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Abstract: To address the issue of accommodating large-scale wind power integration into the grid,
a unit commitment model for power systems based on an improved binary particle swarm opti-
mization algorithm is proposed, considering frequency constraints and demand response (DR). First,
incentive-based DR and price-based DR are introduced to enhance the flexibility of the demand
side. To ensure the system can provide frequency support, the unit commitment model incorporates
constraints such as the rate of change of frequency, frequency nadir, steady-state frequency deviation,
and fast frequency response. Next, for the unit commitment planning problem, the binary particle
swarm optimization algorithm is employed to solve the mixed nonlinear programming model of unit
commitment, thus obtaining the minimum operating cost. The results show that after considering
DR, the load becomes smoother compared to the scenario without DR participation, the overall level
of load power is lower, and the frequency meets the safety constraint requirements. The results
indicate that a comparative analysis of unit commitment in power systems under different scenarios
verifies that DR can promote rational allocation of electricity load by users, thereby improving the
operational flexibility and economic efficiency of the power system. In addition, the frequency varia-
tion considering frequency safety constraints has also been significantly improved. The improved
binary particle swarm optimization algorithm has promising application prospects in solving the
accommodation problem brought by large-scale wind power integration.

Keywords: unit commitment; demand-side response; frequency security constraints; operational
flexibility

1. Introduction

Under the context of carbon peaking and carbon neutrality goals and the accelerated
construction of a secure and efficient new energy system, China’s renewable energy industry
has been developing rapidly [1]. In the process of building a new power system, the output
of renewable energy sources is continuously rising [2]. However, the volatility of new
energy increases the uncontrollability on the generation side and continuously reduces
system inertia, leading to a higher likelihood of grid frequency exceeding allowable limits
during disturbances [3]. As the share of thermal power units in the power system decreases,
system inertia reduces, which in turn weakens the grid’s frequency regulation capability,
causing frequency drops and potentially leading to low-frequency load shedding or even
system instability [4]. Therefore, in the operation of power systems, it is crucial to fully
consider uncertainties and prioritize frequency security to avoid large-scale blackouts.
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To address uncertainties on the load side, demand-side response (DSR) is gradually
being promoted. The implementation of DSR can effectively enhance the security and econ-
omy of grid operation, preventing a decline in the efficiency of the electricity market [5,6].
Accurately, quickly, and efficiently tapping into the demand-side response potential is
a key measure to alleviate supply pressure during peak periods and ensure the safe op-
eration of the grid. At present, DSR has already been applied in electricity markets [7].
The specific forms of DSR include time-of-use pricing, which encourages users to adjust
their electricity consumption periods autonomously [8], known as price-based demand
response (PDR), or providing economic compensation to reduce electricity loads during
specific periods [9], known as incentive-based demand response (IDR) [10]. There are
two main types of research on incentive-based demand response: one focuses on decision-
making optimization with bidding as the objective, and the other optimizes the control
strategies of user electricity behavior [11]. Reference [12] proposes a standby scheduling
model including demand response (DR), which improves the flexibility of system operation
through DR. In reference [13], a multi-period electricity price response model is established,
and the hybrid model is solved by the improved sparrow algorithm. Reference [14] puts
forward the optimal scheduling based on DR, which improves the system’s ability to absorb
new energy. Reference [15] studies the respective applicable scenarios of PDR and IDR,
which can improve the operational flexibility. It can be seen that the research on DR’s
participation in power grid dispatching has made remarkable progress, but the impact of
DR on power system operation risk and economy has not been quantitatively analyzed in
the above-mentioned existing reference research. How to realize the optimal operation of
various units in the power system, improve the absorptive capacity of renewable energy in
the power system, and realize the power balance of large-scale power grids has become an
urgent problem to be solved.

The frequency of the power system is a crucial parameter in grid operation. When
there is a power shortage in the system, the frequency drops, potentially triggering low-
frequency load shedding in generators, which may lead to blackouts. Frequency security
can be measured by frequency indicators [16]. The rate of change of frequency (RoCoF),
frequency nadir, steady-state frequency, and fast frequency response (FFR) can effectively
reflect whether the frequency of the power system is in a safe and stable state. Currently,
the existing wind power grid-connected units mainly focus on power distribution between
thermal power and wind power units to maintain grid stability [17]. The frequency regula-
tion task of the power system is still undertaken by thermal power units. Reference [18]
analyzes the active reserve treatment and distribution when wind turbines are connected
to the system. Reference [19] deduces the maximum constraint of frequency drop for the
frequency response model and adds it to the unit commitment to solve it, which effectively
improves the economy and stability of the system. Reference [20] adds the maximum
frequency deviation constraint to promote thermal power units to participate in primary
frequency regulation to ensure the frequency safety of the system. Reference [21] deduces
the formula of steady-state frequency deviation of the system according to droop character-
istics, and the fan acts as a load and does not participate in primary frequency regulation.
Reference [22] puts forward the task of reserving reserve for thermal power units to provide
primary frequency response (PFR) and does not involve the joint participation of wind
turbines and thermal power units in PFR.

This paper proposes a unit commitment model for power systems that considers
frequency constraints and DR, using an improved binary particle swarm optimization
algorithm. First, two types of demand-side response mechanisms, incentive-based DSR and
price-based DSR, are proposed. On this basis, constraints such as RoCoF, frequency nadir,
steady-state frequency, and FFR are added to ensure that the system can support primary
frequency regulation. Next, for solving the unit commitment problem, the improved binary
particle swarm optimization algorithm is used to solve the mixed nonlinear programming
model of unit commitment to obtain the optimal economic cost of the model. Finally, by
comparing unit commitment in power systems under different scenarios, it is verified that
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the implementation of demand-side response can encourage users to allocate their electricity
loads more rationally, thereby enhancing the operational flexibility and economic efficiency
of the power system. Additionally, frequency variations are significantly improved when
frequency security constraints are considered.

2. Consideration of Demand Response and Frequency Security Constraint
Mathematical Model
2.1. Demand-Side Response

As the difference between peak and off-peak load increases, the pressure on the power
supply also rises. By implementing DSR, grid operating costs can be reduced, and system
operational risks can be mitigated [9]. According to the different methods of demand-side
response, loads can be categorized into fixed loads, price-based transferable loads, and
incentive-based curtailable loads [10].

DR strategies not only help improve the economic benefits of the grid but also enhance
the flexibility and sustainability of the power system. Through scientific and reasonable
load classification and management, more efficient allocation of power resources can be
achieved, ensuring stable operation and a reliable power supply for the power system.

2.1.1. Incentive-Based DR

IDR can be classified into incentive-based curtailable loads depending on the incentives.
This paper studies incentive-based transferable loads, with the formula as in [23]:

CIDR =
NB

∑
b = 1

NT

∑
t = 1

(CIDR
b,t LIDR

b,t + Cs.IDR
b,t ∆LIDR

b,t ) (1)

where CIDR represents the response cost of IDR; LIDR
b,t is the curtailable load capacity re-

served by users for the power operator; CIDR
b,t is the unit capacity cost of the curtailable load;

∆LIDR
b,t is the actual interrupted load power after the power operator issues an interruption

command; Cs.IDR
b,t is the cost of the actual interrupted load.

2.1.2. Price-Based DR

Price elasticity of demand measures the degree to which consumers adjust their
demand for a good or service when its price changes. Specifically, if consumers significantly
adjust their demand in response to price changes, the price elasticity of that good or service
is considered high; conversely, if the change in demand is small, the price elasticity is
considered low. In this paper, PDR focuses on transferable loads based on electricity pricing.
The power load after PDR implementation is represented by the following equations [24]:

L = L0 + ∆LPDR (2)

∆LPDR
NOR = E × ∆PNOR (3)

L =
[
Lb,1, Lb,2, · · · · · · , Lb,NT

]T (4)

L0 = [L0
b,1, L0

b,2, · · · · · · , L0
b,NT

]
T

(5)

∆LPDR = [∆LPDR
b,1 , ∆LPDR

b,2 , · · · · · · , ∆LPDR
b,NT

]
T

(6)

∆LPDR
NOR =

[
∆LPDR

b,1

L0
b,1

,
∆LPDR

b,2

L0
b,2

, · · · · · · ,
∆LPDR

b,NT

L0
b,NT

]T

(7)

∆pNOR =

∆pb,1

p0
b,1

,
∆pb,2

p0
b,2

, · · · · · · ,
∆pb,NT

p0
b,NT

T

(8)
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Emn =
∆LPDR

b,m

L0
b,m

/
∆pb,n

P0
b,n

(9)

CPDR = Cz,tLz,t + Cs
z,t∆Lz,t (10)

where ∆LPDR represents the matrix of price changes and load changes resulting from PDR
implementation; E is the price elasticity matrix, with a size of NT × NT; Lz,t

z is the load
transfer amount; Cz,t is the unit capacity cost of the load transfer; ∆Lz,t is the transferred
load power; CS

z,t is the cost of the load transfer.

2.2. Frequency Regulation Constraints for Wind and Thermal Units

During the dynamic changes in frequency, four key indicators are the rate of change of
frequency, the frequency nadir, the steady-state frequency, and the fast frequency response.
When the system’s rate of change of frequency and fast frequency response exceed the
specified limits, it exacerbates the frequency decline. If the frequency nadir and steady-
state frequency also exceed the limits, large-scale blackouts may occur. Therefore, in unit
commitment, it is necessary to consider constraints such as the rate of change of frequency,
frequency nadir, steady-state frequency, and fast frequency response. By incorporating these
frequency constraints, the unit startup/shutdown and power allocation can be optimized
to maintain stable system operation under various load conditions. This also enhances the
frequency stability and reliability of the system. These measures allow the power system to
maintain stability more effectively during frequency fluctuations, ensuring safe operation.

Since both thermal and wind units provide PFR, H* is given by [25]

H∗=

N
∑

i = 1
HiPi,maxui,t +

W
∑

w = 1
HwWf,t

Pi,maxui,t + Wf,t
(11)

where Hi and Hw are the time constants for thermal unit i and wind unit w, respectively; N
is the number of thermal units; W is the number of wind turbines; ui,t is the on/off status
of unit i at time t; and Wf,t is the predicted wind power.

The RoCoF constraint is given

W

∑
w = 1

N

∑
i = 1

(ui,t HiPi,max + HwWf,t) ⩾

∣∣∣∣∆PL f0

2Fmax

∣∣∣∣ (12)

where ∆PL is the load disturbance; Fmax is the maximum allowed rate of change of fre-
quency; and f 0 is the nominal grid frequency.

The frequency nadir constraint is given as in [25], as

∆PL

kD
+

2H∗∆Pa

Tdk2
D

ln
2H∗∆Pa

2H∗∆Pa + Td(kD∆PL − k2
D∆ fDB)

⩽ ∆ fmaxs (13)

where ∆Pa is the total incremental power; kD is the damping coefficient; Td is the cut-off
time; ∆f DB is the cut-off frequency; and ∆f maxs is the maximum allowed frequency drop.

The steady-state frequency constraint is

∆Pa ⩾ ∆PL − kD∆ fmax,ss (14)

where ∆f max,ss is the maximum allowed steady-state frequency variation.
The incremental power of the FFR constraint is

0 ⩽ ∆Pai,t ⩽ ∆Pai,max (15)

where ∆Pai,t is the incremental power of FFR, and ∆Pai,max is the maximum incremental
power of FFR.
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3. Unit Commitment Model Considering DR and Dynamic Frequency Constraints

The unit commitment optimization model involving wind power is mainly composed
of objective function and constraint conditions. In order to ensure that wind power can
participate in frequency modulation, it is necessary to increase the constraint of wind-
fire joint participation in frequency modulation, so as to construct a unit commitment
optimization model including wind turbines participating in frequency modulation.

3.1. Objective Function

With the continuous improvement of wind power permeability, in order to ensure the
stability of the power grid, this model aims at minimizing the power generation operation
cost of the system and constructs a unit commitment optimization model. The improved
binary particle swarm optimization algorithm is used to solve the unit commitment problem
to achieve the optimization goal, which can ensure the safe operation of the power grid
and maximize the economy of wind power.

In the recent stage, the deterministic scheduling and the predicted value of new energy
are used to minimize the operation cost and ensure that the scheme meets the requirements
of frequency stability. The objective function of the model is as follows [26].

minC =
NG
∑

i = 1

NT
∑

t = 1
( f (Pi,t) + Copen

i ui,t + Cclose
i (1 − ui,t)+

CRRi,t) +
NT
∑

t = 1
(CIDR

b,t LIDR
b,t + Cs.IDR

b,t ∆LIDR
b,t

+Cz,tLz,t + Cs
z,t∆Lz,t) +

NW
∑

w = 1

NT
∑

t = 1
CcurVw,t

(16)

where NG, NW, and NT represent the number of thermal units, wind farms, and time
periods, respectively; f (Pi,t) is the fuel cost function for unit i; Pi,t is the output of unit i at
time t; ui,t is the on/off status of unit i at time t (where ui,t = 1 indicates the unit is on and
ui,t = 0 indicates it is off); Copen

i and Cclose
i are the startup and shutdown costs for unit i; Ri,t

is the reserve capacity of thermal unit i; CR is the reserve cost; Ccur is the wind curtailment
penalty coefficient; and Vw,t is the curtailed wind power at time t.

3.1.1. Unit Operating Costs

Equation (17) provides the operating cost of the unit combination.

f (Pi,t) = α1,iui,t + α2,iPi,t + α3,i(Pi,t)
2 (17)

where α1,i, α2,i, and α3,i are the parameters for each term.

3.1.2. Unit Startup/Shutdown Constraints

Equation (18) provides the constraints for starting and stopping the unit combination.
t+Ton,i−1

∑
k = t

ui,k ⩾ Ton,i(ui,t − ui,t−1)

t+Toff,i−1
∑

k = t
(1 − ui,k) ⩾ Toff,i(ui,t−1 − ui,t)

(18)

where Ton,i and Toff,i are the minimum startup and shutdown times for unit i.

3.1.3. Unit Ramp Rate Constraints

Equation (19) provides the climbing constraint for the unit combination.{
Pi,t − Pi,t−1 ⩽ URi
Pi,t − Pi,t−1 ⩾ −DRi

(19)
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where URi and DRi are the maximum and minimum ramp rates of unit i, respectively.

3.1.4. Wind Power Integration Constraints

Equation (20) provides the constraint on wind power output.

0 ⩽ Pw,t ⩽ Aw,t (20)

where Pw,t is the grid-connected power at time t, and Aw,t is the predicted power at time t.

3.1.5. Power Balance Constraints

Equation (21) provides the power balance constraint.

∑
i∈Gb

Pi,t + ∑
w∈Wb

Pw,t = Lb,t + ∆LPDR
b,t − ∆LIDR

b,t (21)

where Lb,t represents the load power at time t; ∆LPDR
b,t is the load change at time t; and

∆LIDR
b,t is the curtailable demand response power.

3.1.6. DR Constraints

Equations (22)–(26) provide DR constraints.

0 ⩽ ∆LIDR
b,t ⩽ LIDR

b,t (22)

LIDR
b,t ⩽ LIDR,max

b,t (23)

∆LPDR = E′∆p (24)

0 ⩽ ∆LPDR
b,t ⩽ LPDR,max

b,t (25)

0 ⩽ ∆pb,t ⩽ ∆pmax
b,t (26)

where LIDR,max
b,t and LPDR,max

b,t are the upper limits of load power for the two types of demand
response, respectively; ∆pb,t is the price change at time t; and ∆pmax

b,t is the upper limit of
the price change at time t.

3.2. PLBPSO Algorithm

With the development of particle swarm optimization (PSO) [27], a binary particle
swarm optimization (BPSO) algorithm has been derived for solving discrete optimization
problems. BPSO is specifically designed for discrete optimization, showing greater adapt-
ability. At the same time, the priority list (PL) method sorts schedulable units in the system
based on their economic characteristics and adjusts the unit’s dispatch according to the
system’s load conditions.

This paper first obtains an initial unit commitment plan, then generates an optimiza-
tion window. The BPSO algorithm is applied within the optimization window for further
solving and optimization. The optimization window is shown in Figure 1.

The improved algorithm first determines the base load units. Next, startup and
shutdown adjustments are made to meet reserve operation requirements. After this process,
the startup and shutdown plans for all periods satisfy the minimum startup/shutdown
time constraints.
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3.3. Load Distribution Strategy

Figure 2 shows the flowchart of the economic load distribution problem. In addressing
this issue, the equal incremental rate method based on the Lagrange multiplier method
is used, combined with the bisection method for solving. ∆P represents the difference
between the total output of the running units and the load.
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Figure 3 shows the iterative steps of the PLBPSO algorithm. The process begins by
setting the initial value of λ, with the left boundary set as λmin and the right boundary set
as λmax. The initial value of λ can be set to λmin or λmax; next, by calculating the power
difference ∆P, the sign of ∆P is checked. If ∆P is greater than 0, the right boundary value
λright is updated to the current λ; if ∆P is less than or equal to 0, the left boundary value
λleft is updated to the current λ. Then, the new λ is set as the midpoint of the left and right
boundaries, λ = (λleft + λright)/2. Based on the new λ, the unit output is calculated, and the
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result is checked to see if it meets the set precision requirements. If the precision is met, the
process ends; if not, the loop continues until the precision requirement is satisfied.
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4. Case Study

In this paper, a case study is conducted on unit commitment in power systems under
different scenarios. The programming was performed on the MATLAB R2022b platform,
and the model was solved using an improved binary particle swarm optimization algorithm.
The unit commitment in the power system is divided into two scenarios: Scenario 1, where
unit commitment considers frequency security constraints but does not consider DSR; and
Scenario 2, where unit commitment considers both frequency security constraints and DSR.

Figure 4 shows the wind power output and its predicted load over a day. The reference
frequency is 50 Hz, the minimum frequency limit is 49.2 Hz, and the RoCoF limit is 0.5 Hz/s.

Based on (15), with the goal of minimizing comprehensive costs, considering the power
regulation constraints of curtailable loads and transferable loads as well as system frequency
constraints, the daily power curve and unit generation plan are obtained. The effectiveness
of the proposed strategy is verified by comparing the results of load participation in DSR
and the unit day-ahead scheduling plan.
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Figure 4. Wind and load forecasting power.

Figure 5 shows the power curves for curtailable loads and transferable loads partici-
pating in DSR. After participating in DSR, due to the influence of electricity prices, the final
load curve during peak periods is lower than the initial load curve, and the changes in the
load curve after DSR implementation have a positive impact on the stability and economy
of the power system. The smoother load curve reduces the operational risk of the grid,
decreases the need for frequent startup and shutdown of peaking plants, and thus lowers
operating and maintenance costs. Moreover, the effective implementation of DSR also
enhances user participation in grid regulation, laying a foundation for the development of
future smart grids, demonstrating the effectiveness of DSR implementation.
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Figure 5. Load curve.

Figure 6 presents the time-of-use electricity price for a typical day. Through the
dynamic adjustment mechanism of time-of-use pricing, the power system achieves a
reasonable distribution of the load, significantly reducing peak loads and filling in valley
loads, making the load curve smoother and system operation more stable. Additionally,
this price adjustment mechanism improves the efficiency of the electricity market, and
users responding to price signals enhance overall economic benefits.

Figure 7 presents the transferable load power after DSR implementation. Transferable
load power is guided by time-of-use pricing and obtained based on power transfer con-
straints and transfer volume constraints over 24 h. From Figure 7, it can be observed that
during peak periods, transferable power is around 150 MW, effectively addressing the load
demand during peak periods. During off-peak periods, transferable load power can be
dispatched to meet the remaining load demand, indicating that by appropriately increasing
the power consumption of transferable loads during periods of low power demand, not
only can equipment utilization be improved, but power resource waste can also be avoided,
further balancing the grid load curve and fully demonstrating the importance of DSR in
optimizing power system operation.
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Figure 7. Shiftable load power curve.

Figure 8 shows the curtailable load power reflected by the first, second, and third
levels of load after DSR implementation. Curtailable load power is calculated through
constraints on the interruption of various load levels and the continuity of curtailable loads.
Guided by DSR, the phenomenon of large load fluctuations can be effectively mitigated.
From Figure 8, it can be seen that during peak periods, the curtailable load power for the
first, second, and third levels is at its peak; during off-peak periods, such as from midnight
to 6 AM, the first, second, and third levels do not need to interrupt their loads. Through
the implementation of the DSR strategy and proper management of curtailable loads, non-
critical loads can be effectively interrupted during peak periods, significantly reducing
power demand during these times, preventing grid overload and power shortages. During
off-peak periods, normal load operation is maintained, improving the efficiency of power
resource utilization and preventing power waste.
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Figure 9 shows the comparison of the iterative performance between the BLBPSO
algorithm used in this paper and the traditional PSO algorithm. The BLBPSO algorithm
accelerates the exploration speed of particles in the solution space and enhances the global
search capability by introducing boundary constraints and improved adaptive strategies.
From the figure, it can be seen that compared to traditional particle swarm optimization
algorithms, BLBPSO improves convergence speed and search efficiency while ensuring
that the system achieves optimality.
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Figures 10 and 11 present the unit commitment outputs under different scenarios. By
superimposing transferable and curtailable loads, the load curve after DSR is obtained, and
then, through unit commitment, the day-ahead scheduling of load power before and after
DSR participation is conducted, resulting in the unit commitment output under different
scenarios. From Figures 10 and 11, it can be seen that the load in Scenario 2 is smoother and
lower than in Scenario 1. After DSR implementation, the unit commitment of the power
system effectively enhances system operational flexibility, reduces operational risks, and
enables the system to respond more effectively to load changes, quickly adjusting unit
output to maintain the supply–demand balance. This flexibility not only improves the
system’s ability to cope with sudden load changes but also enhances system stability and
reliability under different operating conditions.
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Table 1 presents the frequency change results under different scenarios. From the table,
it can be seen that under different scenarios with frequency security constraints considered,
the frequency meets the safety constraint requirements. The four indicators of the system’s
rate of change of frequency, frequency nadir, steady-state frequency, and fast response
frequency are significantly improved, enhancing system stability.

Table 1. Frequency changes in different scenarios.

Time/h Scena. 1 Scena. 2 Time/h Scena. 1 Scena. 2

1 50.000 50.000 13 49.973 49.973

2 49.934 49.934 14 49.973 49.958

3 49.921 49.921 15 49.972 49.957

4 49.921 49.921 16 49.970 49.956

5 49.914 49.927 17 49.971 49.956

6 49.914 49.927 18 49.955 49.970

7 49.925 49.913 19 49.935 49.949

8 49.933 49.933 20 49.931 49.931

9 49.954 49.94 21 49.939 49.925

10 49.949 49.963 22 49.929 49.993

11 49.969 49.970 23 49.930 49.930

12 49.957 49.972 24 49.933 49.934

Table 2 presents the costs required for unit commitment under different scenarios. It
shows that the total cost in Scenario 2 is reduced by CNY 83,600 compared to Scenario 1,
a 1.4% decrease. The thermal unit output cost is reduced by CNY 608,500 yuan, a 13.9%
decrease, and the reserve cost of thermal units is reduced by CNY 135,100, a 14.6% decrease.
The reason is that in Scenario 2, the load curve decreases after DSR, leading to a reduction
in the various costs of thermal units. Although the costs of curtailable and transferable
loads increase, the total cost still shows a decreasing trend. The results indicate that DSR
measures have a significant effect on optimizing load distribution and reducing the total
cost of the power system. Through reasonable load management, the power system can
not only achieve economic operation but also improve operational efficiency and stability.
The application of DSR strategies allows the power system to respond more flexibly to load
changes, reducing the pressure of peak loads on the system, optimizing resource allocation,
and improving overall economic efficiency.
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Table 2. Cost results under different scenarios.

Scena. 1 Scena. 2

Output cost of thermal power unit/CNY 10,000 436.25 375.40

Standby cost of thermal power unit/CNY 10,000 92.59 79.08

Penalty cost for abandoning wind/CNY 10,000 64.71 59.73

Curtailable load cost/CNY 10,000 0 61.61

Transferable load cost/CNY 10,000 0 9.37

Total cost/CNY 10,000 593.55 585.19

5. Results Discussion

In the study of power system unit commitment, this paper optimizes the unit commit-
ment of the power system by considering frequency security constraints and DSR. In terms
of frequency, this paper imposes constraints on four key indicators: the rate of change of
frequency, the frequency nadir, the steady-state frequency, and the fast frequency response,
to ensure that the power system can effectively maintain stability and operate safely, with
the final frequencies meeting the safety constraint requirements. In terms of DSR, this paper
employs a method in which loads participate in DSR, fully considering the parameters and
constraints after DSR implementation. After DSR implementation, the unit commitment of
the power system can effectively enhance system operational flexibility, reduce operational
risks, and enable the system to respond more effectively to load changes. This allows the
system to quickly adjust unit output and maintain the supply–demand balance through
reasonable load management and scheduling.

Based on a thorough analysis of the operating conditions of unit commitment, this
paper proposes a power system unit commitment model that considers frequency security
constraints and DSR. Compared to thermal unit commitment, the proposed model focuses
more on the safe and stable operation of the power system and optimized scheduling,
using load data from a typical day to drive the reasonable allocation of generation plans.
The calculation results show that in Scenario 2, the total cost is reduced by CNY 83,600
compared to Scenario 1; the thermal unit output cost is reduced by CNY 608,500; and the
thermal unit reserve cost is reduced by CNY 135,100. This indicates that the proposed
method has significant advantages in optimizing unit commitment scheduling. The results
demonstrate that the proposed model not only improves the stability and flexibility of the
system but also reduces the cost of unit commitment. This allows the power system to
respond more flexibly to load changes, reduces the pressure of peak loads on the system,
optimizes resource allocation, and improves overall economic efficiency.

Although positive results were achieved, there are still some limitations. This paper
considers the load data of a typical day, but the load power data for the entire year were
not collected in detail for the study. Therefore, the model was not optimized and scheduled
using annual unit operation data. In future research, more comprehensive load data can be
collected to validate and optimize the model further.

6. Conclusions

This paper develops a power system unit commitment model that considers frequency
security constraints and DSR, based on an improved binary particle swarm optimiza-
tion algorithm. Case study simulation was conducted, and the following conclusions
were drawn:

(1) By incorporating frequency security constraints into the optimization model, the
frequency fluctuations of the system can be significantly improved, enhancing the
overall system stability.

(2) Load participation in DSR allows for rational adjustments to users’ electricity con-
sumption periods, improving the operational flexibility of the power system while
reducing operational risks.
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(3) The power system unit commitment method, which comprehensively considers
frequency security constraints and DSR, not only improves system stability and
flexibility but also reduces the cost of unit commitment.

Future research will strive to take setup, operational, and maintenance costs into
account to achieve a more comprehensive cost–benefit analysis. In addition, the optimal UC
strategy would be addressed considering more generating units to improve the flexibility
of power systems integrated with high renewable energy.
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