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Abstract: The architecture, engineering, construction, and operations (AECO) sector exerts a consid-
erable influence on energy consumption and CO2 emissions released into the atmosphere, making a
notable contribution to climate change. It is therefore imperative that energy efficiency in buildings is
prioritized in order to reduce environmental impacts and meet the targets set out in the European
2030 Agenda. In this context, renewable energy communities (RECs) have the potential to play
an important role, promoting the use of renewable energy at the local level, optimizing energy
management, and reducing consumption by sharing resources and advanced technologies. This
paper introduces an open tool (OT) designed for the configuration of energy systems dedicated to
RECs. The OT considers several inputs, including thermal and electrical loads, energy consumption,
the type of building, surface area, and population size. The OT employs artificial intelligence (AI)
algorithms and machine learning (ML) techniques to generate forecast optimized scenarios for the
sizing of photovoltaic systems, thermal, and electrical storage, and the estimation of CO2 emission
reductions. The OT features a user-friendly interface, enabling even non-experts to obtain compre-
hensive configurations for RECs, aiming to accelerate the transition toward sustainable and efficient
district energy systems, driving positive environmental impact and fostering a greener future for
communities and cities.

Keywords: renewable energy communities; REC; artificial intelligence; machine learning; automated
development; predictive scenarios

1. Introduction

Recognized for its critical role in improving energy security and affordability, energy
efficiency is currently the focus of global policy attention to accelerate the transition to
clean energy. However, despite this growing attention, the projected rate of progress in
energy intensity, the main indicator of energy efficiency in the global economy, by 2023 has
fallen below long-term trends, to 1.3% from 2% last year [1]. This slowdown in energy
intensity improvement mainly reflects an increase in energy demand from 1.3% in 2022 to
1.7% in 2023. At the same time, the slowdown in global progress in energy intensity
masks exceptional gains in some countries and regions, where strong policies, increased
investment, and changes in consumer behavior have led to significant improvements well
above the global average. To date, the European Union and the United States, among
many others, including Korea, Turkey, and the United Kingdom, have recorded robust
improvements ranging from 4% to 14% since the onset of the energy crisis [2,3]. By 2023, the
global initiative to double the rate of efficiency improvement to 4% has gained significant
momentum. This could result in a reduction in current energy bills in advanced countries
by approximately one-third and account for approximately 50% of CO2 reductions by
2030 [4]. However, the energy crisis has undoubtedly accelerated the energy transition
to such an extent that, in response to the crisis, governments have introduced measures
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and initiatives aimed at achieving major improvements in energy efficiency policies, which
could become substantial [5]. Since the start of the energy crisis in early 2022, there has
been a significant escalation in government action, with countries accounting for 70% of the
global energy demand introducing or significantly strengthening efficiency policy packages
(Figure 1). The annual investment in energy efficiency has increased by 45% by 2020, with
particularly strong growth in electric cars and heat pumps (Figure 2). Today, almost one in
five cars sold is an electric vehicle, and global heat pump sales growth is now outpacing that
of gas boilers in many markets [6]. Achieving these targets would also create 4.5 million
more jobs than today in the energy efficiency sector, including manufacturing, building
renovation, construction, industry, and transport [7].
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The environmental impact of buildings is a topic of growing interest in the scientific
community, given their significant contribution to global energy consumption [10–12].
It is clear that buildings are responsible for a considerable percentage of the world’s
energy consumption and an equally considerable percentage of associated greenhouse gas
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emissions. The International Energy Agency (IEA) has estimated that the building sector
accounts for approximately 40% of global energy consumption and 36% of CO2 emissions
related to its use (e.g., heating homes) [13]. It is therefore imperative to develop effective
strategies to reduce building energy consumption and related emissions. The majority of
emissions from buildings are the result of the use of energy for purposes such as heating,
cooling, lighting, and other essential functions (Figure 3). However, it should be noted that
the construction phase of buildings, which includes the production of materials and their
processing, also contributes significantly to the overall carbon footprint. As a consequence
of the accelerated process of urbanization and the concomitant expansion of urban areas,
the issue is likely to intensify unless appropriate measures are implemented [14].
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The AECO sector is currently not on track to achieve net zero emissions by mid-century,
with emissions growing at an average of 1% per year since 2015 [1]. Global growth in the
built-up area is overcoming efforts to increase energy efficiency and decarbonization, with
the consequence that the long lifecycle of buildings is reinforcing vulnerable, high-emission
infrastructure. Significant change is required to achieve decarbonization of the sector while
ensuring the resilience of communities. In 2023, emissions from the AECO sector will
account for approximately one-third of total emissions. This includes operational emissions
associated with the use of buildings (26%) and embedded emissions (7%) associated with
the production of the materials needed for their construction. In order to align with the
IEA’s Net Zero Emissions Scenario (NZE Scenario), operational emissions must decrease by
approximately 50% by 2030 in comparison to 2022 levels (Figure 4). It is important to note
that in order to achieve the target of net zero emissions by 2050, all new buildings must be
net zero-emitting as early as 2030.

This analysis highlights the urgent need to intensify decarbonization efforts in the
AECO sector to address environmental sustainability challenges, with a focus on effective
strategies that can reverse current trends and contribute to a low or zero-carbon future.
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Renewable Energy Communities

In the European context, there exists a powerful commitment towards achieving the
targets outlined in the European Green Deal, which seeks to establish Europe as the first
climate-neutral continent by 2050 [17]. This ambitious objective necessitates substantial
reductions in greenhouse gas emissions and widespread adoption of renewable energy
sources. To facilitate this transition, the European Union has set specific goals for member
states, including a minimum 55% reduction in greenhouse gas emissions by 2030 compared
to 1990 levels. Within this framework, Italy, as a member state of the European Union,
has devised its own national strategies and plans to align with the European objectives.
The Italian Long-Term Strategy on the Reduction of Greenhouse Gas Emissions provides
a comprehensive roadmap towards achieving deep decarbonization by 2050 [18]. The
strategy outlines ambitious targets for greenhouse gas emission reductions, the promotion
of renewable energy sources, and enhancements in energy efficiency across various sectors.

To actualize these targets, Italy has implemented the National Energy and Climate
Plan (NECP) and PNRR, which delineates a strategic pathway for the country’s energy
transition [18]. The NECP concentrates on key areas such as the deployment of renewable
energy, energy efficiency measures, and the advancement of sustainable mobility. It estab-
lishes specific benchmarks for the integration of renewable energy into the energy mix, the
reduction in energy consumption, and the development of energy storage and smart grid
infrastructure. In alignment with European and national objectives, the establishment of
energy-efficient and sustainable district energy systems has emerged as a critical aspect.
District energy systems offer the potential to integrate diverse energy sources, optimize
energy consumption, and minimize greenhouse gas emissions on a community scale. By
harnessing local renewable energy resources, implementing energy-efficient technologies,
and fostering community engagement, district energy systems can make significant contri-
butions towards achieving national and European climate goals. Consequently, there is an
urgent requirement for innovative tools and approaches that can support the design and
implementation of energy-efficient district communities. These tools should facilitate the
optimization of energy generation, storage, and consumption, taking into consideration
factors such as thermal and electrical loads, energy consumption patterns, building charac-
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teristics, and population size. By leveraging advanced modeling techniques, data analysis,
and optimization algorithms, these tools can provide invaluable insights and solutions for
the efficient design of district energy systems. This includes appropriately sizing renewable
energy installations and energy storage systems and estimating the resultant reductions in
CO2 emissions. By aligning with European and national objectives, the development of
energy-efficient district communities can contribute significantly to overall decarbonization
efforts, encourage the adoption of renewable energy sources, enhance energy efficiency,
and foster sustainable development at the local level.

Renewable energy sources are reaching unprecedented levels of use in the build-
ing sector and are becoming an increasingly important part of the global energy mix
(Figure 5) [19–22]. Photovoltaic (PV) solar energy is one of the main drivers of this growth,
characterized by a significant expansion of generation capacity [23–26]. Wind energy is
becoming increasingly important, with a growing presence both onshore and offshore [27].
Wind farms are expanding in many countries and contribute significantly to the supply
of renewable electricity. Green hydrogen is confirmed as a promising technology with the
potential to play a crucial role in the decarbonization of various economic sectors. The
electrolysis of water, powered by renewable energy, facilitates the production of clean,
carbon-free hydrogen.
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Leading renewable energy countries are demonstrating a strong commitment by
setting ambitious targets and implementing policies that support the growth of these
sources. Their initiatives are key to driving the global energy transition and accelerating
the deployment of renewable energy. Directive (EU) 2018/2001, known as the Renewable
Energy Directive II (RED II), is a key pillar of the European Union’s strategy to promote
renewable energy and meet its 2030 climate and energy targets, establishing a regulatory
framework that aims to increase the share of renewable energy in Europe’s energy mix,
improve energy efficiency, and reduce greenhouse gas emissions [29]. One of the key
components of this legislation is the adoption of transparent rules and coordination between
the different bodies responsible for issuing permits for renewable energy projects. The lack
of transparent rules and proper coordination between permitting bodies has been identified
as a significant obstacle to the development of renewable energy. RED II addresses this
issue by proposing the establishment of one-stop administrative shops to guide applicants
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through the application and administrative licensing process. This approach aims to reduce
complexity for project developers and increase the efficiency and transparency of the
authorization process. Another key aspect is the need for Member States to ensure that
these communities can participate in available support schemes on an equal footing with
large participants. The transition to renewable energy represents a major challenge and
opportunity for communities [29].

In the context of energy transition, digital technologies and innovative systems, such
as the Internet of Things (IoT) devices, smart grids, AI, and ML, with their optimization,
management, and data analysis capabilities, assume a crucial role [30]. Leveraging AI
and related digital technologies not only supports sustainability and resilience but also
drives innovation within complex systems, such as those involved in energy transition
and renewable energy management [31]. The principal applications of digital technology
integration in the energy sector are the smart grid and advanced sensors, communication
systems, and AI algorithms that can facilitate the real-time monitoring and management
of energy distribution. For energy communities, this implies a dynamic equilibrium
between supply and demand, and the integration of renewable sources into the local
grid, thus ensuring a stable and continuous energy supply [32]. Khan et al. address
the problem of electricity theft, which compromises public safety and causes economic
losses for electricity companies by proposing a hybrid deep learning model that uses
pre-processing and AlexNet techniques to improve the effectiveness of detection. Using
a real dataset of smart meters, the model proposed by the authors showed promising
results with high accuracy, precision, recall, and F1 score [33]. Zafar et al. discuss the
importance of using AI during the fourth energy revolution to address the growing demand
for energy and the depletion of fossil fuel reserves, thereby promoting the transition to
smart grids. The authors use an ML model called Long Short-Term Memory (LSTM) to
predict the parameters of a solar plant. They improve this model with two techniques:
a combination of a convolutional neural network and LSTM, and an LSTM autoencoder,
finding that the LSTM autoencoder provides the best performance; finally, they show that
AI can significantly improve the accuracy of parameter predictions, helping to reduce
losses and increase power generation capacity in smart grids [34]. Khalid examines energy
systems from an environmental perspective and highlights emerging research trends. The
rise in renewables requires infrastructure restructuring, providing opportunities for grid
development and the use of AI for intermittent and distributed generation. The integration
of AI and IoT into energy systems improves efficiency, sustainability, and reliability. The
paper highlights the importance of a comprehensive policy and planning framework to
support the transition to advanced systems and contributes to the academic debate on
harnessing digital transformation to create smart and sustainable energy ecosystems [35].
Singh examines in detail the problems of integrating renewable energy sources (RESs)
into distribution grid structures, highlighting their importance for modernizing the energy
system and achieving environmental goals, and exploring the specific problems faced by
grid-connected energy systems, including performance metrics and compatibility issues. It
also provides an in-depth assessment of the characteristics of different RES hybrid systems,
including solar, wind, battery, and biomass technologies. Finally, it highlights the role of
advanced technologies and AI in addressing these issues, pointing to the move towards
smart grids and improved distributed generation capabilities as essential components
of a sustainable and robust energy future [36]. According to Wirtz, it is fundamental to
highlight the dearth of adequate software tools for the simulation and optimization of
energy systems at the preliminary design stage. He presents a new web-based tool, nPro,
which assists in the planning of district heating and cooling systems. Once the type of
system and the characteristics of the energy carrier have been selected, the system estimates
the demand and the system based on the entered characteristics [37].

The present research proposes an OT that suggests different plant systems and re-
newable energy scenarios for the community/district. The innovative aspect of the pro-
posal lies in the tool’s capacity to foresee tailored energy systems based on consump-
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tion and geographical location, as a result of the AI and ML algorithms described in the
subsequent section.

Recent advancements in ML, particularly in the realm of deep learning, have ushered
in transformative changes in energy system management. Techniques such as reinforcement
learning (RL) [38] and generative adversarial networks (GANs) [39] are at the forefront
of this revolution. RL algorithms have been increasingly applied to optimize energy
distribution and demand response strategies, enabling systems to adapt dynamically to
changes in energy consumption patterns and supply fluctuations. Smith et al. demonstrate
how RL can be leveraged to reduce energy consumption in commercial buildings by
up to 20% without compromising occupant comfort, underscoring the potential of these
algorithms to contribute to substantial energy savings and operational efficiency [40].

Moreover, the application of GANs in energy systems is a rapidly growing area of
research that promises to enhance the accuracy of load forecasting and scenario plan-
ning. These networks are capable of generating simulated energy consumption data under
various hypothetical conditions, providing energy managers with valuable insights into po-
tential future challenges and enabling proactive system adjustments. The groundbreaking
work by [41] Tran DT et al. illustrates how GANs can simulate electrical grid responses to
extreme weather events, helping to prepare urban energy systems for increased resilience
and continuity in the face of climatic anomalies. The progress in technology clearly shows
how the latest AI and ML methods can enhance conventional energy management systems
to achieve higher levels of efficiency and predictive accuracy. Zhimin Du et al. underscore
the significance of GANs in the energy sector by addressing challenges such as imbalanced
datasets in Fault Detection and Diagnosis (FDD) models. Through GAN-based adversarial
learning, the model effectively generates balanced training datasets for building energy
systems, ensuring accuracy and preventing missed alarms [42]. The research approach
outlined in the OT initiative incorporates these sophisticated algorithms not just to im-
prove immediate responsiveness but also to offer strategic insight into handling upcoming
energy needs and situations. This strategy marks a notable advancement from current
tools, distinguishing the proposed OT by its capability to leverage state-of-the-art AI for
energy solutions.

A number of technological solutions are currently available on the market, which have
been developed with the specific objective of enhancing methodologies for plant design or
energy simulation through the use of digital tools. One such solution is HOMER (Hybrid
Optimization of Multiple Energy Resources), which is a specialized software used primarily
for the design, simulation, and optimization of microgrids and distributed energy systems.
It is widely applied in projects involving renewable energy sources like solar, wind, and
biomass, as well as traditional power generation, storage systems, and electric grids [43].
Instead, RETScreen is a software developed by the Canadian government to assess the
technical and economic feasibility of renewable energy and energy efficiency projects. It
is designed to help professionals and engineers design, implement, and monitor energy
projects, covering technologies such as solar, wind, hydro, and biomass [44].

The OT project distinguishes itself by not only adopting but also innovating upon the
latest advancements in AI and ML to deliver a tool that is uniquely capable of optimizing
urban energy systems. Through the use of sophisticated data processing techniques and
dynamic learning algorithms, the OT ensures that urban energy managers are equipped
with a system that is both adaptive to immediate environmental changes and predictive of
long-term trends. This positions the OT as a leader in the field, pushing the boundaries
of what is possible in sustainable urban energy management and demonstrating a com-
mitment to continuous improvement and technological integration in the face of global
energy challenges.

2. Materials and Methods

This section describes the methodologies implemented in the OT project, designed to
enhance the design and management of district energy systems. It provides a comprehen-
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sive explanation of the integration of advanced AI and ML technologies. These technologies
address complex challenges in energy distribution and consumption, facilitating optimized
decision-making that aligns with environmental sustainability goals.

2.1. Interdisciplinary Approach and Technical Framework

The methodology employed integrates data science, urban planning, and energy
management principles, making extensive use of Python 3.13, a versatile and powerful
programming language known for its robust libraries. These libraries are particularly well
suited for data-intensive applications, enabling the handling of large datasets, performing
complex calculations, and integrating diverse data sources. This capability ensures that OT
meets the technical requirements of modern energy systems and remains adaptable and
scalable as technological advancements emerge (Figure 6).
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2.2. AI and ML Integration for Dynamic System Adaptation

AI and ML are seamlessly integrated into OT, creating a dynamic system that can
adapt to new patterns of energy use and environmental changes. This adaptability is
crucial for cities aiming to reduce their carbon footprint and enhance energy efficiency.
Continuous learning and improvement processes within OT provide urban planners and
energy managers with actionable insights, promoting sustainable development.

2.3. User Interface and Input Data Collection

The user interface initiates the process, guiding users through a structured data input
phase that is intuitive and user-friendly. This phase includes the collection of the following:

1. Thermal Loads and Electrical Loads: Data derived from utility bills measured in kWh.
2. Building Type: Users select from predefined options to ensure the energy solutions

are accurately tailored.
3. Surface Roof Area and Technical Area Available: Inputs measured in square meters

that influence the potential for installations like PV systems.
4. Population Size: This indicates the scale of the energy system required.
5. Location Site: This specifies whether the site is urban, coastal, or mountainous, affect-

ing the design and energy needs.

2.4. Data Processing and System Design

Determining a building’s energy demand is essential for evaluating energy efficiency
and planning enhancements. A practical approach involves analyzing the energy consump-
tion data from utility bills entered into the system by users. To standardize the data, it may
be necessary to convert gas consumption from cubic meters to kWh using a conversion
factor that reflects the gas’s calorific value. This standardization ensures uniformity in
measuring all consumed energy types. This method provides an accurate estimate of
energy usage, necessitating the collection of data on electricity, gas consumption, and other
fuels used throughout the year:



Energies 2024, 17, 5726 9 of 16

(1) Building-specific energy demand calculation: The energy demand specific to a build-
ing is calculated by dividing the total annual energy consumption by the building’s
surface area (kWh/m2).

(2) Sizing of PV systems (1): Dimensioning a PV system involves a detailed assessment
of energy requirements, site characteristics, and technical specifications of the PV
panels. Initially, the building’s energy demand is determined, which is influenced
significantly by the site’s geographical location. Solar radiation availability varies
with latitude and local climate conditions, and the panel orientation—south in the
northern hemisphere and north in the southern hemisphere—plays a crucial role
in system efficiency. Accounting for positioning and inevitable efficiency losses
from various devices, the required panel peak power value must be increased by
approximately 25%.

Wp = (Wh/heq) × (1/ρ) (1)

- Wp = panel peak power
- Wh = daily consumption
- ρ = effective overall efficiency of the system

(3) Annual producibility calculation (2): The annual producibility refers to the potential
energy production over one year. It is calculated using the average annual solar
radiation on the site’s horizontal plane (from UNI 10349 tables), the module surface
area, a correction factor, and the system’s effective overall efficiency.

EkWh/year = I12 × A × fc × ρ (2)

- I12 = average annual solar radiation (UNI 10349)
- A = module surface area
- fc = correction factor
- ρ = effective overall efficiency of the system

(4) Sizing of electrical storage [kW] (3): Proper sizing of electric batteries is critical,
especially in systems utilizing renewable energy sources like solar PV. The size of
the batteries is determined based on the amount of energy that needs to be stored
during low production periods to maximize self-consumption. This depends on the
backup period duration and the depth of discharge (DoD), which typically is 80–90%
for lithium batteries.

Estorage = Wh × daystorage × 1/η (3)

- Wh = daily consumption
- η = discharge efficiency and depth of discharge

1/η = [1/(0.8 × 0.08)] = 1/0.64 (4)

(5) Sizing of thermal storage [V] (5): Thermal storage sizing starts with calculating the
thermal load, which is the energy amount to be stored and later supplied.

Q = m × cp × ∆T (5)

- m = mass of the heat transfer fluid
- cp = specific heat of the fluid
- ∆T = temperature difference between the inlet and outlet of the tank

(6) CO2 Emission reduction estimation: The OT calculates the tons of CO2 emissions
avoided by utilizing renewable energy sources, a key feature for sustainability reporting.

2.5. Optimization and Scenario Simulation

In the optimization and scenario simulation section of the OT project, AI and ML
methodologies play a crucial role in forecasting and optimizing energy management
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systems. Here is how these technologies work in tandem with the input data to generate
efficient and sustainable configurations for urban energy systems.

In this project, predictive models are central to optimizing the forecasting accuracy
and operational efficiency of urban energy systems. The suite of ML technologies utilized
includes the following:

I. Long Short-Term Memory (LSTM) Networks: These are specialized forms of recurrent
neural networks (RNNs) that are highly effective at modeling sequential data. In
the context of OT, LSTM networks are employed to capture temporal sequences and
dependencies in historical energy usage data, which is crucial for accurately predicting
future energy consumption.

II. Regression Models: These models are employed to predict continuous outcomes
such as the output of renewable energy sources including solar and wind power. By
accounting for various environmental and technical factors, these models provide
precise estimations that aid in integrating renewable energy sources into the urban
energy grid efficiently.

III. Ensemble Models: To enhance the robustness and reliability of predictions, OT inte-
grates ensemble learning techniques such as Random Forests and Gradient Boosting
Machines. These techniques combine the predictions of multiple models to improve
forecast performance, especially in complex scenarios where single models may strug-
gle with accuracy due to overfitting or underestimating uncertain elements.

3. Result and Discussion

The dataset used in this study represents real-world energy consumption data from
urban environments, providing a robust foundation for the OT project’s ML modeling
efforts. The dataset and the ML model implemented in Python, ensuring reproducibility
and transparency, are available on the project’s GitHub “https://github.com/zahraziran/
Open-tool-” (accessed on 11 November 2024) for access and further exploration. This
dataset includes detailed energy usage information across various urban areas, building
types, and occupancy levels, enabling a nuanced analysis that captures the complexities
of urban energy demand. Figure 7 outlines the systematic approach used to handle and
process data within the OT framework. This diagram illustrates the comprehensive pipeline,
from the collection of data via IoT devices to the stages of data handling, feature extraction,
and normalization. This workflow is critical for ensuring that the input data are both
accurate and standardized, which is essential for the effective training and application of ML
models. Data processing within the energy sector is pivotal, as it enables the identification
of the most efficient models and approaches, potentially elevating energy management
to a more advanced level. For instance, certain industrial methodologies prioritize data
processing to circumvent the additional costs associated with complex analyses, thereby
streamlining operations and enhancing overall efficiency [45]. By integrating tools like
Python’s libraries, NumPy, and Pandas, this workflow supports robust data processing
capabilities necessary for real-time energy forecasting and optimization tasks.
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Achieving high predictive accuracy with such a comprehensive dataset underlines the
robustness of our approach and demonstrates the potential impact of the OT. The results
obtained from this research offer valuable insights and practical benefits, especially for
researchers and practitioners interested in replicating or extending the OT’s capabilities.

https://github.com/zahraziran/Open-tool
https://github.com/zahraziran/Open-tool
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Given the promising outcomes, we have also proposed future enhancements to the OT
by incorporating RL and GANs. These advanced techniques could further refine the OT’s
predictive abilities and adaptability, making it even more effective for dynamic urban
energy management (Figure 8).
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In this study, various ML models for energy consumption prediction were evaluated,
including Long Short-Term Memory (LSTM) networks, Linear Regression, Random Forest,
and Gradient Boosting models. Each model’s performance was measured using standard
evaluation metrics, such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
and R-squared (R2). The findings revealed that the LSTM model consistently provided
the best performance, closely aligning with actual consumption patterns. This suggests
that the LSTM network, with its capability to model temporal dependencies, is particularly
suited to the dynamic nature of energy consumption data.

While Linear Regression served as a reliable baseline, it did not capture the com-
plex, non-linear relationships in the data as effectively as the more advanced models.
Both Random Forest and Gradient Boosting, which are ensemble methods, handled fea-
ture interactions better but lacked the temporal sensitivity necessary for time-series data.
As highlighted in Figure 9, Random Forest and Gradient Boosting achieved reasonable
accuracy, yet neither matched the precision of the LSTM network, especially where the vari-
ability in energy use was pronounced. The LSTM model, with an RMSE around 1.15 and
an R2 approaching 1.0, outperformed the other models, making it the preferred choice for
the OT’s predictive tasks.

These results are summarized in Table 1, underscoring the LSTM network’s superiority
in handling intricate patterns inherent in urban energy data. Table 1 presents the evaluation
metrics for different ML models applied to energy consumption prediction, including Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
R-Squared (R2). While Linear Regression achieves an R2 value of 1.0000, indicating a perfect
fit, the LSTM model demonstrates a better balance between accuracy and generalizability,
making it more suitable for capturing complex temporal patterns in energy data.

Table 1. Evaluation metrics.

Model Mean Squared
Error (MSE)

Root Mean
Squared Error

(RMSE)

Mean Absolute
Error (MAE) R-Squared (R2)

LSTM 2.00 1.42 1.16 0.9975
Linear

Regression 0.00 0.00 0.00 1.0000

Random Forest 215.34 12.67 6.6881 0.8030
Gradient
Boosting 158.20 12.38 6.8028 0.8119
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An analysis carried out shows that although Linear Regression appears to perform
best with the highest R2 and lowest error metrics, its simplicity and tendency to overfit
may make it less ideal for real-world forecasting. The LSTM network’s adaptability and
ability to handle complex temporal patterns suggest that it would provide more reliable
results as the dataset expands or as conditions fluctuate, ensuring resilience and accuracy
in a real-world deployment. The LSTM model’s strong performance makes it the most
viable option for the OT, as it demonstrated the highest accuracy and reliability among the
models tested. The effectiveness of LSTM in this context underscores the model’s suitability
for similar urban energy prediction tasks. Considering these findings, we propose the
integration of RL and GANs as future enhancements to the OT. RL could enable the tool to
adapt dynamically to real-time changes in energy demand and supply, optimizing energy
distribution in a way that responds to immediate system needs. Kim, S et al. propose
an energy management algorithm based on RL, aimed at minimizing operational energy
costs in smart buildings despite the uncertainty of future conditions [46], and A.T.D. Perera
et al. highlight how the increasing complexity of integrated energy systems necessitates
advanced control strategies, with RL emerging as a promising approach. However, they
note that a direct transition to RL in energy systems faces challenges, despite RL’s significant
potential to manage and optimize energy flows within the renewable energy landscape [47].
This capability would be particularly valuable in demand response scenarios, where timely
adjustments can lead to cost savings and improved grid stability.

GANs could further bolster the OT by generating synthetic datasets that simulate
various future scenarios, thereby aiding in resilience planning. Through these simulations,
the OT could better anticipate and prepare for extreme conditions or sudden shifts in energy
demand. By incorporating RL and GANs, the OT would become a more adaptive and
forward-looking tool, aligning it even more closely with sustainability goals and enhancing
its utility for urban planners and energy managers. The proposed future work not only
aims to refine the OT’s accuracy but also to expand its applicability in real-world, dynamic
urban energy environments.
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The OT requires only basic building information and can therefore be used in a variety
of areas to improve energy efficiency and promote sustainability:

- Urban energy management: It can be used by urban energy managers to monitor en-
ergy distribution and consumption in the city. Accurate forecasting and optimization
strategies can reduce energy costs and improve overall system efficiency;

- Sustainable urban planning: Practitioners can use the OT to plan more sustainable
districts and neighborhoods. The application can help identify the best renewable
energy solutions and minimize the environmental impact of new construction;

- Commercial and residential buildings: Owners and operators of commercial and
residential buildings can use the OT to monitor and reduce energy consumption,
analyze the usability of renewable resources, and improve the operational efficiency
of buildings, thanks to the user-friendly interface and the system itself, which does
not require any special scientific knowledge to use;

- Renewable energy systems: It can be used to size design PV systems, wind, and other
renewable energy systems, ensuring that these systems are designed to maximize
energy production and reduce operating costs;

- Energy demand forecasting: Utilities and energy suppliers can use the OT to forecast
short- and long-term energy demand, improving resource management and reducing
the risks associated with demand fluctuations. After a certain training period and a
sufficient amount of data, the information provided by the OT will become increasingly
accurate and reliable;

- Energy policies and regulation: Regulators and energy policymakers can use the
OT to analyze the impact of existing and future energy policies, and to develop
new regulations that promote energy efficiency and the use of renewable energy. In
summary, the OT offers a wide range of applications that can help improve energy
efficiency, reduce CO2 emissions, and promote sustainability in different sectors
and contexts.

It is of the utmost importance to ensure the quality of the data used, as the efficacy of
the OT is contingent upon the completeness and accuracy of the input data. In the event
of inaccuracies in energy consumption data or incomplete geographical and structural
information, sub-optimal predictions and recommendations may ensue. While the user
interface is intuitive, the necessity for detailed energy consumption data and building
specifications, for instance, can be daunting for those without experience in this field.
This could restrict the accessibility and usability of the OT, resulting in incomplete data
being input, which makes ML and AI models susceptible to incomplete datasets. These
limitations highlight the need for the OT to be continuously refined through real-world
testing and feedback, adaptive learning to accommodate new data and conditions, and
perhaps a modular approach that allows for customization according to user needs and
regulatory authorities.

4. Conclusions

The OT project leverages cutting-edge ML technologies within a robust framework de-
signed to enhance the management and design of district energy systems. This framework
enables a dynamic, adaptable platform that facilitates more efficient and environmentally
sustainable energy distribution. The integration of advanced data science, urban planning,
and energy management principles equips the OT with the versatility to address global
energy challenges, providing cities with a powerful tool to achieve their sustainability goals.
The OT’s capacity to predict and adapt to energy consumption and environmental changes
promises significant advancements in urban energy systems’ resilience and efficiency.

In this research, a real-world dataset was utilized to validate the OT’s capabilities,
yielding promising results that underscore the potential of ML in optimizing energy con-
sumption predictions. Through the implementation of multiple ML models, including
Linear Regression, Random Forest, Gradient Boosting, and LSTM networks, we found that
LSTM networks were particularly effective in capturing complex temporal dependencies in



Energies 2024, 17, 5726 14 of 16

energy usage data. While Linear Regression achieved the lowest error rates in this dataset,
the LSTM network’s ability to model sequential data positions it as a more robust option
for applications requiring detailed temporal analysis, which could be invaluable for those
looking to replicate or extend OT’s capabilities.

Moving forward, the OT framework could benefit significantly from integrating RL
and GANs. RL could dynamically optimize energy management strategies by adjusting to
real-time fluctuations in demand and supply, enhancing the system’s resilience to changes.
GANs, on the other hand, could aid in simulating diverse scenarios and stress-testing
energy systems, preparing them for unexpected events and providing valuable insights
into system performance under various conditions. This combination of predictive and
adaptive capabilities would allow the OT not only to optimize energy systems but also to
improve long-term sustainability and resilience.

In future iterations, integrating the OT with Building Information Modeling (BIM)
could further enhance the quality of input data by incorporating detailed and accurate
information on building characteristics, materials, and dimensions. This would enable
OT to make even more precise predictions and develop energy distribution strategies that
are finely tuned to specific building and environmental contexts. By bridging advanced
AI/ML with BIM, the OT has the potential to revolutionize urban energy management,
scenario planning, and sustainable development. The inclusion of RL and GANs would
expand the OT’s adaptability, making it an even more valuable tool for real-time energy
management and policy planning, reinforcing its capacity to lead the way in transitioning
towards smarter, greener urban energy systems.
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