression of this study model.
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2.2.2. H2 Solubility–Equation of State

In the last few decades, several researchers have relied on the EoS to estimate hydrogen
solubility in a wide variety of brine solutions [41–45]. A reliable and accurate model for
hydrogen solubility was developed by Li et al. [43]. This model calculated hydrogen
solubility in formation fluids and tracked changes in fluid density. It accounted for factors
like system pressure, temperature, fluid salinity, molar fraction, fugacity coefficient, Henry’s
constant, Poynting factor, and the activity coefficient of hydrogen. The model performed
well within typical geological storage conditions (273–373 K, 1–50 MPa, and 0–5 mol/kg
NaCl), accurately reproducing experimental data and predicting hydrogen solubility and
fluid density. Additionally, the model handled H2–N2 or H2–CH4 gas mixtures and mixed
electrolyte solutions containing Na, K, Ca, Mg, Cl, or SO4. Rahbari et al. [41] conducted
thermodynamic modeling to investigate the phase coexistence of the H2O–H2 system at
temperatures ranging from 283 K to 423 K and pressures between 10 bar and 1000 bar. The
authors found that both the Peng–Robinson and Soave Redlich–Kwong equations of state,
even with van der Waals mixing rules and fitted binary interaction parameters were unable
to accurately predict the equilibrium compositions of the liquid and gas phases. In another
study, Lopez–Lazaro [44] used Monte Carlo simulations to generate new data on hydrogen
solubility in aqueous NaCl solutions across temperature and salinity ranges relevant to
geological applications where experimental data are currently lacking. They fitted a binary
interaction parameter for the Soreide and Whiston equation of state using the simulated
data generated through molecular simulations. This model enables fast and reliable phase
equilibrium calculations and was applied to scenarios pertinent to hydrogen geological
storage and natural hydrogen emissions.

Sun et al. [45] applied the SAFT–LJ EoS, which incorporates a multipolar term to
explicitly account for dipole–dipole, dipole–quadrupole and quadrupole–quadrupole in-
teractions, to model the VLE of H2O–H2 systems. In their model, H2 was treated as chain
molecules with evenly distributed quadrupole moments. The van der Waals one–fluid
mixing rule was used to calculate mixture parameters and evaluated two binary param-
eters for H2O–H2 interactions based on mutual solubility data from binary water–gas
systems. When compared with experimental data, this molecular–based EoS accurately rep-
resented the VLE of H2O–N2 and H2O–H2 systems across a wide P–T range (273–623 K and
0–1000 bar). The authors concluded that this ability to account for multipolar interactions is
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why the SAFT–LJ EoS can quantitatively represent the VLE of highly non–ideal water–gas
systems. Ratnakar et al. [42] developed a PVT model for the H2–H2O system using the
traditional PR EoS along with a non–classical Huron–Vidal (HV) mixing rule. Their model
effectively captures molecular interactions and aligns well with available experimental
data. They also established a robust workflow for determining HV parameters from binary
solubility data, which was validated against experimental observations.

2.2.3. H2 Solubility–Empirical Correlations

Various researchers developed correlations to predict the hydrogen Henry constants in
pure water, comparing experimental data. The pioneered work by Harvey [190] was later
refined by Fernández–Prini [191]. Trinh et al.’s developed model for estimating hydrogen
Henry’s constant in oxygenated solvents [192] and adjusted by Lopez–Lazaro et al. [44] for
water. Akinfiev and Diamond’s utilize a virial–like equation of state to describe the proper-
ties of aqueous nonelectrolytes at infinite dilution [193]. Li et al. [43] and Torín–Ollarves
and Trusler [157] empirical models were calibrated using high–pressure H2 solubility data
in water. Chabab et al. [59] presented an empirical correlation to predict H2 solubility in
pure H2O and brine. The correlation considers the effects of temperature, pressure, and
molal concentration (mol/kg of NaCl). Although Chabab et al.’s correlation provides a
useful tool for predicting hydrogen solubility in pure water and NaCl–brine systems, its
limitations make it less applicable to more complex or mixed brine environments com-
monly encountered in natural hydrogen production and UHS scenarios. The correlation
does not account for these interactions, which can lead to inaccuracies when applied to
systems that are not dominated solely by NaCl. Zhu et al. [54] used a semi–empirical
approach to model H2 solubility in purified water and aqueous NaCl solutions by utilizing
a high–precision equation of states and a specific particle interaction theory for the liquid
and vapor phases of H2, respectively. Although the model effectively predicts H2 solubility
in pure water and NaCl solutions, its application is limited by its calibration range, which
has a maximum temperature of 373.15 K (100 ◦C). This limitation restricts its use in high–
temperature environments like natural hydrogen production, where temperatures often
exceed this range.

2.2.4. H2 Solubility–Molecular Dynamics Studies

Molecular dynamics studies are increasingly being used to model the solubility be-
havior of fluid systems, particularly for H2 in brine, due to the complexities associated
with its very low solubility, as well as the high costs and hazards posed by experimental
measurements under extreme conditions (e.g., high pressure, flammability of H2, and the
corrosive nature of salt). While these simulations are invaluable, experimental measure-
ments remain essential for validating and refining models used in classical and statistical
thermodynamics. Additionally, molecular simulations complement experimental work by
offering deeper insights into the underlying physical mechanisms, generating vapor–liquid
equilibrium data under severe conditions (such as high temperature, pressure, and salinity),
and aiding in the development of consistent and reliable models for predicting solubility.

MDS application to H2 solubility in pure water and brine is relatively recent and
limited, likely due to the low solubility of H2, which poses significant statistical chal-
lenges [44,61]. Rahbari et al. [41] used molecular simulations to study the phase coexistence
of the H2O–H2 system across temperatures from 283 K to 423 K and pressures between 10
and 1000 bar. They found that force–field–based molecular simulations could predict the
solubility of water in compressed hydrogen. Lopez–Lazaro et al. [44] applied this indirect
method to calculate Henry’s constant for H2 in brine and used it to calibrate the Søreide and
Whitson equation of state for predicting solubilities at high pressures. Recently, Kerkache
et al. [60] employed both direct and indirect molecular dynamic approaches to calculate H2
solubility in water and brine, demonstrating the applicability of these approaches under
various conditions. Similarly, van Rooijen et al. [61] used this method to estimate H2
solubility at pressures up to 10 MPa, noting that Henry’s law requires correction beyond
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this pressure. In NaCl brine, a significant lack of experimental data has resulted in few
recent molecular dynamic studies [44,60,61] on high–pressure H2 solubility. These sources
show notable discrepancies, particularly in the salt–free molar fraction (x’H2). This in-
consistency highlights the variations between the experimental and simulation results,
underscoring the need for further investigation to reconcile these differences. Although
molecular dynamic techniques are powerful tools, they are computationally intensive and
necessitate additional parameters that are often challenging to obtain. This complexity
increases significantly when transitioning from simpler systems like pure water to more
complex ones involving mixed salts, making the modeling process even more resource
demanding and less accessible for practical applications.

2.2.5. H2 Solubility–Machine Learning Studies

Machine learning offers a robust approach to predicting hydrogen solubility in aque-
ous solutions, especially underground hydrogen storage conditions. Unlike traditional
models that rely on simplified equations with limited variables like temperature and pres-
sure [194], machine learning can incorporate a wider range of input variables that includes
the chemical properties of other solutes [195]. This broader analysis significantly improves
the accuracy and reliability of predictions. Recent studies have successfully applied ma-
chine learning techniques to predict hydrogen solubility in various mediums [196–198],
demonstrating their effectiveness in complex systems where conventional models may
fall short.

Various machine learning algorithms have been widely used to predict hydrogen solu-
bility. Lv et al. [71] employed advanced models including adaptive boosting decision tree
(AdaBoost–DT), adaptive boosting support vector regression (AdaBoost–SVR), gradient
boosting decision tree (GB–DT), gradient boosting support vector regression (GB–SVR),
and k–nearest neighbors (KNN) to estimate H2 solubility in both pure and saline water.
Similarly, Zhu et al. [66] used a wavelet neural network that combines ANN with wavelet
transform to model hydrogen storage in saline water under real–world conditions. Vo
Thanh et al. [72] also investigated hydrogen solubility in aqueous systems using various
machine learning models such as adaptive gradient boosting (AdaBoost), gradient boosting,
random forest, and extreme gradient boosting, confirming their effectiveness. Recently, var-
ious authors [199–202] have contributed to the machine learning modeling of H2 solubility
in water and saline systems.

The application of machine learning to predict hydrogen solubility in aqueous so-
lutions marks a significant advancement over traditional methods; however, the current
approaches are constrained by the major limitations of the lack of an extensive experimental
database. To improve the accuracy and reliability of these predictions, future research
should focus on expanding the datasets to cover a wider range of conditions relevant to
both underground hydrogen storage and natural hydrogen production. Additionally, inte-
grating more comprehensive data could help mitigate the risks of overfitting and enhance
the generalizability of these models to diverse real–world scenarios.

3. Methodology

Here, we present a detailed analysis of the CO2 and H2 solubility data, encompassing
various stages from data collection and characterization to model development and perfor-
mance evaluation. We begin by discussing the methodologies employed in gathering and
processing the data, which form the foundation for subsequent empirical model develop-
ment. The focus then shifts to the formulation and development of predictive correlations
fitted from the experimental data, specifically tailored for CO2 and H2 solubility under
varying conditions. Finally, we assess the accuracy and reliability of these models through
statistical evaluation, providing insights into their predictive capabilities and limitations.
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3.1. Data Collection and Characterization

To develop a robust and quick predictive model that can accurately predict CO2 and H2
solubility in aqueous systems for subsurface applications, reliable and consistent database
is essential. In light of this, we collected experimental data points for CO2 and H2 solubility
from published studies (see Tables 1 and 2). Because most experimental data are published
in different measurement units, a conversion was conducted for all measured data to
establish a consistent data unit system. All pressure data was converted to megapascals
(MPa), temperature to Kelvin (K), salinity to molality (mol/kg) and solubility to moles
per kilogram of water (mol/kg). These datasets cover diverse aqueous systems with three
main input variables, including temperature, pressure and salinity (mol/kg). The objective
of the section was to gather consistent experimental data and develop swift and accurate
correlations to predict CO2 and H2 solubility as a function of pressure, temperature and
salinity in terms of ionic strength. They are formulated as follows:

Solubility = f (P, T, and IS) (1)

Furthermore, the salinity of all experimental data was converted into ionic strength (IS),
expressed in mol/kg, using the Debye–Hückel [203] model expressed by Equation (2). The
Debye–Hückel model presents an easy approach to determining ionic strength. However,
its limitation is that it does not consider the impact of ion interaction.

IS =
1
2∑ miz2

i (2)

where mi and zi represent the molality (mol/kg) and charge of the ion, respectively.
In the context of the experimental measurement unit, Equation (3) can be used to

convert the molality and weight fraction of ions to total dissolved salt (TDS). Alternatively,
TDS can be calculated from the weight fraction of the ion using Equation (4).

TDS = mion × Mion × 1000 (3)

TDS =

(
wt%ion
MMion

× 100
)

(100 − wt%ion)× 103 × Mion
(4)

where wt%ion = weight fraction of ion, Mion = molar mass of ion, and mion = mole
concentration of ion.

Because most industrial applications measure brine salinity in terms of TDS, mostly in
parts per million (ppm), it is essential to capture this rationale in our empirical correlation.
Electrical conductivity, salinity, and TDS measurements are often used to quantify the ionic
strength of water. These measurements typically show good correlation with the concen-
tration of ions. Therefore, we introduce Langelier et al. [204] correlation to estimate ionic
strength based on TDS. The empirical correlation (Equation (5)) with the assumption that
the relative composition of natural waters is fairly constant. The correlation is expressed as:

IS = 2.5 × 10−5 × TDS (5)

Furthermore, these equations were employed to ensure accurate conversions between
salinity, ionic strength, and TDS, facilitating a comprehensive analysis of the experimental data.

Next, we collected and compiled CO2 solubility data. The dataset includes solubility
measurements under a wide range of conditions, with maximum values reaching 71 MPa
for pressure, 523 K for temperature, and 6.14 mol/kg for salinity. Table 1 outlines the
specific experimental conditions under which the CO2 solubility data was collected. In
this study, the oriented temperature and pressure range is 273.15–523.15 ◦K and 0–71 MPa,
respectively and across all salinity levels in which the CO2–rich and water–rich phases
are commonly immiscible. The chosen pressure range covers the domain of applicability
for CO2–EOR and geologic carbon storage. From Figure 3 it is evident that most data
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points are concentrated between temperatures of 280 K to 350 K and pressures ranging
from 0 to 30 MPa. There is a notable concentration of data within the lower temperature
(below 350 K) and low–to–medium pressure ranges (0 to 20 MPa), particularly for the CO2–
H2O–salt system. These temperatures and pressure conditions are typical of CO2–EOR
studies. However, as temperatures rise above 350 K and pressures exceed 30 MPa, the
data points become sparse, indicating less experimental coverage in these regions. This
suggests that the region between 350 K to 500 K and 20 MPa to 70 MPa lacks sufficient data,
which may be critical for understanding CO2 solubility under conditions of injection into
deep saline aquifer. This gap highlights the need for additional experimental studies to
extend the coverage to more extreme conditions, thereby improving the reliability of CO2
solubility predictions for these important applications.

Similarly, for H2 solubility data, available published data were collected and compiled
into a databank. H2 solubility data were collected. The dataset includes solubility measure-
ments under a wide range of conditions, with maximum values reaching 101.3 MPa for
pressure, 636.1 K for temperature, and 5.0 mol/kg for salinity. Notably, most of the available
solubility data is from pure water systems. For more detailed information, please refer to
Table 2, which outlines the specific experimental conditions under which the H2 solubility
data was collected. Finally, a total number of 438 experimental data records were filtered
and selected from our preliminary database. The final dataset comprises solubility data in
water and NaCl brine. From Figure 4, it is evident that most data points are concentrated
within the temperature range of 250 K to 400 K and pressure range of 0 to 40 MPa. There
is a noticeable clustering of data in the lower to medium temperature range, particularly
between 250 K and 350 K, and pressures between 0 and 20 MPa. This suggests that the data
coverage is quite robust in these regions, which may be relevant for standard conditions
encountered in underground hydrogen storage applications. However, there is a significant
lack of data at higher temperatures (above 400 K) and higher pressures (above 40 MPa),
with very few data points extending up to 640 K and 100 MPa. This indicates that the
data coverage is sparse in these high–temperature and high–pressure regions, which are
critical for understanding H2 solubility under extreme conditions like those encountered
in natural hydrogen production. The limited data in these regions suggests that more
experimental studies are needed to explore and accurately model H2 solubility under such
conditions. Details of the final datasets for CO2 and H2 solubility that were used for CO2
and H2 correlation development are provided in Tables 1 and 2.

Although other contaminants do not significantly affect solubility, Na and Cl are
often the primary species taken into account when analyzing brines in aquifers [59,152]
Commonly for thermodynamic characteristics, most subsurface brines are treated as NaCl
brine, and the other species are either ignored or converted to NaCl equivalents [205].
Chemical reactivity, however, requires considering actual existent species rather than
assimilating them to NaCl.

3.2. Development of CO2 Solubility Correlations

Various experimental methods were used to obtain these measurements, including water-
trapping [81,87,111], gas chromatography [107,124,129], volumetric expansion [116,135], syn-
thetic methods. [94,108], Raman spectroscopy [206,207], calorimetric [110], and potentio-
metric techniques [91]. Overall, most of the data is consistent across a broad range of
temperatures and pressures. The reliability and consistency of these measurements have
been extensively analyzed in previous studies [49,53,141] which is beyond the scope of this
work. Table 1 provides details of the databank for the CO2 + water system.

An accurate model of CO2 solubility should not only reflect the overall trends across
a wide range of temperatures and pressures but also account for abrupt local changes
under specific thermodynamic conditions. Traditional models often address this by using
different parameters for various CO2 phases or temperature–pressure ranges [49]. However,
this approach can disrupt the smoothness and continuity of the function’s derivative,
potentially causing issues like an ill–conditioned Jacobian matrix in large–scale multiphase
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flow simulations [208,209]. A simple model is proposed to maintain continuity in both the
function and its gradient. Herein, the focus is on a temperature range of 273.15–523.15 ◦K
and a pressure range of 0–71 MPa, where the CO2–rich and water–rich phases are generally
immiscible. Due to the strongly non–ideal nature of the CO2 and water mixture, the
composition of different phases varies in a complex manner with changes in pressure and
temperature [49,118,128].

In this section, we use our compiled and filtered data to develop mathematical cor-
relations to predict CO2 solubility in water and various brine systems. These empirical
correlations consider temperature and pressure for a CO2–water system and temperature,
pressure, and salinity in terms of ionic strength for CO2+water+salt systems. The developed
correlations were adapted and formulated from the work of Chen et al. [210]. Due to the
complex behavior of CO2 solubility in different aqueous systems, we further separated the
entire data into various subsets, namely pure water, mixed salt, monovalent, and divalent
single salt systems. Table 3 provides a summary of the dataset used to develop correlations
between CO2–water and CO2–water–salt systems.

Table 3. Description of the experimental data used for developing the CO2 and H2 solubility models.

Correlation Systems Data
Points T Min (K) T Max (K) P Min

(MPa)
P Max
(MPa)

IS Min
mol/kg)

IS Max
(mol/kg)

CO2–Water — 926 274.14 523.15 0.10 71 – –

CO2–Water–
Salt

Mixed Salts (K+, Na+,
Ca2+, Mg2+)

391 291.15 424.67 0.10 40.0 0.024 6.00

KCl 260 313.1 433.1 0.13 18.22 0.427 4.50
NaCl 766 273.15 523.15 0.10 40.0 0.017 6.00

Na2SO4 226 286.97 433.16 0.42 15.0 0.300 8.16
NaHCO3 75 313 398.15 0.31 50.0 0.050 1.00

CaCl2 355 298 424.64 0.10 67.4 0.027 15.63
MgCl2 223 298 424.68 0.10 34.9 0.031 15

H2–Water — 360 273.15 636.1 0.629 101.35 – –
H2–Water–

Salt NaCl 78 298.05 423.155 1.9884 45.81 1.00 5.00

The final mathematical model that describes the quantitative effects of temperature,
pressure, and salinity on the solubility of CO2 for water and different saline systems is
expressed in the following equation forms:

For CO2 − H2O system:

mCO2 = (1 − ε)
A. Pr

a1 T a2

B. Pr
a3 T a4 + C.Pr

a5 T a6 + D
+ ε

E. Pr
a7 T a8

F. Pr
a9 T a10 + G.Pr

a11 T a12 + H
(6)

ε =
T − Tmin

Tmax − Tmin
(7)

ε = weighting factor, Tmin = 273.15 K and Tmax = 523.15 K

Pr =
P
P0

(8)

Pr = relative pressure, P0 is the pressure at which the variation trend of CO2 solubility
undergoes an abrupt change, MPa. In this study, the expression of P0 was derived from
Sun et al. [57] and it is expressed as:

P0 = 16.2086 − 12.1147
1 + exp(0.049635 × (T − 273.15)− 2.8034)

(9)

Regarding the aqueous phase containing either one or a combination of Na+, K+,
Ca2+, Mg2+, Cl− HCO3

− and SO4
2−, a simple model for CO2 solubility in salt solution

is proposed:
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For CO2 − H2O salts system:

mCO2, salt = mCO2
0exp(a1 IS + a2 ISa3

)
(10)

where P, T, IS, mCO2
0 and mCO2, salt represent the pressure (MPa), temperature (K), ionic

strength (mol/kg), solubility of CO2 in pure water (mol/kg) and solubility of CO2 in salt
solution (mol/kg), respectively. Also, A, B, C, D, E, F, G, H and a1–a12 are constant fitted by
experimental measurements of CO2 solubility, respectively.

3.3. Development of H2 Solubility Correlations

Next, similar to the previous section, we utilized processed hydrogen solubility data to
develop mathematical models to predict H2 solubility in water and various brine systems.
The empirical correlations consider temperature and pressure for an H2–water system and
temperature, pressure, and salinity in terms of ionic strength for H2—water—salt systems.
The developed correlations are formulated as multivariable nonlinear regression models.
Table 3 provides a summary of the dataset used to develop correlations for H2–water and
H2–water–salt systems.

The final mathematical model that describes the quantitative effects of temperature,
pressure, and salinity on the solubility of H2 for water and different saline systems is
expressed in the following equation forms:

For H2 − H2O system:

mH2 = (1 − ε)
A. Pr

a1 T a2

B. Pr
a3 T a4 + C.Pr

a5 T a6 + D
+ ε

E. Pr
a7 T a8

F. Pr
a9 T a10 + G.Pr

a11 T a12 + H
(11)

ε =
T − Tmin

Tmax − Tmin
(12)

where Tmin = 273.15 K and Tmax = 636.1 K

Pr =
P
P0

(13)

Regarding the aqueous phase containing Na+ and Cl−, a simplified model for H2
solubility in brine is proposed:

For H2 − H2O − salts system:

mH2, salt = mH2
0exp(a1 IS + a2 ISa3

)
(14)

where P, T, IS, mH2
0 and mH2, salt represent the pressure (MPa), temperature (K), ionic

strength (mol/kg), solubility of H2 in pure water (mol/kg) and solubility of H2 in salt solu-
tion (mol/kg), where A, B, C, D, E, F, G, H and a1–a12 are constants, fitted by experimental
measurements of H2 solubility, respectively.

3.4. Model Parameter Determination

Experimental measurements are crucial for determining model parameters in phase
equilibria models, as the quality of this data directly impacts the model’s accuracy [57,118].
For CO2 systems, an updated databank has been developed, which includes 923 measure-
ments for the CO2–water system and 1565 measurements for the CO2+water+salts system.
In the case of the H2 system, the databank contains 438 measurements of H2 solubility, 360
for the H2–water system and 78 for the H2 + water + salt systems. The Generalized Reduced
Gradient algorithm was employed to determine the model parameters using the developed
experimental database [211]. Due to the uneven distribution of experimental data across
the targeted temperature and pressure range, the parameters were fitted exclusively with
the available data. The resulting model parameters for CO2 and H2 solubility models are
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presented in Table 4 showing the empirical constants for the CO2 solubility models and H2
solubility models.

Table 4. Empirical constants of developed CO2 and H2 solubility models.

Constants
CO2 Solubility Correlations H2 Solubility Correlations

CO2–H2O Mixed
Salts NaCl KCl CaCl2 MgCl2 Na2SO4 NaHCO3 H2–Water H2–Water–Salts

(NaCl)

A 0.284888 – – – – – – – 0.101466 –
B −5.02511 – – – – – – – −5.632826 –

C 4.094051 – – – – – – – 3.732906 –
D 0.507286 – – – – – – – −0.113223 –
E 0.006187 – – – – – – – 0.543337 –
F −4.164112 – – – – – – – −4.379279 –
G 4.939346 – – – – – – – 4.570177 –
H 0.340918 – – – – – – – 0.136001 –
a1 0.756798 0.52944 0.26827 0.287342 1.008286 1.801932 −0.11701 1.565179 1.036691 −0.180909
a2 −0.328316 −0.72297 −0.49775 −0.43852 −1.16212 −1.94698 −0.20067 −1.69733 −0.731073 −0.066281
a3 0.144697 0.998793 0.922111 0.926434 0.987298 0.99382 0.283081 0.961564 −0.003084 −7.126735
a4 −0.182119 – – – – – – – −0.069526 –
a5 0.208901 – – – – – – – −0.001675 –
a6 −0.200669 – – – – – – – 0.010505 –
a7 0.573537 – – – – – – – 0.60633 –
a8 −0.097774 – – – – – – – −0.429898 –
a9 0.043382 – – – – – – – −0.187142 –
a10 −0.205101 – – – – – – – 0.110585 –
a11 0.059729 – – – – – – – −0.192603 –
a12 −0.287825 – – – – – – – 0.102827 –

4. Results and Discussions
4.1. Validation of the Developed CO2 Solubility Correlations

The prediction performance of the developed correlations is validated against experi-
mentally measured data using statistical analysis and graphical plots (isotherms curves
and response surface plots). The different CO2 solubility systems studied namely are pure
water, mixed salts, and seawater with ions (Na+, K+, Ca2+, Mg2+, Cl−, HCO3

−, SO4
2−),

monovalent salt (KCl, NaCl, NaHCO3 and Na2SO4) and divalent salts (CaCl2 and MgCl2).
The NaCl and KCl salts were separated because, at the same concentration, the solubility
of CO2 is generally greater in KCl solutions than in NaCl solutions. This is a result of the
ionic interactions between the CO2 molecules and the ions in the solutions. In contrast
to Na+ ions in NaCl, the K+ ions in KCl have a larger ionic radius, which leads to a less
structured water network and reduced hydration. This less structured water network
enables a greater amount of CO2 to dissolve in the solution [102,212]. Conversely, Na+

ions exert a significant influence on the structure and hydration of the water molecules in
their vicinity, thereby diminishing the amount of space available for the dissolution of CO2
molecules [102,212,213].

4.1.1. CO2 + H2O Systems

The developed model shows strong agreement with experimental data across various
isotherms. The model captures the general trend of increasing solubility, as seen in Figure 5,
with rising pressure and saturation behavior at higher pressures, which is consistent with
observations in the Duan and Sun [52]. Figure 5 shows the comparison of the simulated
results and measured data on CO2 solubility in the pure water system. Overall, there is a
good agreement between the published experimental data and our computed data. As can
be seen, the solubility of CO2 rises gradually in a non–linear manner. A clear turning point
in the upward trend occurs when the phase with a high concentration of CO2 transitions
from the gaseous phase to the liquid or supercritical phase. The suggested model can
precisely quantify the impact of phase transition on the solubility of CO2. Nevertheless,
there is still some ambiguity, particularly at some temperatures such as 298 and 353 ◦K, due
to substantial inconsistencies across the available literature sources. The inconsistencies
mostly arose from variations in experimental principles, techniques, and measurement
precision [193,214]. Given that other scholars [50,52,141] have extensively examined the
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dependability of phase partitioning data, and doing a rigorous review of that topic is not
within the scope of this article.
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Figure 5. Predicted CO2 solubility versus experimentally measured data of CO2 solubility in water
at 288 K Refs. [83,84,86,94,96,129], 298 K Refs. [83,84,86,91,92,94,96,97,107,115,125,129,131], 313 K
Refs. [88,92–94,102,103,109,131], 323 K Refs. [80,84,85,87,88,91–94,97,102,105,107,113,115,125,129,131,
133,134,136], 353 K Refs. [87,91,93,109,112,114], 373 K Refs. [80,84,91,100,107,109,131,134,136], 423 K
Refs. [81,82,84,107,136], 473 K Refs. [80–82], and 523 K Refs. [80–82]. The experimental data are
adapted from references shown in the plots.

In Figure 6, the 3D response surface highlights the non–linear relationship between
temperature, pressure, and CO2 solubility. Notably, the surface plot also serves as a phase
diagram. The plot demonstrates the obvious effect of pressure on solubility, with solubility
increasing steeply at lower temperatures. This behavior aligns with the work of Duan
and Sun [52], who reported similar trends in CO2 solubility in pure water. There exists a
high CO2 solubility region around pressure greater than 5 MPa and temperature less than
300 ◦K. This high–value region corresponds to the liquid phase of the non–supercritical
region based on the temperature and pressure condition of the CO2 phase diagram. Wiebe
and Gaddy [79] conducted early experiments that demonstrated the inverse relationship
between temperature and CO2 solubility. This inverse relationship has been supported by
more recent studies, such as those by Sander [215], who reviewed gas solubility data and
confirmed that colder temperatures enhance, as seen in Figure 6, solubility due to reduced
kinetic energy and enhanced molecular interactions. The surface also suggests that at
higher temperatures, the effect of pressure on solubility diminishes slightly, a phenomenon
also observed in previous studies by Spycher et al. [49]. Carroll et al. [216] discussed how
the exothermic nature of dissolution results in greater solubility at lower temperatures.
This is because the lower kinetic energy of molecules in cold water allows for more CO2 to
be absorbed before temperature changes shift the equilibrium.
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4.1.2. CO2–Water–Salts

The predictive capability of the developed model to predict CO2 solubility in water
(CO2–H2O– salt systems) as a function of temperature, pressure, and ionic strength. The
developed model strongly agrees with experimental data across various isotherms pre-
sented in the following subsections. The subsections present the isotherm curves of mixed
salts (Na+, K+, Ca2+, Mg2+, Cl−, HCO3

−, SO4
2−), monovalent salt (KCl), monovalent salt

(NaCl), monovalent salts (NaCl, NaHCO3, and Na2SO4) and divalent salts (CaCl2 and
MgCl2) system respectively. The isotherm curves presented the predictions of the devel-
oped model against experimental data at minimum and maximum ionic strength values
for the various systems.

The developed models capture the general trend of increasing CO2 solubility with
rising pressure and the saturation behavior at higher pressures, consistent with observations
in the Duan et al. [53]. Similarly, the developed models follow the inverse relationship
between temperature and CO2 solubility. The three–dimensional (3D) surface response
was used to illustrate the impact of salinity variation on the solubility of CO2 in water. The
3D plots depicted in the sections are presented as a function of two factors. In contrast, the
third factor was kept at three distinct salinities corresponding to different ionic strength
levels. The amount of dissolved CO2 in water is depicted as a function of the aqueous
systems’ pressure (MPa) and temperature (K).
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Mixed Salts

Mixed salt systems are the commonly encountered salinity in geological engineering
applications. The CO2 solubility in the aqueous phase of mixed salt systems is analyzed
in Figures 7–10. The CO2 solubility is generally less than 1.5 mol/kg at low ionic strength
value, with a good agreement between published experimental and model data. Compared
to pressure, CO2 solubility is less sensitive to temperature in mixed salt systems. As
shown in Figure 7, CO2 solubility decreases from about 1.1 mol/kg to 0.8 mol/kg when the
temperature increases from 308.15 ◦K 328.15 ◦K at 10 MPa. The CO2 solubility increases
gradually as pressure increases, but the variation rate decreases. This same trend of an
inverse relationship between temperature and CO2 solubility was observed in Figures 8–10
with ionic strengths of 1.80, 2.743 and 6.0 mol/kg, respectively. Furthermore, Figure 11
illustrates the salting–out effect on a 3D response surface plot. This effect results from the
interaction between the CO2 molecules, water, and ions, responsible for decreased CO2
solubility in a saline system as salinity increases.
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Figure 10. Predicted CO2 solubility versus experimentally measured data of CO2 solubility in a
mixed salt solution with an ionic strength of 6.0 mol/kg. The experimental data are adopted from
Dos Santos al. [98]. The symbols represent experimental measurements at different temperatures:
circles for 303 K, squares for 323 K, diamonds for 373 K, and triangles for 423 K. The lines correspond
to the model predictions at each temperature: red for 303 K, green for 323 K, blue for 373 K, and
magenta for 423 K.

Finally, as seen in Figure 5 through to Figure 11, the developed model’s ability to
accurately predict CO2 solubility under various conditions validates its application for
sequestration and enhanced oil recovery (EOR) scenarios, where such solubility data is
crucial. The consistency of the model with empirical data supports its robustness and relia-
bility for simulating behavior in subsurface environments, which is essential for predicting
the performance injection in geological formations. For brevity, details of the CO2 solubility
validation results for the singles salts are presented in the Supplementary Material.

4.2. Validation of the Developed H2 Solubility Correlations

Here, we present the outcome of the developed correlations for H2 solubility in water
and saline systems composed of NaCl and seawater. The performance of developed
correlations is validated against experimentally measured data and presented as isotherms
curves and response surface plots.
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Figure 11. 3D response surfaces of CO2 solubility (Mixed salt) system at different salinities in terms
of ionic strength.

4.2.1. H2–H2O

Figure 12 shows the isotherms of H2 solubility at varying pressures. The model exhibits
excellent prediction performance of the experimentally measured data from low and
higher temperatures. The developed model shows strong agreement with experimentally
measured data across various isotherms. The model captures the typical relationship of
increasing H2 solubility with rising pressure and the saturation behavior at higher pressures,
as seen in Figure 12, which is consistent with observations from Zhu et al. [54]. Further,
the developed correlation is reliable for modeling the quadratic relationship between
temperature and H2 solubility. As observed in Figure 12, at lower temperatures (273.15 K),
H2 solubility is higher compared to medium temperatures (323.15 K and 373.15 K) at
equivalent pressures. However, at 323.15 K, the solubility is lower than at 373.15 K,
affirming the quadratic relationship between H2 solubility and temperature. Thus, H2
solubility initially decreases as the temperature rises from low to medium levels, then begins
to increase as the temperature shifts from medium to high values. According to Lopez–
Lazaro [44], the Henry characteristic curve peaks at a temperature of approximately 330 K,
which is about 57 ◦C. This means that hydrogen dissolution is lowest at this temperature.
This outcome generally explains how small molecule dissolves in pure water. Also, the
temperature at which the minimal solubility occurs depends on the presence and properties
of the solute. This pattern has also been noted in the research by Zhu et al. [54]
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Figure 12. Predicted H2 solubility versus experimentally measured data of H2 solubility in water at
273 K Refs. [154,180], 323 K Refs. [59,154,157,160,171,188], 353 K Ref. [154], 373 K Refs. [59,154,167,
171,178,188], and 423 K Refs. [157,167,178,188]. The experimental data are adapted from references
shown in the plots.

Figure 13 shows the 3D response surface that highlights the non–linear relationship
between temperature, pressure, and H2 solubility. Notably, the surface plot demonstrates
the effects of pressure and temperature on solubility beyond the physical condition of
available experimental data. There exists a high H2 solubility region around pressure
greater than 50 MPa and temperature less than 500 ◦K. This high–value region corresponds
to the fluid phase region based on the temperature and pressure condition of the H2
phase diagram. For instance, the 3D response surface plot reveals high H2 solubility
values up to 5 mol/kg at high temperature and pressure regions. The solubility results of
this high pressure and temperature region are essential to natural hydrogen production
processes. This region requires experimentally measured data to validate the prediction of
the developed models.
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4.2.2. H2 + H2O + Salts (NaCl)

The predictive capability of the developed model is to predict H2 solubility in water
(H2–H2O– salt systems) as a function of temperature, pressure, and ionic strength. The
developed model shows strong agreement with experimental data across various isotherms,
as shown in Figures 14–16. Figures 14–16 represents the isotherm curves of the salt (NaCl)
system at ionic strengths of 1.0, 2.0, and 5.0 mol/kg. The isotherm curves presented show
the predictions of the developed model against experimental data at the minimum and
maximum ionic strength values for the studied system. The developed models capture the
general trend of decreasing H2 solubility in aqueous solutions, which is consistent with
observations by Zhu et al. [54]. Similarly, the developed models also follow the inverse
relationship between temperature and H2 solubility.
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Figure 14. Predicted H2 solubility versus experimentally measured data of H2 solubility in a NaCl so-
lution with an ionic strength of 1.0 mol/kg. The experimental data are adapted from Chabab et al. [59]
and Chabab et al. [152]. The symbols represent experimental measurements: circles (323 K), squares
(348 K), and diamonds (373 K). The solid lines correspond to the model predictions for each tempera-
ture: red for 323 K, green for 348 K, and blue for 373 K.
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Figure 15. Predicted H2 solubility versus experimentally measured data of H2 solubility in a NaCl so-
lution with an ionic strength of 2.0 mol/kg. The experimental data are adapted from Chabab et al. [59].
The symbols represent experimental measurements: circles (298 K), squares (323 K), and diamonds
(373 K). The solid lines correspond to the model predictions for each temperature: red for 298 K,
green for 323 K, and blue for 373 K.
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The salting–out effect, which is the result of the interaction between the H2 molecules, 
water, and ions, is responsible for the decrease in H2 solubility in a saline system as the 
salinity increases. The majority of water molecules are surrounded by the cations/anions 
that dissociate from dissolved salts, and only a small number of water molecules are ca-
pable of interacting with H2 [54,59,152]. Consequently, it is hypothesized that the solubil-
ity of H2 is reduced due to the interaction between saline water and H2 during H2 during 
the injection and production processes. In the same vein, the reference [54], reported that 
the solubility of H2 increases linearly with pressure. The H2 molecules are compelled to 
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Figure 17 which describes the 3D surface response (phase diagram) was used to
illustrate the impact of salinity variation on the solubility of H2 in water. The plots depicted
in the sections are presented as a function of two varying factors, while the third factor was
maintained at three distinct salinity ionic strength levels. The amount of dissolved H2 in
water is depicted in Figure 17 as a function of the aqueous systems’ pressure (MPa) and
temperature (K). The salinity is maintained at a constant level by using these four ionic
strength values (1.0, 2.0, 3.0 and 4.0 mol/kg).

The salting–out effect, which is the result of the interaction between the H2 molecules,
water, and ions, is responsible for the decrease in H2 solubility in a saline system as the
salinity increases. The majority of water molecules are surrounded by the cations/anions
that dissociate from dissolved salts, and only a small number of water molecules are capable
of interacting with H2 [54,59,152]. Consequently, it is hypothesized that the solubility of
H2 is reduced due to the interaction between saline water and H2 during H2 during the
injection and production processes. In the same vein, the reference [54], reported that the
solubility of H2 increases linearly with pressure. The H2 molecules are compelled to sink
into the dense water phase and become adsorbed as a result of the increased pressure
exerted on them.

Furthermore, in Figure 12 through to Figure 17, the developed model’s ability to
accurately predict H2 solubility under various conditions validates its application for
underground hydrogen storage and natural hydrogen production scenarios, where such
H2 solubility data is critical. The consistency of the model with empirical data supports its
robustness and reliability for simulating behavior in subsurface environments, which is
essential for predicting the performance injection in geological formations.
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4.3. Salting–Out Effect

The salting–out effect, which is the result of the interaction between the CO2 molecules,
water, and ions, is responsible for the decrease in CO2 solubility in a saline system as the
salinity increases. The majority of water molecules are surrounded by the cations/anions
that dissociate from dissolved salts, and only a small number of water molecules are capable
of interacting with CO2 [49,53]. Consequently, it is hypothesized that the solubility of CO2
is reduced because of the interaction between saline water and CO2 during the injection
procedure. In the same vein, Duan et al. [53] reported that the solubility of CO2 increases
linearly with pressure. The CO2 molecules are compelled to sink into the dense water
phase and become adsorbed due to increased pressure exerted on them. This increase in
solubility continues until a pressure point is reached where the solubility value plateaus.

Kaur et al. [217] thermodynamically studied the solubility of CO2 in different brine
systems and reported the salting–out effect of different electrolyte solutions expressed
in terms of their ionic strength. Figure 18 shows the salting–out effect of various salts
performed in this study. The decreasing trend of CO2 solubility observed follows the order
NaHCO3 > KCl > CaCl2 ∼ MgCl2 > NaCl > Na2SO4, and it is consistent with those reported
by Zhao et al. [135] on the basis of ionic strength.
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Similarly for hydrogen gas solubility in water, Setschenow’s constant [18] or the

percentage reduction in solubility, SO = 100
(

mH2
water−mH2

brine

mH2
water

)
under the same thermody-

namic factors of temperature, pressure, and salinity [110] are usually used to determine the
salting–out (SO) impact on gas solubility for hydrogen. In this work, we employed the SO
method to quantify the SO impact on the solubility of H2 in NaCl solution.

Figure 19 shows the salting–out influence of H2 on the NaCl solution modeled in the
present study. The calculated SO values for H2 solubility in NaCl brine from this work are
shown in Table 5, and the comparison is made with three other published studies. Notably,
with the exception of Torín–Ollarves and Trusler’s [157] findings, the results of this study,
and two previous research studies [59,152] demonstrate comparable salting–out behavior
for H2. Despite being carried out at low pressures (because pressure only little influences
the salting–out effect), the results are consistent with previous work on other gases using
Setschenow’s constant [218]. Though solubility is affected by a number of parameters [219],
the variance in salting–out behavior is most likely caused by molecule size variations,
a trend seen in noble gases (Ballentine et al. [18]). Thus, molecular simulations could
offer valuable insight into the distinctive behavior of hydrogen in aqueous solutions in
comparison to other gases.
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Table 5. The reduction in solubility due to H2 gas in NaCl brine (Salting–out effect).

NaCl Molality (mol/kg)

SO (%) at 323.15 K 1 4

Chabab et al. [59] 24.28 60.09
Torín–Ollarves and Trusler r [157] 13.10 42.98
Chabab et al. [152] 16.23 50.70
This study 17.60 53.67

4.4. Evaluation of Developed Solubility Models

The following statistical evaluation metrics were used to assess the performance of
the developed models: coefficient of correlation (R2), average percent deviation (APE), and
average absolute percent deviation (AAPE). The mathematical expressions for these criteria
are provided in Equations (15)–(17).

R2 = 1 −
∑n

i=0

(
Xi, exp − Xi, pred

)2

∑n
i=0
(
Xi, exp − X

)2 (15)

APE =
1
n

n

∑
i=0

(
Xi, exp − Xi, pred

Xi, exp
∗ 100

)
(16)
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AAPE =
1
n

n

∑
i=0

∣∣∣∣∣Xi, exp − Xi, pred

Xi, exp
∗ 100

∣∣∣∣∣ (17)

In these equations, Xi,exp represent experimentally measured solubility data, Xi,pred

refers to the solubility values predicted by the model and X, denotes the average value
of the experimentally obtained solubility dataset. The predictability of the developed
correlations was evaluated using statistical analyses. The evaluation of the developed
empirical correlations for CO2 and H2 solubilities is provided in Table 6.

Table 6. Summary of the performance of developed empirical correlations against CO2 and H2

solubility experimental data.

Correlation Systems
Parameter

Ranges
Correlations Performance Metrics

No. of Data
Points R2 APE (%) AAPE (%)

CO2–Water — 926 0.993 2.34 7.62

CO2–Water–
Salt

Mixed Salts (K+, Na+, Ca2+, Mg2+) 391 0.971 −0.7585 8.1914
KCl 260 0.958 −4.89 12.04

NaCl 766 0.983 −3.87 10.01
Na2SO4 226 0.945 0.46 9.13

NaHCO3 75 0.992 −5.15 8.52
CaCl2 355 0.989 1.81 6.91
MgCl2 223 0.988 −0.49 6.81

H2–Water — 360 0.999 −0.90 4.03

H2–Water– Salt NaCl 78 0.965 −4.94 9.91

Table 6 shows the R2, APE, and AAPE metrics for each developed CO2 solubility
correlation. Overall, the correlation for the CO2–H2O system is the most reliable, closely
followed by the correlation for the CO2–H2O–divalent salt system. However, during the
development of all CO2 correlations exhibited good prediction results (R2 > 0.945), which
means that the proposed models can explain 94.5% of the variability in solubility of CO2
(mol/kg). The correlation for the CO2–H2O system presents the performance compared
with experimental data (R2 = 0.993 and AAPE = 7.62). The relative closeness of the R2 to 1
and low of the AAPE value show that predictions of the developed correlations are closely
fitted to the true measured values. Therefore, it is an indication that the mathematical
models are good enough to describe the CO2 experimental measured data.

Similarly, for H2 solubility data, Table 6 shows the statistical evaluation metrics for
each developed H2 solubility correlation. Overall, the correlation for the H2–H2O system is
the most reliable, closely followed by the correlation for the H2–H2O–salts (NaCl) system.
However, the overall performance of the correlations during the development of the H2
correlations achieved good prediction results (R2 > 0.965). which means that the proposed
models can explain 96.4% of the variability in solubility of H2 (mol/kg). The H2–H2O
system model performs best (R2 = 0.999 and AAPE = 4.03). The relative closeness of the R2

to 1 and low of the AAPE value show that the predictions of the developed correlations are
closely fitted to the experimental values. Therefore, it is an indication that the mathematical
models are good enough to describe the H2 experimental measured data.

5. Conclusions and Recommendations

This paper presents current progress of various techniques for predicting CO2 solu-
bility and H2 solubility and experimental databank of CO2 and H2 solubility data. The
compiled data was used to develop novel simple, non–iterative and reliable models for
predicting the solubility factor (mol/kg) in CO2 and H2 in pure water and different salt
systems. The developed models are a function of pressure, temperature, and salinity in
terms of ionic strength. The development and validation of developed CO2 solubility
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and H2 solubility models were conducted using the collected experimental databank from
previous studies. The major findings can be summarized as follows:

1. Available literature data show that there is sufficient data to evaluate CO2 solubility
in low to medium–pressure regions. However, for CO2 storage applications in high–
pressure and high–temperature regions such as those in deep saline aquifers or gas
reservoirs, there is need for more experimental data, especially for mixed salt systems
that represent real formation brines.

2. For the hydrogen system, there is significant lack of experimental data at higher
temperatures (above 400 K) and higher pressures (above 40 MPa). To date, experi-
mental data for mixed salt systems that represent natural formation brine is lacking.
These high–temperature and high–pressure region data are critical for understanding
H2 solubility under extreme conditions like those encountered in natural hydrogen
production. The limited data in these regions suggests that more experimental studies
are needed to understand H2 solubility under such conditions.

3. Reliable and quick empirical models have been developed to accurately predict the
solubility of CO in pure water and various salt systems. The pressure range is between
0.1 and 71 MPa, and the temperature range is between 273.15 and 523.15 K. The CO2
solubility model performs excellently, with an absolute mean error of 7.26 and 8.8%
for the pure water and salt systems, respectively, when compared with experimentally
measured data.

4. Furthermore, the developed simple models can accurately predict the solubility of
H2 in pure water and NaCl salt systems. The pressure range is between 0.1 and
101.3 MPa, and the temperature range is between 273.15 and 636.1 K. Comparison
with experimental data shows that the H2 solubility model performs excellently, with
an absolute mean error of 4.03 and 9.1% for the pure water and NaCl salt systems,
respectively.

5. The salting–out characteristics of various salt systems on CO2 solubility was accurately
captured. Decreasing trend of CO2 solubility observed based on ionic strength follows
the order NaHCO3 > KCl > CaCl2 ∼ MgCl2 > NaCl > Na2SO4, and it is consistent
with those reported by Zhao et al. [135]. Similarly, the SO characteristics of H2 gas in
NaCl brine are consistent with previous studies by Chabab et al. [152].

It is worth noting that correlations presented here update the CO2 and H2 solubility
equations presented in the literature and could have a practical application in estimating
CO2 and H2 solubility in water and saline systems for CO2–EOR, geologic carbon storage,
underground hydrogen storage, and natural hydrogen production processes. However,
they may have a limitation: Firstly, these correlations were developed with experimentally
measured CO2 and H2 solubility data with limited parameter ranges; therefore, these
equations can only be used to estimate the CO2 and H2 solubility with physical condition
ranges presented in Tables 1 and 2. The application of the developed correlations to calculate
CO2 and H2 solubility with physical conditions outside these ranges could be associated
with the risk of estimations that might be less accurate. Secondly, more experimental data
is required to complement the lack of sufficient data, especially the H2 solubility data at
high temperatures, to understand the solubility behavior that occurs in natural hydrogen
production. Finally, a comparative study of the performance of equations of state (EoS),
empirical correlations, molecular dynamics simulations, and machine learning methods in
predicting CO2 and H2 solubility is recommended for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en17225723/s1. Figure S1. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 1 mol/kg (KCl solution). The
experimental data are adopted from Kiepe et al. [109]; Figure S2. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 1.942 mol/kg (KCl solution).
The experimental data are adopted from Kamps et al. [108]; Figure S3. Predicted CO2 solubility
versus experimentally measured data of CO2 solubility with ionic strength of 2.50 mol/kg (KCl

https://www.mdpi.com/article/10.3390/en17225723/s1
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solution). The experimental data are adopted from Hou et al. [46] and Kiepe et al. [109]; Figure S4.
Predicted CO2 solubility versus experimentally measured data of CO2 solubility with ionic strength of
4.0 mol/kg (KCl solution). The experimental data are adopted from Hou et al. [46], Kiepe et al. [109],
Koschel et al. [110] and Zhao et al. [135]; Figure S5. 3D response surfaces of CO2 solubility (KCl)
system at different salinities in terms of ionic strength; Figure S6. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 1 mol/kg (NaCl solution).
The experimental data are adopted from Carvalho et al. [93], Guo et al. [101], Koschel et al. [110],
Messabeb et al. [113], Yan et al. [134] and Zhao et al. [136]; Figure S7. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 6 mol/kg (NaCl solution). The
experimental data are adopted from Dos Santos et al., Messabeb et al. [113] and Zhao et al. [136];
Figure S8. 3D response surfaces of CO2 solubility (NaCl salt) system at different salinities in terms
of ionic strength; Figure S9. Predicted CO2 solubility versus experimentally measured data of CO2
solubility with ionic strength of 0.747 mol/kg (Na2SO4 solution). The experimental data are adopted
from Bermejo et al. [90]; Figure S10. Predicted CO2 solubility versus experimentally measured
data of CO2 solubility with ionic strength of 3.0 mol/kg (Na2SO4 solution). The experimental data
are adopted from Bermejo et al. [90], Rumpf and Maurer [122] and Zhao et al. [135]; Figure S11.
3D response surfaces of CO2 solubility (Na2SO4) system at different salinities in terms of ionic
strength; Figure S 12. Predicted CO2 solubility versus experimentally measured data of CO2 solubility
with ionic strength of 0.05 mol/kg (NaHCO3 solution). The experimental data are adapted from
Han et al. [102]; Figure S13. Predicted CO2 solubility versus experimentally measured data of
CO2 solubility with ionic strength of 0.5 mol/kg (NaHCO3 solution). The experimental data are
adapted from Han et al. [102]; Figure S14. Predicted CO2 solubility versus experimentally measured
data of CO2 solubility with ionic strength of 1 mol/kg (NaHCO3 solution). The experimental data
are adapted from Han et al. [102]; Figure S15. 3D response surfaces of CO2 solubility (NaHCO3)
system at different salinities in terms of ionic strength; Figure S16. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 3.04 mol/kg (CaCl2 solution).
The experimental data are adapted from Prutton and Savage [119]; Figure S17. Predicted CO2
solubility versus experimentally measured data of CO2 solubility with ionic strength of 11.7 mol/kg
(CaCl2 solution). The experimental data are adapted from Prutton and Savage [119]; Figure S18. 3D
response surfaces of CO2 solubility (CaCl2) system at different salinities in terms of ionic strength;
Figure S19. Predicted CO2 solubility versus experimentally measured data of CO2 solubility with
ionic strength of 0.48 mol/kg (MgCl2 solution). The experimental data are adapted from Bo Liu
et al. [91]; Figure S20. Predicted CO2 solubility versus experimentally measured data of CO2 solubility
with ionic strength of 3.0 mol/kg (MgCl2 solution). The experimental data are adapted from Zhao
et al. [135];, Koschel et al. [110] and Dos Santos et al. [98]; Figure S21. Predicted CO2 solubility versus
experimentally measured data of CO2 solubility with ionic strength of 15.0 mol/kg (MgCl2 solution).
The experimental data are adapted from Tong et al. [128]; Figure S22. 3D response surfaces of CO2
solubility (MgCl2) system at different salinities in terms of ionic strength.
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